THE INFORMATION EXPLOSION

John Scales Avery

May 7, 2018
Contents

1 WHAT IS INFORMATION? 11
 1.1 An interview with Binu Mathiew 11
 1.2 What is life? .. 27
 1.3 Molecular biology .. 32
 1.4 The structure of DNA ... 35
 1.5 Hypothermophiles and the origin of life 37

2 THE EVOLUTION OF CONSCIOUSNESS 51
 2.1 Are matter and mind separate? 51
 2.2 Jakob von Uexküll and Umwelt 54
 2.3 Amoebae, slime molds and sponges 58
 2.4 The world as seen by a jellyfish 61
 2.5 The giant squid axon ... 62
 2.6 Internuncial circuits .. 69
 2.7 Pattern abstraction in the octopus brain 71
 2.8 The mentality of apes ... 74
 2.9 Dreaming and intelligence 76
 2.10 Superorganisms and collective consciousness 77

3 AGRICULTURE 83
 3.1 Accelerating cultural evolution 83
 3.2 Early agriculture in the Middle East 86
 3.3 Rice cultivation in Asia ... 89
 3.4 Agriculture in the western hemisphere 91
 3.5 Peru gives potatoes to the world 94
 3.6 The threat of widespread famine 97
 3.7 Population growth and the Green Revolution 101
 3.8 Energy-dependence of modern agriculture 104
 3.9 Effects of climate change on agriculture 106
 3.10 Harmful effects of industrialized farming 111
 3.11 The demographic transition 113
 3.12 Illegal burning for palm oil plantations 117
 3.13 The beef industry in South America 119
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.14 Growing populations and forest loss</td>
<td>122</td>
</tr>
<tr>
<td>3.15 Desertification and soil erosion</td>
<td>123</td>
</tr>
<tr>
<td>3.16 Forest drying and wildfires: a feedback loop</td>
<td>124</td>
</tr>
<tr>
<td>3.17 Degraded forests are carbon emitters</td>
<td>124</td>
</tr>
<tr>
<td>3.18 Replanting forests</td>
<td>125</td>
</tr>
<tr>
<td>3.19 Algae as a source of food</td>
<td>126</td>
</tr>
<tr>
<td>3.20 Farming the seas</td>
<td>128</td>
</tr>
<tr>
<td>4.1 Mesopotamia</td>
<td>135</td>
</tr>
<tr>
<td>4.2 Egypt</td>
<td>136</td>
</tr>
<tr>
<td>4.3 China</td>
<td>138</td>
</tr>
<tr>
<td>4.4 The Americas</td>
<td>139</td>
</tr>
<tr>
<td>4.5 The invention of paper</td>
<td>140</td>
</tr>
<tr>
<td>4.6 Printing</td>
<td>144</td>
</tr>
<tr>
<td>4.7 Islamic civilization and printing</td>
<td>145</td>
</tr>
<tr>
<td>4.8 Gutenberg</td>
<td>150</td>
</tr>
<tr>
<td>4.9 The Enlightenment</td>
<td>153</td>
</tr>
<tr>
<td>4.10 Universal education</td>
<td>165</td>
</tr>
<tr>
<td>4.11 The importance of education for women</td>
<td>167</td>
</tr>
<tr>
<td>4.12 Printing and the rise of nationalism</td>
<td>175</td>
</tr>
<tr>
<td>5.1 A revolution in communication</td>
<td>179</td>
</tr>
<tr>
<td>5.2 Örsted, Ampère and Faraday</td>
<td>182</td>
</tr>
<tr>
<td>5.3 Electromagnetic waves: Maxwell and Hertz</td>
<td>187</td>
</tr>
<tr>
<td>5.4 The discovery of electrons</td>
<td>189</td>
</tr>
<tr>
<td>5.5 History of the electrical telegraph</td>
<td>190</td>
</tr>
<tr>
<td>5.6 The transatlantic cable</td>
<td>193</td>
</tr>
<tr>
<td>5.7 Marconi</td>
<td>196</td>
</tr>
<tr>
<td>5.8 Alexander Graham Bell</td>
<td>197</td>
</tr>
<tr>
<td>5.9 Cinema</td>
<td>199</td>
</tr>
<tr>
<td>5.10 The invention of television</td>
<td>201</td>
</tr>
<tr>
<td>5.11 The history of the Internet</td>
<td>204</td>
</tr>
<tr>
<td>5.12 Skype</td>
<td>207</td>
</tr>
<tr>
<td>5.13 Facebook</td>
<td>208</td>
</tr>
<tr>
<td>5.14 Mainstream media fail in their duty</td>
<td>209</td>
</tr>
<tr>
<td>5.15 Alternative media</td>
<td>211</td>
</tr>
<tr>
<td>5.16 The advertising industry</td>
<td>224</td>
</tr>
</tbody>
</table>
CONTENTS

6 AN EXPLOSION OF POPULATION 231
- 6.1 The warning voice of Malthus .. 231
- 6.2 The demographic transition .. 239
- 6.3 Urbanization .. 240
- 6.4 Achieving economic equality ... 241
- 6.5 Achieving a steady-state economic system 244
- 6.6 Climate change as genocide ... 244
- 6.7 The United Nations High Commission on Refugees 245
- 6.8 Populations displaced by sea level rise 246
- 6.9 Populations displaced by drought and famine 246
- 6.10 Populations displaced by rising temperatures 246
- 6.11 Populations displaced by war 247
- 6.12 Political reactions to migration 248
- 6.13 A more humane response to the refugee crisis 249

7 INFORMATION TECHNOLOGY 261
- 7.1 Pascal and Leibniz .. 261
- 7.2 Jacquard and Babbage .. 263
- 7.3 Harvard’s sequence-controlled calculator 268
- 7.4 The first electronic computers 269
- 7.5 Biosemiotics .. 273
- 7.6 Some personal memories of early computers 275
- 7.7 The invention of transistors .. 277
- 7.8 The Traitorous Eight .. 278
- 7.9 Integrated circuits .. 280
- 7.10 Moore’s law ... 281
- 7.11 Self-reinforcing information accumulation 284
- 7.12 Automation ... 285
- 7.13 Neural networks ... 289

8 THE FUTURE OF WORK 303
- 8.1 Some adverse effects globalization 303
- 8.2 Say’s Law ... 305
- 8.3 Veblen; economics as anthropology 306
- 8.4 Gandhi as an economist .. 309
- 8.5 Thoreau .. 314
- 8.6 The counter-culture .. 317
- 8.7 The Brundtland Report .. 318
- 8.8 The Earth Summit at Rio ... 319
- 8.9 The transition from growth to a steady state - minimizing the trauma .. 321
- 8.10 Keynesian economics .. 324
- 8.11 The transition to a sustainable economy 329
- 8.12 The World Bank Report ... 329
8.13 Population and goods per capita .. 340
8.14 Our information-based economy .. 340
8.15 Full employment is more important than profit 341

9 CULTURE IS COOPERATIVE, NOT COMPETITIVE 351
 9.1 Human society as a superorganism ... 351
 9.2 The evolution of cooperation .. 354
 9.3 Culture, Education and human solidarity 366
 9.4 Modern weapons ... 369
 9.5 War as a business .. 378
 9.6 War as a hindrance to global equality ... 380
 9.7 Global inequalities as a hindrance to peace 382
 9.8 Compassion can save us ... 383
 9.9 The future of global governance .. 387
 9.10 Global ethics .. 392
 9.11 Reformed teaching of history ... 397
 9.12 Culture and international cooperation 401
 9.13 We stand on each other’s shoulders .. 406
 9.14 The collective human consciousness ... 409

A STATISTICAL MECHANICS AND INFORMATION 425
 A.1 The second law of thermodynamics .. 425
 A.2 Maxwell’s demon .. 430
 A.3 Statistical mechanics ... 432
 A.4 Information theory; Shannon’s formula 434
 A.5 Entropy expressed as missing information 437
 A.6 Cybernetic information compared with thermodynamic information 440
 A.7 The information content of Gibbs free energy 441
 A.8 Electrolysis of water .. 445
 A.9 Half reactions .. 447
Introduction

Evolution as an explosion of information

This book discusses the role of information in evolution, and especially in the evolution of human culture. Articles and book chapters that I have previously written on this subject are incorporated in the text in modified forms, but more than half of the material is new.

Reformed teaching of history

Human nature has two sides: It has a dark side, to which nationalism and militarism appeal; but our species also has a genius for cooperation, which we can see in the growth of culture. Our modern civilization has been built up by means of a worldwide exchange of ideas and inventions. It is built on the achievements of many ancient cultures. China, Japan, India, Mesopotamia, Egypt, Greece, the Islamic world, Christian Europe, and the Jewish intellectual traditions all have contributed. Potatoes, corn, squash, vanilla, chocolate, chilli peppers, and quinine are gifts from the American Indians.

We need to reform our educational systems, particularly the teaching of history. As it is taught today, history is a chronicle of power struggles and war, told from a biased national standpoint. We are taught that our own country is always heroic and in the right. We urgently need to replace this indoctrination in chauvinism by a reformed view of history, where the slow development of human culture is described, giving credit to all who have contributed. When we teach history, it should not be about power struggles. It should be about how human culture was gradually built up over thousands of years by the patient work of millions of hands and minds. Our common global culture, the music, science, literature and art that all of us share, should be presented as a precious heritage - far too precious to be risked in a thermonuclear war.

Many areas of science can be thought of as history:

- Cosmology is history: It is the history of our entire universe.
- Geology is history: It is the history of our Earth, its continents and its oceans.
- Evolutionary biology is history: It is the history of all living creatures. It is the history of our own species and our place in nature.
• Paleoanthropology is history: It is the history of how hominids became humans.
• The study of languages is history: Relationships between languages allow us to trace the spread of humans from their origin in Africa to other parts of the earth.
• Modern genetics contributes to history: The study of mitochondrial DNA and Y-chromosomal DNA allows us to trace the pathways that our ancestors followed in populating the earth.

Two sides of human nature: Compassion and Greed

Humans are capable of great compassion and unselfishness. Mothers and fathers make many sacrifices for the sake of their families. Kind teachers help us through childhood, and show us the right path. Doctors and nurses devote themselves to the welfare of their patients.

Sadly there is another, side to human nature, a darker side. Human history is stained with the blood of wars and genocides. Today, this dark, aggressive side of human nature threatens to plunge our civilization into an all-destroying thermonuclear war.

Humans often exhibit kindness to those who are closest to themselves, to their families and friends, to their own social group or nation. By contrast, the terrible aggression seen in wars and genocides is directed towards outsiders. Human nature seems to exhibit what might be called “tribalism”: altruism towards one’s own group; aggression towards outsiders. Today this tendency towards tribalism threatens both human civilization and the biosphere.

Greed, in particular the greed of corporations and billionaire oligarchs, is driving human civilization and the biosphere towards disaster.

The greed of giant fossil fuel corporations is driving us towards a tipping point after which human efforts to control climate change will be futile because feedback loops will have taken over. The greed of the military industrial complex is driving us towards a Third World War that might develop into a catastrophic thermonuclear war. The greed of our financial institutions is also driving us towards economic collapse, as we see in the case of Greece.

Until the start of the Industrial Revolution in the 18th and 19th centuries, human society maintained a more or less sustainable relationship with nature. However, with the beginning of the industrial era, traditional ways of life,
containing elements of both social and environmental ethics, were replaced by the money-centered, growth-oriented life of today, from which these vital elements are missing.

According to the followers of Adam Smith (1723-1790), self-interest (even greed) is a sufficient guide to human economic actions. The passage of time has shown that Smith was right in many respects. The free market, which he advocated, has turned out to be the optimum prescription for economic growth. However, history has also shown that there is something horribly wrong or incomplete about the idea that self-interest alone, uninfluenced by ethical and ecological considerations, and totally free from governmental intervention, can be the main motivating force of a happy and just society. There has also proved to be something terribly wrong with the concept of unlimited economic growth. Limitless growth of population or industry on a finite planet is a logical impossibility.

Culture, education and human solidarity

Cultural and educational activities have a small ecological footprint, and therefore are more sustainable than pollution-producing, fossil-fuel-using jobs in industry. Furthermore, since culture and knowledge are shared among all nations, work in culture and education leads societies naturally towards internationalism and peace.

Economies based on a high level of consumption of material goods are unsustainable and will have to be abandoned by a future world that renounces the use of fossil fuels in order to avoid catastrophic climate change, a world where non-renewable resources such as metals will become increasingly rare and expensive. How then can full employment be maintained?

The creation of renewable energy infrastructure will provide work for a large number of people; but in addition, sustainable economies of the future will need to shift many workers from jobs in industry to jobs in the service sector. Within the service sector, jobs in culture and education are particularly valuable because they will help to avoid the disastrous wars that are currently producing enormous human suffering and millions of refugees, wars that threaten to escalate into an all-destroying global thermonuclear war.
Culture is cooperative, not competitive!

Our modern civilization has been built up by means of a worldwide exchange of ideas and inventions. It is built on the achievements of all the peoples of the world throughout history. The true history of humanity is not the history of power struggles, conflicts, kings, dictators and empires. The true history of humanity is a history of ideas, inventions, progress, shared knowledge, shared culture and cooperation.

Our cultural heritage is not only immensely valuable; it is also so great that no individual comprehends all of it. We are all specialists, who understand only a tiny fragment of the enormous edifice. No scientist understands all of science. Perhaps Leonardo da Vinci could come close in his day, but today it is impossible. Nor do the vast majority people who use cell phones, personal computers and television sets every day understand in detail how they work. Our health is preserved by medicines, which are made by processes that most of us do not understand, and we travel to work in automobiles and buses that we would be completely unable to construct.

The sharing of scientific and technological knowledge is essential to modern civilization. The great power of science is derived from an enormous concentration of attention and resources on the understanding of a tiny fragment of nature. It would make no sense to proceed in this way if knowledge were not permanent, and if it were not shared by the entire world.

Science is not competitive. It is cooperative. It is a great monument built by many thousands of hands, each adding a stone to the cairn. This is true not only of scientific knowledge but also of every aspect of our culture, history, art and literature, as well as the skills that produce everyday objects upon which our lives depend. Civilization is not competitive. It is cooperative!
Chapter 1

WHAT IS INFORMATION?

1.1 An interview with Binu Mathiew

Binu Mathew lives and works in India, and he is the Editor of the Internet news website “Countercurrents”. In April, 2017, he came to my home in Denmark to interview me. Here is a transcript of the interview:

Binu: I have a fascination to know how life evolved on this earth, and what’s it’s future. Your wonderful book, “Information Theory and Evolution” answers almost all these questions. What prompted you to write the book?

John: During the summers of 1960 and 1961, while I was still a postgraduate student in theoretical physics at the University of Chicago, I had the privilege of spending two summers working in the laboratory of the great Hungarian-American physiologist and bio-chemist, Albert Szent-Györgyi. He was famous for isolating vitamin C and for discovering the molecular mechanism of muscle contraction. But more importantly, he founded a new field of study: Bioenergetics.

Szent-Györgyi wondered how the chemical energy from food is harnessed to do mechanical work or to drive our metabolisms. He reasoned that there must be structures in living organisms which are analogous to the structures of engines. If you pour gasoline onto the street and set fire to it, no useful work results, only heat. But if you burn it inside an engine, the chemical energy of the gasoline can be converted into useful mechanical work. Following this line of thought, Szent-Györgyi looked for energy-transducing structures in the tissues of living organisms.

Among the structures that caught Szent-Györgyi’s attention were mitochondria, which power the metabolism of all animals, and he also studied the microscopic photosynthetic unit (thylakoids) in plants. After some years of work, he became convinced that quantum theory was needed in order to gain a complete understanding of how these microscopic engines work. Therefore he spent a year at the Institute for Advanced Study in Princeton, where he learned quite a lot of quantum theory.
Although he knew enough quantum theory to understand what physicists were talking about, he nevertheless thought that for the research which he wanted to undertake, he needed to collaborate with people whose whole education was in that field, and he brought some theoretical physicists (including me) to his laboratory. During the time that I was there, we worked to obtain a quantum theoretical understanding of the mechanism of the primary process in photosynthesis, where the energy of a photon is stabilized and trapped, ready to drive the synthesis of sugars.

In 1969, after I had obtained a Ph.D. in theoretical chemistry from Imperial College, University of London, and was teaching there, Plenum Press invited me to start a new journal and to become its first Managing Editor: It was called “The Journal of Bioenergetics and Biomembranes”. (I think that Szent-Györgyi must have recommended me for this task). I served as editor until 1980. During that time, I am proud to say, our authors included Peter Mitchell and Jens C. Skou, whose papers were being refused by other journals at the time, but who each later won a Nobel Prize.

In 1973, for family reasons, I moved permanently to the University of Copenhagen, One of the courses I helped to teach there was on “Statistical Mechanics From the Standpoint of Information Theory”. What a title! My Copenhagen colleague, Dr. Knud Andersen, who had initiated this course, was really ahead of his time! I learned a great deal from helping him to teach the course.

Also, for many years, I taught physical chemistry to biologists. In this field, the concept of Gibbs free energy is very central. In a chemical reaction, the entropy (i.e. disorder) of the universe must always increase, as is required by the second law of thermodynamics. Entropy is a measure of disorder, and the universe always moves towards a state of greater disorder. To say this is the same as saying that the universe always moves from less probable configurations to states of greater and greater probability. We can create local order, but only by exporting disorder to the universe as a whole. In chemical thermodynamics, the requirement that Gibbs free energy must always decrease in a spontaneous chemical reaction is equivalent to saying that the entropy of the universe must always increase, but it allows us to take into account the fact that chemical reactions usually occur at constant temperature and pressure.

In addition to teaching courses in chemistry and physics, I also taught a course on “Science and Society”. This was a history of science and its enormous social impact. An enlarged and updated version of the book that I wrote for this course has recently been published by World Scientific. One of the features of my Science and Society course was that we had many exciting guest lecturers. Among these were Dr. Claus Emmeche and Dr. Luis Emilio Bruni, both of whom were experts in the new field of Biosemiotics, which regards information as the central feature of living organisms. Listening to their wonderful lectures, I found a criticism forming in my mind: They did not distinguish between cybernetic information and thermodynamic information. In other words, they did not distinguish between the information contained in messages, and the information content of Gibbs free energy. I decided that I would try to write a book which would make this distinction clear, but the project was left “on the back burner”, and I too no steps towards starting it.
1.1. AN INTERVIEW WITH BINU MATHIEW

However, a few years later, when I was visiting the Harvard laboratory of the famous chemical physicist Professor Dudley R. Herschbach, he took me to lunch with his post-graduate student, Anita Goel. She was in a special Harvard-MIT program where she was simultaneously obtaining both her Ph.D. in chemical physics and her M.D.. After lunch, I spent the afternoon talking with Anita, and I told her about the information theory book that I was vaguely planning to write. Listening to her reaction, I realized that this was an extremely hot topic. Anita told me that there were many other people working hard on these questions, although they perhaps did not have exactly my angle of approach. I decided to start writing immediately.

Anita was very good at asking questions, and during the whole afternoon she asked me more and more about how my planned book would be organized. How would I explain this, and how that? Which topics should come first and which afterwards? Her excellent questions forced me to find answers. At the end of the afternoon, I returned to my lodgings and wrote down in detail my whole conversation with Anita.

By a coincidence, when I returned to Copenhagen, I found on my desk a letter from the World Scientific Publishing Company asking whether I had any writing plans in which they might be interested. I immediately formalized the outline that I had written at Harvard, and sent it to them; but I did not think that they could find a reviewer who had a background both in information theory and in biology.

To my amazement, World Scientific found a Swedish professor with a background in both fields. He wrote an extremely long review of my book proposal, many times the usual length, criticizing some aspects of my proposed outline, suggesting improvements, and finally recommending publication.

When the book came out, I expected some harsh criticism from the Biosemiotics experts like Claus and Luis, but in fact they liked what I had written. Recently World Scientific asked me to produce a new edition, incorporating the latest research. Today, if one includes topics like artificial life and computer technology inspired by mechanisms of the brain, the field is developing with great speed. MIT, where I graduated with a B.Sc. in 1954, now has a Department of Cognitive Science, in which half the researchers are looking more and more deeply at how the brain works, while the other half are producing hardware and software that mimic the functions of the brain, including learning and intuition.

Binu: I also have a fascination for the second law of thermodynamics, and how it affects every aspect of our life. You’ve wonderfully connected the evolution of life and the second law of thermodynamics. Can you explain briefly for CC readers how both these phenomena are connected?

John: The second law of thermodynamics states the the entropy (disorder) of the universe constantly increases. This follows from the fact that disorder is more statistically probable than order. For example, if we put a completed jigsaw puzzle into the bottom of a box, and shake the box, a disordered jumble of pieces results. The reverse process is virtually impossible. We could never, or almost never, put disordered pieces of a puzzle into a box, shake it, and then to find the completed puzzle in the bottom.
Figure 1.1: Professor Dudley R. Herschbach of Harvard University. In 1986 he shared a Nobel Prize in Chemistry for his pioneering molecular beam studies of elementary chemical reaction mechanisms.
Figure 1.2: Dudley Herschbach’s student Anita Goel was in a special Harvard-MIT program where she obtained both an M.D and a Ph.D in physics simultaneously.
Since disorder (entropy) always increases, how is it possible that the world we see around us so highly ordered? How is life possible? How is the Taj Mahal possible? How is the Internet possible? The answer is that the earth is not a closed system. A flood of information-containing free energy reaches the earth’s biosphere in the form of sunlight. Passing through the metabolic pathways of living organisms, this information keeps the organisms far away from thermodynamic equilibrium, which is death. As the thermodynamic information flows through the biosphere, much of it is degraded to heat, but part is converted into cybernetic information and preserved in the intricate structures which are characteristic of life. The principle of natural selection ensures that when this happens, the configurations of matter in living organisms constantly increase in complexity, refinement and statistical improbability. This is the process which we call evolution, or in the case of human society, progress.

In his 1944 book “What is Life” Erwin Schrödinger (one of the main founders of quantum theory) showed that, even at that early date, he was already aware of how life and entropy are related. He wrote: “What is that precious something contained in our food which keeps us from death? That is easily answered. Every process, event, happening, call it what you will; in a word, everything that is going on in Nature means an increase of the entropy of the part of the world where it is going on. Thus a living organism continually increases its entropy, or if you will, produces positive entropy., which is death. It can only keep aloof from it, i.e. alive, by continually drawing from its environment negative entropy...”

“Entropy, taken with a negative sign, is itself a measure of order. Thus the device by which an organism maintains itself at a fairly high level of orderliness (= a fairly low level of entropy) really consists in sucking orderliness from its environment.”

Binu: The information revolution has made life easier for many of us humans, even helping us to be born. But it has also destroyed our ecosystems, putting our own life, and the life of our fellow species, into peril. Can we use the information revolution to our advantage to save the planet?

John: Cultural evolution depends on the non-genetic storage and transmission, diffusion and utilization of information. The development of human speech, the invention of writing, the development of paper and printing, and finally in modern times, mass media, computers and the Internet: all these have been crucial steps in society’s explosive accumulation of information and knowledge. Human cultural evolution proceeds at a constantly accelerating speed; so great in fact that it threatens to shake society to pieces.

Within rapidly-moving cultural evolution, we can observe that technical change now moves with such astonishing rapidity that neither social institutions, nor political structures, nor education, nor public opinion can keep pace. The lightning-like pace of technical progress has made many of our ideas and institutions obsolete. For example, the absolutely sovereign nation-state and the institution of war have both become dangerous anachronisms in an era of instantaneous communication, global interdependence and all-destroying weapons.
In many respects, human cultural evolution can be regarded as an enormous success. However, at the start of the 21st century, most thoughtful observers agree that civilization is entering a period of crisis. As all curves move exponentially upward, population, production, consumption, rates of scientific discovery, and so on, one can observe signs of increasing environmental stress, while the continued existence and spread of nuclear weapons threaten civilization with destruction. Thus, while the explosive growth of knowledge has brought many benefits, the problem of achieving a stable, peaceful and sustainable world remains serious, challenging and unsolved.

The achievements of modern society are achievements of cooperation. We can fly, but no one builds an airplane alone. We can cure diseases, but only through the cooperative efforts of researchers, doctors and medicinal firms. We can photograph and understand distant galaxies, but the ability to do so is built on the efforts of many cooperating individuals.

Looking at human nature, both from the standpoint of evolution and from that of everyday experience, we see the two faces of Janus: one face shines radiantly; the other is dark and menacing. Two souls occupy the human breast, one warm and friendly, the other, murderous. Humans have developed a genius for cooperation, the basis for culture and civilization; but they are also capable of genocide; they were capable of massacres during the Crusades, capable of genocidal wars against the Amerinds, capable of the Holocaust, of Hiroshima, of the killing-fields of Cambodia, of Rwanda, and of Darfur.

This being so, there are strong reasons to enlist the help of education and religion to make the bright side of human nature win over the dark side. Today, the mass media are an important component of education, and thus the mass media have a great responsibility for encouraging the cooperative and constructive side of human nature rather than the dark and destructive side. Our almost miraculous means of communication, if properly used, offer us the possibility of welding humanity into a single cooperative society.

Binu: Like every activity on earth, economic activity also is a dissipative form of energy flow. Why is so much income disparity taking place? According to a recent Oxfam report, eight people own as much wealth as the poorest half of humanity. How do you explain it? Do you think that the second law of thermodynamics should be made an essential part of our educational system, especially in economics?

John: With your permission, I will try to answer your last question first. I absolutely agree with you that the concept of entropy and the second law of thermodynamics ought to be made an essential part of our educational system, especially in economics. Although classical economic theory leaves it out entirely, a few pioneers of economic thought have realized that entropy and dissipation need to play an a central role in any correct theory.

One of the first people to call attention to the relationship between entropy and economics was the English radiochemist Frederick Soddy (1877-1956). Soddy won the Nobel Prize for Chemistry in 1926 for his work with Ernest Rutherford, demonstrating the transmutation of elements in radioactive decay processes. His concern for social problems then led him to a critical study of the assumptions of classical economics. Soddy believed
that there is a close connection between free energy and wealth, but only a very tenuous connection between wealth and money.

He was working on these problems during the period after World War I, when England left the gold standard, and he advocated an index system to replace it. In this system, the Bank of England would print more money and lend it to private banks whenever the cost of standard items indicated that too little money was in circulation, or conversely destroy printed money if the index showed the money supply to be too large.

Soddy was extremely critical of the system of “fractional reserve banking” whereby private banks keep only a small fraction of the money that is entrusted to them by their depositors and lend out the remaining amount. He pointed out that, in this system, the money supply is controlled by the private banks rather than by the government, and that profits made from any expansion of the money supply go to private corporations instead of being used to provide social services. When the economy is expanding, this system is unjust but not disastrous. However, when the economy contracts, depositors ask for their money; but it is not there, having been lent out; and the banks crash. Fractional reserve banking exists today, not only in England but also in many other countries. Soddy’s criticisms of this practice casts light on the subprime mortgage crisis of 2008 and the debt crisis of 2011.

As Soddy pointed out, real wealth is subject to the second law of thermodynamics. As entropy increases, real wealth decays. He contrasted this with the behavior of debt at compound interest, which increases exponentially without any limit, and he remarked: “You cannot permanently pit an absurd human convention, such as the spontaneous increment of debt [compound interest] against the natural law of the spontaneous decrement of wealth [entropy].”

Thus, in Soddy’s view, it is a fiction to maintain that being owed a large amount of money is a form of real wealth. Frederick Soddy’s book, “Wealth, virtual wealth and debt: The solution of the economic paradox”, published in 1926 by Allen and Unwin, was received by the professional economists of the time as the quixotic work of an outsider. Today, however, Soddy’s common-sense economic analysis is increasingly valued for the light that it throws on the instability of our fractional reserve banking system as economic growth falters.

The incorporation of the idea of entropy into economic thought also owes much to the mathematician and economist Nicholas Georgescu-Roegen (1906-1994), the son of a Romanian army officer. Georgescu-Roegen’s talents were soon recognized by the Romanian school system, and he was given an outstanding education in Mathematics, which later contributed to his success and originality as an economist.

In Georgescu-Roegen’s words, “The idea that the economic process is not a mechanical analogue, but an entropic, unidirectional transformation began to turn over in my mind long ago, as I witnessed the oil wells of the Plosti field of both World Wars’ fame becoming dry one by one, and as I grew aware of the Romanian peasants’ struggle against the deterioration of their farming soil by continuous use and by rains as well. However it was the new representation of a process that enabled me to crystallize my thoughts in describing the economic process as the entropic transformation of valuable natural resources (low
entropy) into valueless waste (high entropy)."

Nicholas Georgescu-Roegen’s influence continues to be felt today, not only through his own books and papers but also through those of his student, the distinguished economist Herman E. Daly, who for many years has been advocating a steady-state economy. As Daly points out in his books and papers, it is becoming increasingly apparent that unlimited economic growth on a finite planet is a logical impossibility. However, it is important to distinguish between knowledge, wisdom and culture, which can and should continue to grow, and growth in the sense of an increase in the volume of material goods produced, which is reaching its limits.

Daly describes our current situation as follows: “The most important change in recent times has been the growth of one subsystem of the Earth, namely the economy, relative to the total system, the ecosphere. This huge shift from an “empty” to a “full” world is truly ‘something new under the sun’... The closer the economy approaches the scale of the whole Earth, the more it will have to conform to the physical behavior mode of the Earth... The remaining natural world is no longer able to provide the sources and sinks for the metabolic throughput necessary to sustain the existing oversized economy - much less
THE INFORMATION EXPLOSION

a growing one. Economists have focused too much on the economy’s circulatory system and have neglected to study its digestive tract.”

Let me now turn to your question about enormous economic inequality. This exists today both within nations and between nations. Part of the explanation for this intolerable economic inequality can be found in the remarkable properties of exponential growth. If any quantity, for example indebtedness, is growing at the rate of 3% per year, it will double in 23.1 years; if it is growing at the rate of 4% per year, the doubling time is 17.3 years. For a 5% growth rate, the doubling time is 13.9 years, if the growth rate is 7%, the doubling time is only 9.9 years. It follows that if a debt remains unpaid for a few years, most of the repayments will go for interest, rather than for reducing the amount of the debt.

In the case of the debts of third world countries to private banks in the industrialized parts of the world and to the IMF, many of the debts were incurred in the 1970’s for purposes which were of no benefit to local populations, for example purchase of military hardware. Today the debts remain, although the amount paid over the years by the developing countries is very many times the amount originally borrowed. Third world debt can be regarded as a means by which the industrialized nations extract raw materials from developing countries without any repayment whatever. In fact, besides extracting raw materials, they extract money. The injustice of this arrangement was emphasized recently by Pope Francis in his wonderful encyclical “Laudato Si”.

Another part of the explanation lies in “resource wars”, conducted by militarily powerful countries to put in place or maintain unfair trade relationships with resource-rich nations in the third world. Finally, our present economic system favors concentration of wealth. “The rich get richer, and the poor get poorer”, or “To him who hath, it shall be given, but from him who hath not, even that which he hath shall be taken away”. At present, powerful oligarchs use their wealth to control governments. Democracy decays, tax loopholes are found for the rich, and inequality increases. This situation, and the impossibility of perpetual growth on a finite planet, point to the need for a new economic system, a system where cooperation plays a greater role; a system with both a social conscience and an ecological conscience.

Binu: The nuclear bomb is the greatest concentration of man-made energy on earth. Why is it that peace is the only software capable of diffusing this dangerous concentration of energy?

John: Let me begin to try to answer you question by quoting Albert Szent-Györgyi: I have always found these words very enlightening and inspiring: “The story of man consists of two parts, divided by the appearance of modern science...In the first period, man lived in the world in which his species was born and to which his senses were adapted. In the second, man stepped into a new, cosmic world to which he was a complete stranger.... The forces at man’s disposal were no longer terrestrial forces, of human dimension, but were cosmic forces, the forces which shaped the universe. The few hundred Fahrenheit degrees of our flimsy terrestrial fires were exchanged for the ten million degrees of the atomic reactions which heat the sun.”
"This is but a beginning, with endless possibilities in both directions; a building of a human life of undreamt of wealth and dignity, or a sudden end in utmost misery. Man lives in a new cosmic world for which he was not made. His survival depends on how well and how fast he can adapt himself to it, rebuilding all his ideas, all his social and political institutions."

"...Modern science has abolished time and distance as factors separating nations. On our shrunken globe today, there is room for one group only: the family of man."

I would also like to quote from the Russell-Einstein Manifesto of 1955, the founding document of Pugwash Conferences on Science and World Affairs. The Manifesto ends with the words, “Here, then, is the problem which we present to you, stark and dreadful and inescapable. Shall we put an end to the human race, or shall mankind renounce war?... There lies before us, if we choose, continual progress in happiness, knowledge and wisdom. Shall we instead choose death because we cannot forget our quarrels? .. We appeal as human beings to human beings: Remember your humanity and forget the rest. If you can do so, there lies before you a new Paradise; if you cannot, there lies before you the threat of universal death."

The human tendency towards tribalism evolved when our remote ancestors lived in small, genetically homogeneous tribes, competing for territory on the grasslands of Africa. Because marriage within a tribe was much more common than marriage outside it, genes were shared within the tribe. The tribe as a whole either survived or perished. The tribe, rather than the individual was the unit upon which the Darwinian forces of natural selection acted.

Although it was a survival trait 100,000 years ago, tribalism threatens our human civilization of today with thermonuclear annihilation. As Konrad Lorenz put it, “An impartial visitor from another planet, looking at man as he is today, in his hand the atom bomb, the product of his intelligence, in his heart the aggression drive, inherited from his anthropoid ancestors, which the same intelligence cannot control, such a visitor would not give mankind much chance of survival.

Today, at the start of the 21st century, we live in nation-states to which we feel emotions of loyalty very similar to the tribal emotions of our ancestors. The enlargement of the fundamental political and social unit has been made necessary and possible by improved transportation and communication, and by changes in the techniques of warfare.

The tragedy of our present situation is that the same forces that made the nation-state replace the tribe as the fundamental political and social unit have continued to operate with constantly increasing intensity. For this reason, the totally sovereign nation-state has become a dangerous anachronism.

Although the world now functions as a single unit because of modern technology, its political structure is based on fragments, on absolutely sovereign nation-states. They are large compared to tribes, but too small for present-day technology, since they do not include all of mankind.

The elimination of war, and the elimination of the threat of nuclear annihilation, will require effective governance at the global level. In 1995 the Nobel Peace Prize was awarded jointly to Pugwash Conferences on Science and World Affairs and to its leader, Sir Joseph
Figure 1.4: Albert Szent-Györgyi called attention to the way in which science and technology have completely changed our world. He concluded that “Man lives in a new cosmic world for which he was not made. His survival depends on how well and how fast he can adapt himself to it, rebuilding all his ideas, all his social and political institutions.”.
Rotblat. In his acceptance speech, Sir Joseph said, “We have to extend our loyalty to the whole of the human race... A war-free world will be seen by many as Utopian. It is not Utopian. There already exist in the world large regions, for example the European Union, within which war is inconceivable. What is needed is to extend these.”

Binu: How can information theory play a role in peace politics?

John: Biosemiotics regards information as being the central feature of living organisms—Societies can be regarded as super-organizme. One might think of extending Biosemiotics to the study of the way in which information is the central feature of the development and function of societies. Such a field of study might be called Sociosemiotics. Information theory is certainly essential to an understanding of history and to an understanding of the crisis of civilization that has been produced by the information explosion.

Binu: Do you see any connection between the rise of populist and even fascist leaders around the world and information theory and thermodynamics?

John: When the earth’s human population is plotted as a function of time over a period of 10,000 years, the simple mathematical function that best fits the data in not an exponentially increasing curve but a hyperbola, P=C/(2025-t), where P is the population, C is a constant, and t is the time, measured in years. If population continued to follow this
curve, it would become infinite in the year 2025, which, of course, is impossible. In fact, global population has already begun to fall below the curve. Why is the empirical curve a hyperbola rather than an exponential? We can understand this if we see the growth of population as being driven by the information explosion. According to Malthus, population always presses against its food supply. As human knowledge and control of nature increased, the food supply also increased, leading to an increase in population. But today, we are facing a crisis. Our global food supply may be hit severely by the end of the fossil fuel era, and by climate change. These factors have already produced a flood of refugees fleeing environmental catastrophes in Africa. Added to this is are millions of refugees from wars in the Middle East.

The result of the refugee crisis has been a loss of human solidarity, and the rise of fascism. In this difficult situation, we need to regain our human solidarity. We need to fight against fascism, and to regain democratic government. We need to end the wars, which are producing many millions of refugees. We need to avoid catastrophic climate change.

Binu: “Post-truth” was the word of the year of 2016. Why such a word now? Was there a “pre-truth” or “truth” era? Or is there ever truth?

John: Let me again quote Albert Szent-Györgyi. One of his remarks that I remember from the time that I worked in his laboratory was this: “The human mind was not designed by evolutionary forces for finding truth. It was designed for finding advantage”.

Napoleon Bonaparte, quoting Fontanelle, said “History is a set of agreed-upon lies”.

Members of tribelike groups throughout history have marked their identity by adhering to irrational systems of belief. Like the ritual scarification which is sometimes used by primitive tribes as a mark of identity, irrational systems of belief also mark the boundaries of groups. We parade these beliefs to demonstrate that we belong a special group and that we are proud of it. The more irrational the belief is, the better it serves this purpose. When people tell each other that they believe the same nonsense, a bond is forged between them. The worse the nonsense, the stronger the bond.

Sometimes motives of advantage are mixed in. As Szent-Györgyi observed, evolution designed the human mind, not for finding truth, but for finding advantage. Within the Orwellian framework of many modern nations, it is extremely disadvantageous to hold the wrong opinions. The wiretappers know what you are thinking. But truth has the great virtue that it allows us to accurately predict the future. If we ignore truth because it is unfashionable, or painful, or heretical, the future will catch us unprepared.

Binu: What do you think of fake news, and the discussions going on the mechanisms to control it?

John: Throughout history, art was commissioned by rulers to communicate, and exaggerate their power, glory, absolute rightness, etc. to the population. Modern powerholders are also aware of the importance of propaganda. Thus the media are a battleground, where reformers struggle for attention, but are defeated with great regularity by the wealth and
1.1. AN INTERVIEW WITH BINU MATHIEW

power of the establishment. This is a tragedy, because today, there is an urgent need to make public opinion aware of the serious threats that are facing civilization, and the steps that are needed to solve these problems. The mass media could potentially be a great force for public education, but in general, their role is not only unhelpful: it is often negative. Today we are faced with the task of creating a new global ethic in which loyalty to family, religion and nation will be supplemented by a higher loyalty to humanity as a whole. In addition, our present culture of violence must be replaced by a culture of peace. To achieve these essential goals, we urgently need the cooperation of the mass media.

How do the media fulfil this life-or-death responsibility? Do they give us insight? No, they give us pop music. Do they give us an understanding of the sweep of evolution and history? No, they give us sport. Do they give us an understanding of need for strengthening the United Nations, and the ways that it could be strengthened? No, they give us sit-coms and soap operas. Do they give us unbiased news? No, they give us news that has been edited to conform with the interests of the military-industrial complex and other powerful lobbies. Do they present us with the need for a just system of international law that acts on individuals? On the whole, the subject is neglected. Do they tell of the essentially genocidal nature of nuclear weapons, and the need for their complete abolition? No, they give us programs about gardening and making food.

In general, the mass media behave as though their role is to prevent the peoples of the world from joining hands and working to save the world from thermonuclear and environmental catastrophes. The television viewer sits slumped in a chair, passive, isolated, disempowered and stupefied. The future of the world hangs in the balance, the fate of children and grandchildren hang in the balance, but the television viewer feels no impulse to work actively to change the world or to save it. The Roman emperors gave their people bread and circuses to numb them into political inactivity. The modern mass media seem to be playing a similar role.

Because the mass media have failed us completely, the work of independent editors like yourself has become enormously important for the future of humanity and the biosphere.

Binu: Do you think that humanity can tackle climate change? Do you have any suggestions?

John: Solar power and wind energy are already much cheaper than fossil fuels if the enormous subsidies given to fossil fuel corporations are discounted. The main thing that the world needs to do is to abolish these subsidies, or, better yet, shift them to the support of renewable energy infrastructure. If this is done, then economic forces alone will produce the rapid transition to renewable energy which we so urgently need to save the planet.

Oil Change International, an organization devoted to exposing the true costs of fossil fuels, states that “Internationally governments provide at least $775 billion to $1 trillion annually in subsidies, not including other costs of fossil fuels related to climate change, environmental impacts, military conflicts and spending, and health impacts.”

Hope that catastrophic climate change can be avoided comes from the exponentially growing world-wide use of renewable energy, and from the fact prominent public figures,
such as Pope Francis, Leonardo DiCaprio, Elon Musk, Bill McKibben, Naomi Klein and Al Gore, are making the public increasingly aware of the long-term dangers. This awareness is needed to counter the climate change denial propaganda sponsored by politicians subservient to the fossil fuel industry.

Short-term disasters due to climate change may also be sufficiently severe to wake us up. We can already see severe effects of global warming in Africa, in parts of India and in island nations threatened by rising sea levels.

Binu: What do you think of the attitude of people like James Lovelock, who say “enjoy life while you can”?

John: I believe that this is a betrayal of our responsibility to our children and grandchildren and to all future generations of humans. It is also a betrayal of all the other species with which we share our beautiful planet.

We give our children loving care, but it makes no sense do so and at the same time to neglect to do all that is within our power to ensure that they and their descendants will inherit an earth in which they can survive.

Inaction is not an option. We have to act with courage and dedication, even if the odds are against success, because the stakes are so high.

The mass media could mobilize us to action, but they have failed in their duty. Our educational system could also wake us up and make us act, but it too has failed us. The battle to save the earth from human greed and folly has to be fought in the alternative media.

We need a new economic system, a new society, a new social contract, a new way of life. Here are the great tasks that history has given to our generation: We must achieve a steady-state economic system. We must restore democracy. We must decrease economic inequality. We must break the power of corporate greed. We must leave fossil fuels in the ground. We must stabilize and ultimately reduce the global population. We must eliminate the institution of war. And finally, we must develop a more mature ethical system to match our new technology.

Binu: What do you think of a world 50 years from now?

John: The future looks extremely dark because of human folly, especially the long-term future. The greatest threats are catastrophic climate change and thermonuclear war, but a large-scale global famine also has to be considered. Nevertheless, I hope for the best, and I think that it is our collective duty to work for the best. The problems that we face today are severe, but they all have rational solutions.

It is often said that ethical principles cannot be derived from science, and that they must come from somewhere else. However, when nature is viewed through the eyes of modern science, we obtain some insights which seem almost ethical in character. Biology at the molecular level has shown us the complexity and beauty of even the most humble living organisms, and the interrelatedness of all life on earth. Looking through the eyes of contemporary biochemistry, we can see that even the single cell of an amoeba is a structure
of miraculous complexity and precision, worthy of our respect and wonder.

Knowledge of the second law of thermodynamics, the statistical law favoring disorder over order, reminds us that life is always balanced like a tight-rope walker over an abyss of chaos and destruction. Living organisms distill their order and complexity from the flood of thermodynamic information which reaches the earth from the sun. In this way, they create local order; but life remains a fugitive from the second law of thermodynamics. Disorder, chaos, and destruction remain statistically favored over order, construction, and complexity.

It is easier to burn down a house than to build one, easier to kill a human than to raise and educate one, easier to force a species into extinction than to replace it once it is gone, easier to burn the Great Library of Alexandria than to accumulate the knowledge that once filled it, and easier to destroy a civilization in a thermonuclear war than to rebuild it from the radioactive ashes.

Knowing this, we can use the second law of thermodynamics to form an almost ethical insight: To be on the side of order, construction, and complexity, is to be on the side of life. To be on the side of destruction, disorder, chaos and war is to be against life, a traitor to life, an ally of death. Knowing the precariousness of life, knowing the statistical laws that favor disorder and chaos, we should resolve to be loyal to the principle of long-continued construction upon which life depends.

Statistical mechanics and information

A mathematical discussion of the relationship between statistical mechanics and information is provided in Appendix A. Readers with the necessary background may find it interesting.

1.2 What is life?

What is Life? That was the title of a small book published by the physicist Erwin Schrödinger in 1944. Schrödinger (1887-1961) was born and educated in Austria. In 1926 he shared the Nobel Prize in Physics\footnote{with P.A.M. Dirac} for his contributions to quantum theory (wave mechanics). Schrödinger’s famous wave equation is as fundamental to modern physics as Newton’s equations of motion are to classical physics.

When the Nazis entered Austria in 1938, Schrödinger opposed them, at the risk of his life. To escape arrest, he crossed the Alps on foot, arriving in Italy with no possessions except his knapsack and the clothes which he was wearing. He traveled to England; and in 1940 he obtained a position in Ireland as Senior Professor at the Dublin Institute for Advanced Studies. There he gave a series of public lectures upon which his small book is based.

In his book, What is Life?, Schrödinger developed the idea that a gene is a very large information-containing molecule which might be compared to an aperiodic crystal. He also
examined in detail the hypothesis (due to Max Delbrück) that X-ray induced mutations of the type studied by Hermann Muller can be thought of as photo-induced transitions from one isomeric conformation of the genetic molecule to another. Schrödinger’s book has great historic importance, because Francis Crick (whose education was in physics) was one of the many people who became interested in biology as a result of reading it. Besides discussing what a gene might be in a way which excited the curiosity and enthusiasm of Crick, Schrödinger devoted a chapter to the relationship between entropy and life.

“What is that precious something contained in our food which keeps us from death? That is easily answered,” Schrödinger wrote, “Every process, event, happening - call it what you will; in a word, everything that is going on in Nature means an increase of the entropy of the part of the world where it is going on. Thus a living organism continually increases its entropy - or, as you may say, produces positive entropy, which is death. It can only keep aloof from it, i.e. alive, by continually drawing from its environment negative entropy - which is something very positive as we shall immediately see. What an organism feeds upon is negative entropy. Or, to put it less paradoxically, the essential thing in metabolism is that the organism succeeds in freeing itself from all the entropy it cannot help producing while alive...”

“Entropy, taken with a negative sign, is itself a measure of order. Thus the device by which an organism maintains itself stationary at a fairly high level of orderliness (= fairly low level of entropy) really consists in continually sucking orderliness from its environment. This conclusion is less paradoxical than it appears at first sight. Rather it could be blamed for triviality. Indeed, in the case of higher animals we know the kind of orderliness they feed upon well enough, viz. the extremely well-ordered state of matter state in more or less complicated organic compounds which serve them as foodstuffs. After utilizing it, they return it in a very much degraded form - not entirely degraded, however, for plants can still make use of it. (These, of course, have their most powerful source of ‘negative entropy’ in the sunlight.)” At the end of the chapter, Schrödinger added a note in which he said that if he had been writing for physicists, he would have made use of the concept of free energy; but he judged that this concept might be difficult or confusing for a general audience.

In the paragraphs which we have quoted, Schrödinger focused on exactly the aspect of life which is the main theme of the present book: All living organisms draw a supply of thermodynamic information from their environment, and they use it to “keep aloof” from the disorder which constantly threatens them. In the case of animals, the information-containing free energy comes in the form of food. In the case of green plants, it comes primarily from sunlight. The thermodynamic information thus gained by living organisms is used by them to create configurations of matter which are so complex and orderly that the chance that they could have arisen in a random way is infinitesimally small.

John von Neumann invented a thought experiment which illustrates the role which free energy plays in creating statistically unlikely configurations of matter. Von Neumann imag-
1.2. WHAT IS LIFE?

Figure 1.6: The great Austrian physicist Erwin Schrödinger (1887-1961) was one of the principle founders of quantum theory. He fled from Austria over the mountains to Italy after the Nazis entered his country, and finally found refuge at the Institute for Advanced Studies in Ireland. It was there that he wrote his important book, “What is Life?”. Reading Schrödinger’s book, Francis Crick was inspired to look for the structure of DNA.
Figure 1.7: Francis Crick (1916-2004) and James Dewey Watson (born 1928) at the Cavendish Laboratory with their model of DNA. After their discovery of the structure of DNA, it became clear that it was this molecule that carried genetic information between generations.
ined a robot or automaton, made of wires, electrical motors, batteries, etc., constructed in such a way that when floating on a lake stocked with its component parts, it will reproduce itself. The important point about von Neumann’s automaton is that it requires a source of free energy (i.e., a source of energy from which work can be obtained) in order to function. We can imagine that the free energy comes from electric batteries which the automaton finds in its environment. (These are analogous to the food eaten by animals.) Alternatively we can imagine that the automaton is equipped with photocells, so that it can use sunlight as a source of free energy, but it is impossible to imagine the automaton reproducing itself without some energy source from which work can be obtained to drive its reproductive machinery. If it could be constructed, would von Neumann’s automaton be alive? Few people would say yes. But if such a self-reproducing automaton could be constructed, it would have some of the properties which we associate with living organisms.

The autocatalysts which are believed to have participated in molecular evolution had some of the properties of life. They used “food” (i.e., energy-rich molecules in their environments) to reproduce themselves, and they evolved, following the principle of natural selection. The autocatalysts were certainly precursors of life, approaching the borderline between non-life and life.

Is a virus alive? We know, for example, that the tobacco mosaic virus can be taken to pieces. The proteins and RNA of which it is composed can be separated, purified, and stored in bottles on a laboratory shelf. At a much later date, the bottles containing the separate components of the virus can be taken down from the shelf and incubated together, with the result that the components assemble themselves in the correct way, guided by steric and electrostatic complementarity. New virus particles are formed by this process of autoassembly, and when placed on a tobacco leaf, the new particles are capable of reproducing themselves. In principle, the stage where the virus proteins and RNA are purified and placed in bottles could be taken one step further: The amino acid sequences of the proteins and the base sequence of the RNA could be determined and written down.

Later, using this information, the parts of the virus could be synthesized from amino acids and nucleotides. Would we then be creating life? Another question also presents itself: At a certain stage in the process just described, the virus seems to exist only in the form of information - the base sequence of the RNA and the amino acid sequence of the proteins. Can this information be thought of as the idea of the virus in the Platonic sense? (Pythagoras would have called it the “soul” of the virus.) Is a computer virus alive? Certainly it is not so much alive as a tobacco mosaic virus. But a computer virus can use thermodynamic information (supplied by an electric current) to reproduce itself, and it has a complicated structure, containing much cybernetic information.

Under certain circumstances, many bacteria form spores, which do not metabolize, and which are able to exist without nourishment for very long periods - in fact for millions of years. When placed in a medium containing nutrients, the spores can grow into actively reproducing bacteria. There are examples of bacterial spores existing in a dormant state for many millions of years, after which they have been revived into living bacteria. Is a dormant bacterial spore alive?

Clearly there are many borderline cases between non-life and life; and Aristotle seems to
have been right when he said, “Nature proceeds little by little from lifeless things to animal life, so that it is impossible to determine either the exact line of demarcation, or on which side of the line an intermediate form should lie.” However, one theme seems to characterize life: It is able to convert the thermodynamic information contained in food or in sunlight into complex and statistically unlikely configurations of matter. A flood of information-containing free energy reaches the earth’s biosphere in the form of sunlight. Passing through the metabolic pathways of living organisms, this information keeps the organisms far away from thermodynamic equilibrium (“which is death”). As the thermodynamic information flows through the biosphere, much of it is degraded into heat, but part is converted into cybernetic information and preserved in the intricate structures which are characteristic of life. The principle of natural selection ensures that as this happens, the configurations of matter in living organisms constantly increase in complexity, refinement and statistical improbability. This is the process which we call evolution, or in the case of human society, progress.

1.3 Molecular biology

Charles Darwin postulated that natural selection acts on small inheritable variations in the individual members of a species. His opponents objected that these slight variations would be averaged away by interbreeding. Darwin groped after an answer to this objection, but he did not have one. However, unknown to Darwin, the answer had been uncovered several years earlier by an obscure Augustinian monk, Gregor Mendel, who was born in Silesia in 1822, and who died in Bohemia in 1884.

Mendel loved both botany and mathematics, and he combined these two interests in his hobby of breeding peas in the monastery garden. Mendel carefully self-pollinated his pea plants, and then wrapped the flowers to prevent pollination by insects. He kept records of the characteristics of the plants and their offspring, and he found that dwarf peas always breed true - they invariably produce other dwarf plants. The tall variety of pea plants, pollinated with themselves, did not always breed true, but Mendel succeeded in isolating a strain of true-breeding tall plants which he inbred over many generations.

Next he crossed his true-breeding tall plants with the dwarf variety and produced a generation of hybrids. All of the hybrids produced in this way were tall. Finally Mendel self-pollinated the hybrids and recorded the characteristics of the next generation. Roughly one quarter of the plants in this new generation were true-breeding tall plants, one quarter were true-breeding dwarfs, and one half were tall but not true-breeding.

Gregor Mendel had in fact discovered the existence of dominant and recessive genes. In peas, dwarfism is a recessive characteristic, while tallness is dominant. Each plant has two sets of genes, one from each parent. Whenever the gene for tallness is present, the plant is tall, regardless of whether it also has a gene for dwarfism. When Mendel crossed the pure-breeding dwarf plants with pure-breeding tall ones, the hybrids received one type of gene from each parent. Each hybrid had a tall gene and a dwarf gene; but the tall gene was dominant, and therefore all the hybrids were tall. When the hybrids were self-pollinated
or crossed with each other, a genetic lottery took place. In the next generation, through the laws of chance, a quarter of the plants had two dwarf genes, a quarter had two tall genes, and half had one of each kind.

Mendel published his results in the *Transactions of the Brünn Natural History Society* in 1865, and no one noticed his paper. At that time, Austria was being overrun by the Prussians, and people had other things to think about. Mendel was elected Abbot of his monastery; he grew too old and fat to bend over and cultivate his pea plants; his work on heredity was completely forgotten, and he died never knowing that he would one day be considered to be the founder of modern genetics.

In 1900 the Dutch botanist named Hugo de Vries, working on evening primroses, independently rediscovered Mendel’s laws. Before publishing, he looked through the literature to see whether anyone else had worked on the subject, and to his amazement he found that Mendel had anticipated his great discovery by 35 years. De Vries could easily have published his own work without mentioning Mendel, but his honesty was such that he gave Mendel full credit and mentioned his own work only as a confirmation of Mendel’s laws. Astonishingly, the same story was twice repeated elsewhere in Europe during the same year. In 1900, two other botanists (Correns in Berlin and Tschermak in Vienna) independently rediscovered Mendel’s laws, looked through the literature, found Mendel’s 1865 paper, and gave him full credit for the discovery.

Besides rediscovering the Mendelian laws for the inheritance of dominant and recessive characteristics, de Vries made another very important discovery: He discovered genetic mutations - sudden unexplained changes of form which can be inherited by subsequent generations. In growing evening primroses, de Vries found that sometimes, but very rarely, a completely new variety would suddenly appear, and he found that the variation could be propagated to the following generations. Actually, mutations had been observed before the time of de Vries. For example, a short-legged mutant sheep had suddenly appeared during the 18th century; and stock-breeders had taken advantage of this mutation to breed sheep that could not jump over walls. However, de Vries was the first scientist to study and describe mutations. He noticed that most mutations are harmful, but that a very few are beneficial, and those few tend in nature to be propagated to future generations.

After the rediscovery of Mendel’s work by de Vries, many scientists began to suspect that chromosomes might be the carriers of genetic information. The word “chromosome” had been invented by the German physiologist, Walther Flemming, to describe the long, threadlike bodies which could be seen when cells were stained and examined through, the microscope during the process of division. It had been found that when an ordinary cell divides, the chromosomes also divide, so that each daughter cell has a full set of chromosomes.

The Belgian cytologist, Edouard van Benedin, had shown that in the formation of sperm and egg cells, the sperm and egg receive only half of the full number of chromosomes. It had been found that when the sperm of the father combines with the egg of the mother.

3 Mendel sent a copy of his paper to Darwin; but Darwin, whose German was weak, seems not to have read it.
in sexual reproduction, the fertilized egg again has a full set of chromosomes, half coming from the mother and half from the father. This was so consistent with the genetic lottery studied by Mendel, de Vries and others, that it seemed almost certain that chromosomes were the carriers of genetic information.

The number of chromosomes was observed to be small (for example, each normal cell of a human has 46 chromosomes); and this made it obvious that each chromosome must contain thousands of genes. It seemed likely that all of the genes on a particular chromosome would stay together as they passed through the genetic lottery; and therefore certain characteristics should always be inherited together.

This problem had been taken up by Thomas Hunt Morgan, a professor of experimental zoology working at Colombia University. He found it convenient to work with fruit flies, since they breed with lightning-like speed and since they have only four pairs of chromosomes.

Morgan found that he could raise enormous numbers of these tiny insects with almost no effort by keeping them in gauze-covered glass milk bottles, in the bottom of which he placed mashed bananas. In 1910, Morgan found a mutant white-eyed male fly in one of his milk-bottle incubators. He bred this fly with a normal red-eyed female, and produced hundreds of red-eyed hybrids. When he crossed the red-eyed hybrids with each other, half of the next generation were red-eyed females, a quarter were red-eyed males, and a quarter were white-eyed males. There was not one single white-eyed female! This indicated that the mutant gene for white eyes was on the same chromosome as the gene for the male sex.

As Morgan continued his studies of genetic linkages, however, it became clear that the linkages were not absolute. There was a tendency for all the genes on the same chromosome to be inherited together; but on rare occasions there were “crosses”, where apparently a pair of chromosomes broke at some point and exchanged segments. By studying these crosses statistically, Morgan and his “fly squad” were able to find the relative positions of genes on the chromosomes. They reasoned that the probability for a cross to separate two genes should be proportional to the distance between the two genes on the chromosome. In this way, after 17 years of work and millions of fruit flies, Thomas Hunt Morgan and his coworkers were able to make maps of the fruit fly chromosomes showing the positions of the genes.

This work had been taken a step further by Hermann J. Muller, a member of Morgan’s “fly squad”, who exposed hundreds of fruit flies to X-rays. The result was a spectacular outbreak of man-made mutations in the next generation.

“They were a motley throng”, recalled Muller. Some of the mutant flies had almost no wings, others bulging eyes, and still others brown, yellow or purple eyes; some had no bristles, and others curly bristles. Muller’s experiments indicated that mutations can be produced by radiation-induced physical damage; and he guessed that such damage alters the chemical structure of genes.

In spite of the brilliant work by Morgan and his collaborators, no one had any idea of what a gene really was.
1.4. The structure of DNA

Until 1944, most scientists had guessed that the genetic message was carried by the proteins of the chromosome. In 1944, however, O.T. Avery and his co-workers at the laboratory of the Rockefeller Institute in New York performed a critical experiment, which proved that the material which carries genetic information is not protein, but deoxyribonucleic acid (DNA) - a giant chainlike molecule which had been isolated from cell nuclei by the Swiss chemist, Friedrich Miescher.

Avery had been studying two different strains of pneumococci, the bacteria which cause pneumonia. One of these strains, the S-type, had a smooth coat, while the other strain, the R-type, lacked an enzyme needed for the manufacture of a smooth carbohydrate coat. Hence, R-type pneumococci had a rough appearance under the microscope. Avery and his co-workers were able to show that an extract from heat-killed S-type pneumococci could...
convert the living R-type species permanently into S-type; and they also showed that this extract consisted of pure DNA.

In 1947, the Austrian-American biochemist, Erwin Chargaff, began to study the long, chainlike DNA molecules. It had already been shown by Levine and Todd that chains of DNA are built up of four bases: adenine (A), thymine (T), guanine (G) and cytosine (C), held together by a sugar-phosphate backbone. Chargaff discovered that in DNA from the nuclei of living cells, the amount of A always equals the amount of T; and the amount of G always equals the amount of C.

When Chargaff made this discovery, neither he nor anyone else understood its meaning. However, in 1953, the mystery was completely solved by Rosalind Franklin and Maurice Wilkins at Kings College, London, together with James Watson and Francis Crick at Cambridge University. By means of X-ray diffraction techniques, Wilkins and Franklin obtained crystallographic information about the structure of DNA. Using this information, together with Linus Pauling’s model-building methods, Crick and Watson proposed a detailed structure for the giant DNA molecule.

The discovery of the molecular structure of DNA was an event of enormous importance for genetics, and for biology in general. The structure was a revelation! The giant, helical DNA molecule was like a twisted ladder: Two long, twisted sugar-phosphate backbones formed the outside of the ladder, while the rungs were formed by the base pairs, A, T, G and C. The base adenine (A) could only be paired with thymine (T), while guanine (G) fit only with cytosine (C). Each base pair was weakly joined in the center by hydrogen bonds - in other words, there was a weak point in the center of each rung of the ladder - but the bases were strongly attached to the sugar-phosphate backbone. In their 1953 paper, Crick and Watson wrote:

"It has not escaped our notice that the specific pairing we have postulated suggests a possible copying mechanism for genetic material". Indeed, a sudden blaze of understanding illuminated the inner workings of heredity, and of life itself.

If the weak hydrogen bonds in the center of each rung were broken, the ladderlike DNA macromolecule could split down the center and divide into two single strands. Each single strand would then become a template for the formation of a new double-stranded molecule.

Because of the specific pairing of the bases in the Watson-Crick model of DNA, the two strands had to be complementary. T had to be paired with A, and G with C. Therefore, if the sequence of bases on one strand was (for example) TTTGCTAAAGGTGAACCA... , then the other strand necessarily had to have the sequence AAACGATTTCCTTTTGTG... The Watson-Crick model of DNA made it seem certain that all the genetic information needed for producing a new individual is coded into the long, thin, double-stranded DNA molecule of the cell nucleus, written in a four-letter language whose letters are the bases, adenine, thymine, guanine and cytosine.

The solution of the DNA structure in 1953 initiated a new kind of biology - molecular biology. This new discipline made use of recently-discovered physical techniques - X-ray diffraction, electron microscopy, electrophoresis, chromatography, ultracentrifugation, radioactive tracer techniques, autoradiography, electron spin resonance, nuclear magnetic resonance and ultraviolet spectroscopy. In the 1960’s and 1970’s, molecular biology became
1.5 Hypothermophiles and the origin of life

Comparison of the base sequences of RNA and DNA from various species has proved to be a powerful tool for establishing evolutionary relationships. Figure 3.6 shows the universal philogenetic tree established in this way by Iwabe, Woese and their coworkers.

In Figure 3.6, all presently living organisms are divided into three main kingdoms, Eukaryotes, Eubacteria, and Archaebacteria. Carl Woese, who proposed this classification on the basis of comparative sequencing, wished to call the three kingdoms “Eucarya, Bacteria and Archaea”. However, the most widely accepted terms are the ones shown in capital letters on the figure. Before the comparative RNA sequencing work, which was performed on the ribosomes of various species, it had not been realized that there are two types of bacteria, so markedly different from each other that they must be classified as belonging to separate kingdoms. One example of the difference between archaebacteria and eubacteria is that the former have cell membranes which contain ether lipids, while the latter have ester lipids in their cell membranes. Of the three kingdoms, the eubacteria and the archaebacteria are “prokaryotes”, that is to say, they are unicellular organisms having no cell nucleus. Most of the eukaryotes, whose cells contain a nucleus, are also unicellular, the exceptions being plants, fungi and animals.

One of the most interesting features of the philogenetic tree shown in Figure 3.6 is that the deepest branches - the organisms with shortest pedigrees - are all hyperthermophiles, i.e. they live in extremely hot environments such as hot springs or undersea hydrothermal vents. The shortest branches represent the most extreme hyperthermophiles. The group of archaebacteria indicated by (1) in the figure includes Thermofilum, Thermoproteus, Pyrobaculum, Pyrodictium, Desulfurococcus, and Sulfolobus - all hypothermophiles. Among the eubacteria, the two shortest branches, Aquifex and Thermatoga are both hyperthermophiles.

The philogenetic evidence for the existence of hyperthermophiles at a very early stage of evolution lends support to a proposal put forward in 1988 by the German biochemist Günter Wächterhäuser. He proposed that the reaction for pyrite formation,

\[F_{2}S + H_{2}S \rightarrow F_{2}S_{2} + 2H + +2e^{-} \]

which takes place spontaneously at high temperatures, supplied the energy needed to drive the first stages of chemical evolution towards the origin of life. Wächterhäuser pointed out

\[\text{“Phylogeny” means ”the evolutionary development of a species”. ”Ontogeny” means “the growth and development an individual, through various stages, for example, from fertilized egg to embryo, and so on.” Ernst Haeckel, a 19th century follower of Darwin, observed that, in many cases, “ontogeny recapitulates phylogeny.”} \]

\[\text{Group (2) in Figure 3.7 includes Methanothermus, which is hyperthermophilic, and Methanobacterium, which is not. Group (3) includes Archaeoglobus, which is hyperthermophilic, and Halococcus, Halobacterium, Methanoplanus, Methanospirillum, and Methanosarcina, which are not.} \]

\[\text{6 Thermophiles are a subset of the larger group of extremophiles.} \]
that the surface of the mineral pyrite (FeS$_2$) is positively charged, and he proposed that, since the immediate products of carbon-dioxide fixation are negatively charged, they would be attracted to the pyrite surface. Thus, in Wächterhäuser’s model, pyrite formation not only supplied the reducing agent needed for carbon-dioxide fixation, but also the pyrite surface aided the process. Wächterhäuser further proposed an archaic autocatalytic carbon-dioxide fixation cycle, which he visualized as resembling the reductive citric acid cycle found in present-day organisms, but with all reducing agents replaced by FeS + H$_2$S, with thioester activation replaced by thioacid activation, and carbonyl groups replaced by thioenol groups. The interested reader can find the details of Wächterhäuser’s proposals in his papers, which are listed at the end of this chapter.

A similar picture of the origin of life has been proposed by Michael J. Russell and Alan J. Hall in 1997. In this picture “…(i) life emerged as hot, reduced, alkaline, sulphide-bearing submarine seepage waters interfaced with colder, more oxidized, more acid, Fe$^{2+} >>$ Fe$^{3+}$-bearing water at deep (ca. 4km) floors of the Hadean ocean ca. 4 Gyr ago; (ii) the difference in acidity, temperature and redox potential provided a gradient of pH (ca. 4 units), temperature (ca. 60°C) and redox potential (ca. 500 mV) at the interface of those waters that was sustainable over geological time-scales, providing the continuity of conditions conducive to organic chemical reactions needed for the origin of life…”

Russell, Hall and their coworkers also emphasize the role that may have been played by spontaneously-formed 3-dimensional mineral chambers (bubbles). They visualize these as having prevented the reacting molecules from diffusing away, thus maintaining high concentrations.

Evidence from layered rock formations called “stromatolites”, produced by colonies of photosynthetic bacteria, show that photoautotrophs (or phototrophs) appeared on earth at least 3.5 billion years ago. The geological record also supplies approximate dates for other events in evolution. For example, the date at which molecular oxygen started to become abundant in the earth’s atmosphere is believed to have been 2.0 billion years ago, with equilibrium finally being established 1.5 billion years in the past. Multi-cellular organisms appeared very late on the evolutionary and geological time-scale - only 600 million years ago. By collecting such evidence, the Belgian cytologist Christian de Duve has constructed the philogenetic tree shown in Figure 3.7, showing branching as a function of time. One very interesting feature of this tree is the arrow indicating the transfer of “endosymbionts” from the eubacteria to the eukaryotes. In the next section, we will look in more detail at this important event, which took place about 1.8 billion years ago.

Figure 1.10: At the root of the universal philogenetic tree are the hypothermophiles, a fact that indicates that life on earth may have originated at hot undersea vents, at which mineral-laden water, heated by volcanism, met the colder water of the primitive ocean.
Suggestions for further reading

1.5. HYPOTHERMOPHILES AND THE ORIGIN OF LIFE

1.5. HYPOTHERMOPHILES AND THE ORIGIN OF LIFE

89. C. Darwin, *An historical sketch of the progress of opinion on the Origin of Species, previously to the publication of this work*, Appended to third and later editions of *On the Origin of Species*, (1861).

1.5. HYPOTHERMOPHILES AND THE ORIGIN OF LIFE

Chapter 2

THE EVOLUTION OF CONSCIOUSNESS

2.1 Are matter and mind separate?

One could, in principle, supply a computer with an input stream of sensory data, and program the computer to perform actions on the external world. In fact, the computer could be programmed in such a way that the actions taken would depend on the stored memory of previous sensory input. Could the computer then be said to be conscious? This depends on the way in which we define the word “conscious”, and so the question is a semantic one, depending on our choice of a definition.

In any case, such a computer arrangement would be very closely analogous to the way in which living organisms experience their environment and act on it. Even the most primitive organisms receive a continuous stream of input data, and, if we choose, we can call this stream an elementary form of consciousness. Living organisms then react to the input stream, and their reactions may be modified by stored information of previous input data. The modification of response on the basis of previous experience is usually called “internuncial” modification, and it will be discussed below.

The pioneering Estonian scientist Jakob von Uexküll, whom we will discuss in detail below, introduced the word “Umwelt”, which he defined to be the stream of sensory input data experienced by an organism. For example, speaking of a tick, he wrote: “...this eyeless animal finds the way to her watchpoint [at the top of a tall blade of grass] with the help of only its skin’s general sensitivity to light. The approach of her prey becomes apparent to this blind and deaf bandit only through her sense of smell. The odor of butyric acid, which emanates from the sebaceous follicles of all mammals, works on the tick as a signal that causes her to abandon her post (on top of the blade of grass/bush) and fall blindly downward toward her prey. If she is fortunate enough to fall on something warm (which she perceives by means of an organ sensible to a precise temperature) then she has attained her prey, the warm-blooded animal, and thereafter needs only the help of her sense of touch to find the least hairy spot possible and embed herself up to her head...”
Figure 2.1: Pythagoras (c.570-c.495, BC) in a painting by Raphael. His followers believed that the “soul” of a musical composition is the mathematical idea of its structure, and that this idea exists eternally. They believed that a particular performance of a musical composition is analogous to the body of an organism. Had they known of modern molecular biology, the Pythagoreans would undoubtedly have considered the information content of a living organism’s DNA sequence to be the soul of the organism. Plato, who was a Pythagorean, was also an idealist. For example, Plato believed that the concept of a table exists eternally, regardless of the existence of real tables that embody the concept. Mathematical relationships and physical laws can be said to exist, regardless of whether they are known to any human or to any extraterrestrial being.
2.1. ARE MATTER AND MIND SEPARATE?

Figure 2.2: The French philosopher, mathematician and scientist René Descartes (1596-1650) advocated mind-matter dualism. I personally agree with Pythagoras and Plato, who thought that ideas differ from their physical embodiments, but I disagree with Descartes’ version of mind-matter dualism. Descartes thought that nerves bring sensory inputs to the brain, where the data are then transferred to the “soul”. After some time, he thought, the soul tells the brain how the human should respond. Descartes did not discuss the question of whether organisms very low on the evolutionary scale have souls. Darwin visualized a continuous evolutionary progression from lower forms of life to ourselves. At what point did these less developed organisms obtain souls? Everyone must find his or her own opinion on this question.
2.2 Jakob von Uexküll and Umwelt

Jakob Johann, Baron von Uexküll (1864-1944) was born in Estonia, on the estate of his aristocratic parents, Alexander, Baron von Uexküll and Sophie von Hahn. The family lost most of their wealth by expropriation during the Russian Revolution, and Jakob was forced to earn a living. He studied zoology at the University of Tartu. After graduation, he worked at the Institute of Physiology at the University of Heidelberg, and later at the Zoological Station in Naples. In 1907, he was given an honorary doctorate by Heidelberg for his studies of the physiology of muscles. Among his discoveries in this field was the first recognized instance of negative feedback in an organism.

Later work was concerned with the way in which animals experience the world around them. To describe the animal’s subjective perception of its environment he introduced the word Umwelt; and in 1926 he founded the Institut für Umweltforschung at the University of Hamburg. Von Uexküll visualized an animal - for example a mouse - as being surrounded by a world of its own - the world conveyed by its own special senses organs, and processed by its own interpretative systems. Obviously, the Umwelt will differ greatly depending on the organism. For example, bees are able to see polarized light and ultraviolet light; electric eels are able to sense their environment through their electric organs; many insects are extraordinarily sensitive to pheromones; and a dog’s Umwelt far richer in smells than that of most other animals. The Umwelt of a jellyfish is very simple, but nevertheless it exists.

It is interesting to ask to what extent the concept of Umwelt can be equated to that of consciousness. To the extent that these two concepts can be equated, von Uexküll’s Umweltforschung offers us the opportunity to explore the phylogenetic evolution of the phenomenon of consciousness.

Von Uexküll’s Umwelt concept can even extend to one-celled organisms, which receive chemical and tactile signals from their environment, and which are often sensitive to light. The ideas and research of Jakob von Uexküll inspired the later work of the Nobel Laureate ethologist Konrad Lorenz, and thus von Uexküll can be thought of as one of the founders of ethology as well as of biosemiotics. Indeed, ethology and biosemiotics are closely related. Because of his work on feedback loops in living organisms, von Uexküll can also be thought of as an early pioneer of cybernetics. His work influenced the philosophers Max Scheler, Ernst Cassirer, Martin Heidegger, Maurice Merleau-Ponty, Humberto Maturana, Georges Canguilhem, Michel Foucault, Gilles Deleuze and Félix Guattari.

Interestingly, his grandson, Carl Wolmar Jakob, Baron von Uexküll (born 1944) became a member of the European Parliament and contributed the funds for the Right Livelihood Award, which has been called the “Alternative Nobel Prize”. Carl Wolmar Jakob is also the co-founder of the World Future Council and the Other Economic Summit.
Figure 2.3: Jakob Johann, Baron von Uexküll (1864-1944) was the founder of Umwelt research. He was also an early pioneer of Cybernetics and Biosemiotics.
Figure 2.4: Carl Wolmar Jakob, Baron von Uexküll (born 1944) co-founded the World Future Council and the Other Economic Summit, as well as contributing the money needed to fund the Right Livelihood Award.
Figure 2.5: The Copenhagen-Tartu school of biosemiotics is a network of scholars working in the field of biosemiotics at the University of Tartu and the University of Copenhagen. An important member of the group is Center Leader Claus Emmeche of the Niels Bohr Institute (shown here). Other members include Kalevi Kull, Jesper Hoffmeyer, Peeter Torop, Timo Maran and Mikhail Lotman.
2.3 Amoebae, slime molds and sponges

Amoebae are eukaryotes that have the ability to alter their shape. Like other eukaryotes they have a cell nucleus and other organelles, such as mitochondria, surrounded by an outer membrane. Amoebae often eat bacteria by engulfing them.

More than 900 species of slime molds exist in various parts of the world. They are very common on the floors of tropical rain forests, where they perform the valuable service of helping to recycle nutrients.

Slime molds are particularly interesting because they gives us a glimpse of how multicellular organisms may have originated. The name of the slime molds is misleading, since they are not fungi, but heterotrophic protists similar to amoebae. Under ordinary circumstances, the individual cells wander about independently searching for food, which they draw into their interiors and digest, a process called "phagocytosis". However, when food is scarce, they send out a chemical signal of distress. Researchers have analyzed the molecule which expresses slime mold unhappiness, and they have found it to be cyclic adenosine monophosphate (cAMP). At this signal, the cells congregate and the mass of cells begins to crawl, leaving a slimy trail. At it crawls, the community of cells gradually develops into a tall stalk, surmounted by a sphere - the "fruiting body". Inside the sphere, spores are produced by a sexual process. If a small animal, for example a mouse, passes by, the spores may adhere to its coat; and in this way they may be transported to another part of the forest where food is more plentiful.

Thus slime molds represent a sort of missing link between unicellular and multicellular or organisms. Normally the cells behave as individualists, wandering about independently, but when challenged by a shortage of food, the slime mold cells join together into an entity which closely resembles a multicellular organism. The cells even seem to exhibit altruism, since those forming the stalk have little chance of survival, and yet they are willing to perform their duty, holding up the sphere at the top so that the spores will survive and carry the genes of the community into the future. We should especially notice the fact that the cooperative behavior of the slime mold cells is coordinated by chemical signals.

Sponges are also close to the borderline which separates unicellular eukaryotes (protists) from multicellular organisms, but they are just on the other side of the border. Normally the sponge cells live together in a multicellular community, filtering food from water. However, if a living sponge is forced through a very fine cloth, it is possible to separate the cells from each other. The sponge cells can live independently for some time; but if many of them are left near to one another, they gradually join together and form themselves into a new sponge, guided by chemical signals. In a refinement of this experiment, one can take two living sponges of different species, separate the cells by passing the sponges through a fine cloth, and afterwards mix all the separated cells together. What happens next is amazing: The two types of sponge cells sort themselves out and become organized once more into two sponges - one of each species.

Slime molds and sponges hint at the genesis of multicellular organisms, whose evolution began approximately 600 million years ago. Looking at the slime molds and sponges, we can imagine how it happened. Some unicellular organisms must have experienced an
Figure 2.6: Amoebae are eukaryotes, with a nucleus and other organelles, such as mitochondria, contained within a cell membrane. They are able to change their shapes, and often eat bacteria by engulfing them.

enhanced probability of survival when they lived as colonies. Cooperative behavior and division of labor within the colonies were rewarded by the forces of natural selection, with the selective force acting on the entire colony of cells, rather than on the individual cell. This resulted in the formation of cellular societies and the evolution of mechanisms for cell differentiation. The division of labor within cellular societies (i.e., differentiation) came to be coordinated by chemical signals which affected the transcription of genetic information and the synthesis of proteins. Each cell within a society of cells possessed the entire genome characteristic of the colony, but once a cell had been assigned its specific role in the economy of the society, part of the information became blocked - that is, it was not expressed in the function of that particular cell. As multicellular organisms evolved, the chemical language of intercellular communication became very much more complex and refined. later section.
Figure 2.7: The fruiting bodies of a slime mold.

Figure 2.8: Like slime molds, sponges are close to the borderline between single-celled and multi-cellular organisms.
2.4 The world as seen by a jellyfish

Not all jellyfish are alike. Some species have much more highly-developed sensory perception than others. Jellyfish can swim, and their motions are coordinated by a rudimentary nervous system.

According to Wikipedia, “Jellyfish employ a loose network of nerves, located in the epidermis, which is called a ‘nerve net’. Although traditionally thought not to have a central nervous system, nerve net concentration and ganglion-like structures could be considered to constitute one in most species. A jellyfish detects various stimuli including the touch of other animals via this nerve net, which then transmits impulses both throughout the nerve net and around a circular nerve ring, through the rhopalial lappet, located at the rim of the jellyfish body, to other nerve cells.

“Some jellyfish have ocelli: light-sensitive organs that do not form images but which can detect light and are used to determine up from down, responding to sunlight shining on the water’s surface. These are generally pigment spot ocelli, which have some cells (not all) pigmented.

“Certain species of jellyfish, such as the box jellyfish, have more advanced vision than their counterparts. The box jellyfish has 24 eyes, two of which are capable of seeing color, and four parallel information processing areas or rhopalia that act in competition, supposedly making it one of the few creatures to have a 360-degree view of its environment.

“The eyes are suspended on stalks with heavy crystals on one end, acting like a gyroscope to orient the eyes skyward. They look upward to navigate from roots in mangrove swamps to the open lagoon and back, watching for the mangrove canopy, where they feed.”
2.5 The giant squid axon

The flow of information between and within cells

Information is transferred between cells in several ways. Among bacteria, in addition to the chronologically vertical transfer of genetic information directly from a single parent to its two daughter cells on cell division, there are mechanisms for the sharing of genetic information in a chronologically horizontal way, between cells of the same generation. These horizontal genetic information transfers can be thought of as being analogous to sex, as will be seen more clearly from some examples.

In the most primitive mechanism of horizontal information transfer, a bacterium releases DNA into its surroundings, and the DNA is later absorbed by another bacterium, not necessarily of the same species. For example, a loop or plasmid of DNA conferring resistance to an antibiotic (an “R-factor”) can be released by a resistant bacterium and later absorbed by a bacterium of another species, which then becomes resistant.

A second mechanism for horizontal information transfer involves infection of a bacterium by a virus. As the virus reproduces itself inside the bacterium, some of the host’s DNA can chance to be incorporated in the new virus particles, which then carry the extra DNA to other bacteria.

Figure 2.9: How does a jellyfish experience the world around it?

1 The fact that this can happen is a strong reason for using antibiotics with great caution in agriculture. Resistance to antibiotics can be transferred from the bacteria commonly found in farm animals to bacteria which are dangerous for humans. Microbiologists have repeatedly warned farmers, drug companies and politicians of this danger, but the warnings have usually been ignored. Unfortunately there are now several instances of antibiotic-resistant human pathogens that have been produced by indiscriminate use of antibiotics in agriculture.
Finally, there is a third mechanism (discovered by J. Lederberg) in which two bacteria come together and construct a conjugal bridge across which genetic information can flow.

Almost all multicellular animals and plants reproduce sexually. In the case of sexual reproduction the genetic information of both parents is thrown into a lottery by means of special cells, the gametes. Gametes of each parent contain only half the genetic information of the parent, and the exact composition of that half is determined by chance. Thus, when the gametes from two sexes fuse to form a new individual, the chances for variability are extremely large. This variability is highly valuable to multicellular organisms which reproduce sexually, not only because variability is the raw material of evolutionary adaption to changes in the environment, but also because the great variability of sexually-reproducing organisms makes them less likely to succumb to parasites. Infecting bacteria might otherwise deceive the immune systems of their hosts by developing cell-surface antigens which resemble those of the host, but when they infect sexually-reproducing organisms where each individual is unique, this is much less likely.

Within the cells of all organisms living today, there is a flow of information from polynucleotides (DNA and RNA) to proteins. As messenger RNA passes through a ribosome, like punched tape passing through a computer tapereader, the sequence of nucleotides in the mRNA is translated into the sequence of nucleic acids in the growing protein. The molecular mechanism of the reading and writing in this process involves not only spatial complementarity, but also complementarity of charge distributions.

As a protein grows, one amino acid at a time, it begins to fold. The way in which it folds (the "tertiary conformation") is determined both by spatial complementarity and by complementarity of charge distributions: Those amino acids which have highly polar groups, i.e., where several atoms have large positive or negative excess charges - "hydrophilic" amino acids - tend to be placed on the outside of the growing protein, while amino acids lacking large excess charges - "hydrophobic" amino acids - tend to be on the inside, away from water. Hydrophilic amino acids form hydrogen bonds with water molecules. Whenever there is a large negative charge on an atom of an amino acid, it attracts a positively-charged hydrogen from water, while positively-charged hydrogens on nucleic acids are attracted to negatively charged oxygens of water. Meanwhile, in the interior of the growing protein, non-polar amino acids are attracted to each other by so-called van der Waals forces, which do not require large excess charges, but only close proximity.

When a protein is complete, it is ready to participate in the activities of the cell, perhaps as a structural element or perhaps as an enzyme. Enzymes catalyze the processes by which carbohydrates, and other molecules used by the cell, are synthesized. Often an enzyme has an "active site", where such a process takes place. Not only the spatial conformation of the active site but also its pattern of excess charges must be right if the catalysis is to be effective. An enzyme sometimes acts by binding two smaller molecules to its active site in a proper orientation to allow a reaction between them to take place. In other cases, substrate molecules are stressed and distorted by electrostatic forces as they are pulled into the active site, and the activation energy for a reaction is lowered.

Thus, information is transferred first from DNA and RNA to proteins, and then from proteins to (for example) carbohydrates. Sometimes the carbohydrates then become part
of surface of a cell. The information which these surface carbohydrates ("cell surface antigens") contain may be transmitted to other cells. In this entire information transfer process, the "reading" and "writing" depend on steric complementarity and on complementarity of molecular charge distributions.

Not only do cells communicate by touching each other and recognizing each other’s cell surface antigens - they also communicate by secreting and absorbing transmitter molecules. For example, the group behavior of slime mold cells is coordinated by the cyclic adenosine monophosphate molecules, which the cells secrete when distressed.

Within most multicellular organisms, cooperative behavior of cells is coordinated by molecules such as hormones - chemical messengers. These are recognized by "receptors", the mechanism of recognition once again depending on complementarity of charge distributions and shape. Receptors on the surfaces of cells are often membrane-bound proteins which reach from the exterior of the membrane to the interior. When an external transmitter molecule is bound to a receptor site on the outside part of the protein, it causes a conformational change which releases a bound molecule of a different type from a site on the inside part of the protein, thus carrying the signal to the cell’s interior. In other cases the messenger molecule passes through the cell membrane.

In this way the individual cell in a society of cells (a multicellular organism) is told when to divide and when to stop dividing, and what its special role will be in the economy of the cell society (differentiation). For example, in humans, follicle-stimulating hormone, lutetinizing hormone, prolactin, estrogen and progesterone are among the chemical messengers which cause the cell differentiation needed to create the secondary sexual characteristics of females.

Another role of chemical messengers in multicellular organisms is to maintain a reasonably constant internal environment in spite of drastic changes in the external environment of individual cells or of the organism as a whole (homeostasis). An example of such a homeostatic chemical messenger is the hormone insulin, which is found in humans and other mammals. The rate of its release by secretory cells in the pancreas is increased by high concentrations of glucose in the blood. Insulin carries the news of high glucose levels to target cells in the liver, where the glucose is converted to glycogen, and to other target cells in the muscles, where the glucose is burned.

Nervous systems

Hormones require a considerable amount of time to diffuse from the cells where they originate to their target cells; but animals often need to act very quickly, in fractions of seconds, to avoid danger or to obtain food. Because of the need for quick responses, a second system of communication has evolved - the system of neurons.

Neurons have a cell bodies, nuclei, mitochondria and other usual features of eukaryotic cells, but in addition they possess extremely long and thin tubelike extensions called axons and dendrites. The axons function as informational output channels, while the dendrites are inputs. These very long extensions of neurons connect them with other neurons which can be at distant sites, to which they are able to transmit electrical signals. The complex
network of neurons within a multicellular organism, its nervous system, is divided into three parts. A sensory or input part brings in signals from the organism’s interior or from its external environment. An effecter or output part produces a response to the input signal, for example by initiating muscular contraction. Between the sensory and effecter parts of the nervous system is a message-processing (internuncial) part, whose complexity is not great in the jellyfish or the leech. However, the complexity of the internuncial part of the nervous system increases dramatically as one goes upward in the evolutionary order of animals, and in humans it is truly astonishing. The small button-like connections between neurons are called synapses. When an electrical signal propagating along an axon reaches a synapse, it releases a chemical transmitter substance into the tiny volume between the synapse and the next neuron (the post-synaptic cleft). Depending on the nature of the synapse, this chemical messenger may either cause the next neuron to “fire” (i.e., to produce an electrical pulse along its axon) or it may inhibit the firing of the neuron. Furthermore, the question of whether a neuron will or will not fire depends on the past history of its synapses. Because of this feature, the internuncial part of an animal’s nervous system is able to learn. There many kinds of synapses and many kinds of neurotransmitters, and the response of synapses is sensitive to the concentration of various molecules in the blood, a fact which helps to give the nervous systems of higher animals extraordinary subtlety and complexity.

The first known neurotransmitter molecule, acetylcholine, was discovered jointly by Sir Henry Dale in England and by Otto Loewi in Germany. In 1921 Loewi was able to show that nerve endings transmit information to muscles by means of this substance. The idea for the critical experiment occurred to him in a dream at 3 am. Otto Loewi woke up and wrote down the idea; but in the morning he could not read what he had written. Luckily he had the same dream the following night. This time he took no chances. He got up, drank some coffee, and spent the whole night working in his laboratory. By morning he had shown that nerve cells separated from the muscle of a frog’s heart secrete a chemical substance when stimulated, and that this substance is able to cause contractions of the heart of another frog. Sir Henry Dale later showed that Otto Loewi’s transmitter molecule was identical to acetylcholine, which Dale had isolated from the ergot fungus in 1910. The two men shared a Nobel Prize in 1936. Since that time, a large variety of neurotransmitter molecules have been isolated. Among the excitatory neurotransmitters (in addition to acetylcholine) are noradrenalin, norepinephrine, serotonin, dopamine, and glutamate, while gamma-amino-butyric acid is an example of an inhibitory neurotransmitter.

The experiments of Hodgkin and Huxley

The mechanism by which electrical impulses propagate along nerve axons was clarified by the English physiologists Alan Lloyd Hodgkin and Andrew Fielding Huxley (a grandson of Darwin’s defender, Thomas Henry Huxley). In 1952, working with the giant axon of the squid (which can be as large as a millimeter in diameter), they demonstrated that the electrical impulse propagating along a nerve is in no way similar to an electrical current in a conducting wire, but is more closely analogous to a row of dominoes knocking each other
down. The nerve fiber, they showed, is like a long thin tube, within which there is a fluid containing K\(^+\), and Na\(^+\) ions, as well as anions. Inside a resting nerve, the concentration of K\(^+\) is higher than in the normal body fluids outside, and the concentration of Na\(^+\) is lower. These abnormal concentrations are maintained by an “ion pump”, which uses the Gibbs free energy of adenosine triphosphate (ATP) to bring potassium ions into the nerve and to expel sodium ions.

The membrane surrounding the neural axon is more permeable to potassium ions than to sodium, and the positively charged potassium ions tend to leak out of the resting nerve, producing a small difference in potential between the inside and outside. This “resting potential” helps to hold the molecules of the membrane in an orderly layer, so that the membrane’s permeability to ions is low.

Hodgkin and Huxley showed that when a neuron fires, the whole situation changes dramatically. Triggered by the effects of excitatory neurotransmitter molecules, sodium ions begin to flow into the axon, destroying the electrical potential which maintained order in the membrane. A wave of depolarization passes along the axon. Like a row of dominoes falling, the disturbance propagates from one section to the next: Sodium ions flow in, the order-maintaining electrical potential disappears, the next small section of the nerve membrane becomes permeable, and so on. Thus, Hodgkin and Huxley showed that when a neuron fires, a quick pulse-like electrical and chemical disturbance is transmitted along the axon.

Hodgkin and Huxley showed that when a nerve cell “fires”, the whole situation changes dramatically. Potassium ions begin to flow out of the nerve, destroying the electrical potential which maintained order in the membrane. A wave of depolarization passes along the nerve. Like a row of dominoes falling, the disturbance propagates from one section to the next: Potassium ions flow out, the order-maintaining electrical potential disappears, the next small section of the nerve membrane becomes permeable, and so on. Thus, Hodgkin and Huxley showed that when a nerve cell fires, a quick pulse-like electrical and chemical disturbance is transmitted along the fiber.

The fibers of nerve cells can be very long, but finally the signal reaches a junction where one nerve cell is joined to another, or where a nerve is joined to a muscle. The junction is called a “synapse”. At the synapse, chemical transmitters are released which may cause the next nerve cell to fire, or which may inhibit it from firing, depending on the type of synapse. The chemical transmitters released by nerve impulses were first studied by Sir Henry Dale, Sir John Eccles and Otto Loewi, who found that they can also trigger muscle contraction. (Among the substances believed to be excitatory transmitters are acetylcholine, noradrenaline, norepinephrine, serotonin, dopamine and glutamate, while gamma-aminobutyric acid is believed to be an inhibitory transmitter.)

Once a nerve cell fires, a signal will certainly go out along its axon. However, when the signal comes to a synapse, where the axon makes contact with the dendrite of another cell, it is not at all certain that the next nerve cell will fire. Whether it does so or not depends on many things: It depends on the frequency of the pulses arriving along the axon. (The transmitter substances are constantly being broken down.) It depends on the type of transmitter substance. (Some of them inhibit the firing of the next cell.) And finally,
Figure 2.10: A schematic diagram of a neuron.
Figure 2.11: Sir Alan Lloyd Hodgkin (1914-1998) and Sir Andrew Fielding Huxley (1917-2012).

Figure 2.12: A diagram of the Hodgkin-Huxley experiment with the giant squid axon.
the firing of the next neuron depends on the way in which the synapse has been modified by its previous history and by the concentration of various chemicals in the blood.

The variety and plasticity of synapses, and the complex, branching interconnections of dendrites and axons, help to account for the subtlety of the nervous system, as well as its sensitivity to various chemicals in the blood. Some neurons (called “and” cells) fire only when all their input dendrites are excited. Other neurons (called “or” cells) fire when any one of the dendrites is excited. Still other neurons (called “inhibited” cells) fire when certain dendrites are excited only if other inhibiting dendrites are not excited. Interestingly, “and” circuits, “or” circuits and “inhibited” circuits have played a fundamental role in computer design ever since the beginning of electronic computers.

2.6 Internuncial circuits

In 1953, Stephen W. Kuffler, working at Johns Hopkins University, made a series of discoveries which yielded much insight into the mechanisms by which the internuncial part of mammalian nervous systems processes information. Kuffler’s studies showed that some degree of abstraction of patterns already takes place in the retina of the mammalian eye, before signals are passed on through the optic nerve to the visual cortex of the brain. In the mammalian retina, about 100 million light-sensitive primary light-receptor cells are connected through bipolar neurons to approximately a million retinal neurons of another type, called ganglions. Kuffler’s first discovery (made using microelectrodes) was that even in total darkness, the retinal ganglions continue to fire steadily at the rate of about thirty pulses per second. He also found that diffuse light illuminating the entire retina does not change this steady rate of firing.

Kuffler’s next discovery was that each ganglion is connected to an array of about 100 primary receptor cells, arranged in an inner circle surrounded by an outer ring. Kuffler found the arrays to be of two types, which he called “on center arrays” and “off center arrays”. In the “on center arrays”, a tiny spot of light, illuminating only the inner circle, produces a burst of frequent firing of the associated ganglion, provided that cells in the outer ring of the array remain in darkness. However, if the cells in the outer ring are also illuminated, there is a cancellation, and there is no net effect. Exactly the opposite proved to be the case for the “off center arrays”. As before, uniform illumination of both the inner circle and outer ring of these arrays produces a cancellation and hence no net effect on the steady background rate of ganglion firing. However, if the central circle by itself is illuminated by a tiny spot of light, the ganglion firing is inhibited, whereas if the outer ring alone is illuminated, the firing is enhanced. Thus Kuffler found that both types of arrays give no response to uniform illumination, and that both types of arrays measure, in different ways, the degree of contrast in the light falling on closely neighboring regions of the retina.

Kuffler’s research was continued by his two associates, David H. Hubel and Torsten N. Wessel, at the Harvard Medical School, to which Kuffler had moved. In the late 1950’s, they found that when the signals sent through the optic nerves reach the visual cortex of the
brain, a further abstraction of patterns takes place through the arrangement of connections between two successive layers of neurons. Hubbel and Wessel called the cells in these two pattern-abstracting layers “simple” and “complex”. The retinal ganglions were found to be connected to the “simple” neurons in such a way that a “simple” cell responds to a line of contrasting illumination of the retina. For such a cell to respond, the line has to be at a particular position and has to have a particular direction. However, the “complex” cells in the next layer were found to be connected to the “simple” cells in such a way that they respond to a line in a particular direction, even when it is displaced parallel to itself.\footnote{Interestingly, at about the same time, the English physiologist J.Z. Young came to closely analogous conclusions regarding the mechanism of pattern abstraction in the visual cortex of the octopus brain. However, the similarity between the image-forming eye of the octopus and the image-forming vertebrate eye and the rough similarity between the mechanisms for pattern abstraction in the two cases must both be regarded as instances of convergent evolution, since the mollusc eye and the vertebrate eye have evolved independently.}

In analyzing their results, Kuffler, Hubel and Wessel concluded that pattern abstraction in the mammalian retina and visual cortex takes place through the selective destruction of information. This conclusion agrees with what we know in general about abstractions: They are always simpler than the thing which they represent.

In the human brain, the internuncial circuits are almost unbelievably complex. I believe that what Decartes called the “soul” can in fact be identified as the incredibly complex patterns of neural connections in that great monument to the power of Darwinian natural selection and learning, the human brain.
2.7 Pattern abstraction in the octopus brain

J.Z. Young lectures to the Wells Society at Imperial College

I vividly remember a lecture that Prof. J.Z. Young delivered to the Wells Society of London’s Imperial College of Science and Technology. It was during the early 1960’s, and at that time I was writing my Ph.D. thesis in theoretical chemistry.

Professor Young told us of his research on the visual cortex of the octopus. Being a mollusc, the octopus is lucky to have eyes at all, but in fact its eyes are very similar to our own, a striking example of convergent evolution. Young’s research combined microscopic examination of extremely thin slices of the octopus brain with experiments on the extent to which the octopus is able to learn, and to profit from past experience.

Each image on the retina of the octopus eye is directly mapped in a one to one manner onto the outer layer of the animal’s visual cortex. But as the signal propagated inwards towards the center of the visual cortex, the arrangement of dendrites and axons insures that synapses would only fire if activated by a specific pattern. The specificity of the pattern becomes progressively more refined as it propagates more deeply into the cortex.

Finally a “grandmother’s face cell” is reached, a cell which can only be activated by a specific pattern. At this point in the visual cortex of the octopus, neural pathways to to parts of the brain controlling muscular actions are activated. The paths branched, with one leading towards an attack response and the other towards retreat. There is a bias towards the attack pathway, so that initially, any pattern observed by the eyes of the animal will produce an attack.

Professor Young told us that he could actually see the arrangements of dendrites and axons in his histological studies of the visual cortex of the octopus. These histological studies were supplemented by behavioral experiments, in which the octopus was either rewarded for the attack, or else punished with a mild electric shock. If rewarded, the animal would continue to attack when again presented with the same pattern. If punished, the animal would always retreat when presented with the same stimulus. Prof. Young explained this behavior by postulating the existence of a feedback neural circuit which blocked the attack pathway if the animal was punished. When the signal subsequently passed the “grandmother’s face cell”, only the retreat pathway remained. The octopus had learned.

3H.G. Wells had once been a student at Imperial College, London, and the Wells Society was named after him.
Figure 2.14: Prof. John Zachary Young, FRS, in 1978. He has been described as “one of the most influential biologists of the 20th century”. His studies of pattern abstraction in the visual cortex of the octopus combined examination of histological microsections with experimental studies of octopus learning.
Figure 2.15: The octopus eye, like the human eye, has an image-forming lens and a retina. This similarity is a striking example of convergent evolution. The common ancestor of humans and molluscs had no eye at all.
2.8 The mentality of apes

Wolfgang Köhler was born in 1887, in Estonia, which was at that time a part of the Russian Empire. His family later moved to Germany. He contributed importantly to the development of Gestalt psychology, which takes a holistic view of psychological phenomena. An important point made by Gestalt psychologists is that “the whole is different from the sum of its parts”. For example, we might think of all the parts of an automobile lying unassembled on the floor of a warehouse. The parts differs from the assembled automobile, because when they are lying on the warehouse floor, the relationship between the parts is not clear.

According to Wikipedia, “During the Nazi regime in Germany, he protested against the dismissal of Jewish professors from universities, as well as the requirement that professors give a Nazi salute at the beginning of their classes. In 1935 he left the country for the United States, where Swarthmore College in Pennsylvania offered him a professorship. He taught with its faculty for 20 years, and did continuing research. A Review of General Psychology survey, published in 2002, ranked Köhler as the 50th most cited psychologist of the 20th century.”

Wolfgang Köhler’s book The Mentality of Apes (1917) is considered to be a landmark study of their behavior. Most of Köhler’s very numerous experiments with apes demonstrated their problem-solving abilities. However, there is a series of his experiments that point to the importance of the highly-developed languages of humans, which give us our ability to imagine objects that are outside our field of vision. Köhler arranged the cage of a chimpanzee in such a way that the ape could see either an out-of-reach banana outside the cage or a stick within the cage but not both. The chimp could not solve this problem, and failed to use the stick to reach the banana. However, when the cage was re-arranged so that the chimpanzee could see both the banana and the stick simultaneously, the ape immediately used the stick to draw the banana into the cage. Köhler noted that humans have no difficulty in solving the banana-stick problem even when they cannot see both simultaneously. He believed that it our highly-developed languages, immensely more complex than any animal language, that allow us to visualize in our minds, out-of-sight objects, or, more generally, things that are unavailable to our sensory perceptions.

When two humans have a conversation about an abstract concept, they do not see or hear or feel it. Nevertheless, the concept hangs in the air between them as long as they are talking about it. Our highly-developed languages make abstract thought possible for us. Writing and reading also allow us to think about things which are entirely outside the fields of our sensory perception.

Mathematical notation is an extremely abstract human language, which allows us to define and manipulate entities that are totally beyond sensory perception. Theoretical physics deals, for example, with atoms, elementary particles and electromagnetic waves, which cannot be experienced by the ordinary senses, but only by the mind. Likewise, computer languages, which we will discuss later, are unrelated to the senses.
2.8. THE MENTALITY OF APES

Figure 2.16: Wolfgang Köhler (1887-1967). He was a German psychologist and phenominologist who contributed to the development of Gestalt psychology.

Figure 2.17: Wolfgang Köhler’s experiments with the mentality of apes convinced him that it is the superior linguistic abilities of humans that allow us to visualize objects which are outside the fields of our sensory input.
2.9 Dreaming and intelligence

I remember an occasion about thirty years ago, when I was having lunch with several friends at the Niels Bohr Institute in Copenhagen. Among them was the distinguished theoretical physicist, Prof. Benny Lautrup, who, in addition to his work in physics, was also interested in writing computer programs that would duplicate some of the functions of the human brain. I happened to ask him whether he thought that computers would ever dream. Everyone else at the table was greatly amused, and they told me that I had just asked Benny his favorite question. I prepared myself for a long lecture, which indeed followed.

Benny Lautrup first gave me a simple answer: “Of course computers will one day dream! They have to dream in order to be truly intelligent.” He then explained that if one makes a plot of brain size versus intelligence for various animals on the evolutionary scale, the plot at the lowest end rises monotonically in a smooth way until a certain point. Then, suddenly, there is a large upward jump, after which the plot again rises smoothly and monotonically.

What was the significance of this sudden upward jump in the brain size versus intelligence graph? Benny Lautrup explained that this was the point in evolutionary history when brains became capable of dreaming. But what is dreaming? The lecture continued: Dreaming is a process in which our brains transfer the impressions which were received during the day from our temporary memories to our permanent memory system. But where should the memories be stored? What patterns of association should be established? Many possibilities are explored and rejected before appropriate associations are found and permanent connections made. Benny concluded his lecture by saying that the computers of the future will be left running during the night, so that they will be able to dream, i.e. to establish networks of appropriate associations in their memories.

4 Today, physicists and mathematicians use some highly developed languages of the type that Benny Lautrup visualized. The most widely used of these are Steven Wolfram’s *Mathematica* and the Canadian version, *Maple*
2.10. **SUPERORGANISMS AND COLLECTIVE CONSCIOUSNESS**

Figure 2.18: Benny Lautrup (born 1939) is a professor of theoretical physics at the Niels Bohr Institute, University of Copenhagen.

2.10 Superorganisms and collective consciousness

Human society as a superorganism, with the global economy as its digestive system

A completely isolated human being would find it as difficult to survive for a long period of time as would an isolated ant or bee or termite. Therefore it seems correct to regard human society as a superorganism. In the case of humans, the analog of the social insects’ nest is the enormous and complex material structure of civilization. It is, in fact, what we call the human economy. It consists of functioning factories, farms, homes, transportation links, water supplies, electrical networks, computer networks and much more.

Almost all of the activities of modern humans take place through the medium of these external “exosomatic” parts of our social superorganism. The terms “exosomatic” and “endosomatic” were coined by the American scientist Alfred Lotka (1880-1949). A lobster’s claw is endosomatic; it is part of the lobster’s body. The hammer used by a human is exosomatic, like a detachable claw. Lotka spoke of “exosomatic evolution”, including in this term not only cultural evolution but also the building up of the material structures of civilization.

The economy associated with the human superorganism “eats” resources and free energy. It uses these inputs to produce local order, and finally excretes them as heat and waste. The process is closely analogous to food passing through the alimentary canal of an individual organism. The free energy and resources that are the inputs of our economy drive it just as food drives the processes of our body, but in both cases, waste products are finally excreted in a degraded form.

Almost all of the free energy that drives the human economy came originally from
the sun’s radiation, the exceptions being geothermal energy which originates in the decay of radioactive substances inside the earth, and tidal energy, which has its origin in the slowing of the motions of the earth-moon system. However, since the start of the Industrial Revolution, our economy has been using the solar energy stored in of fossil fuels. These fossil fuels were formed over a period of several hundred million years. We are using them during a few hundred years, i.e., at a rate approximately a million times the rate at which they were formed.

The present rate of consumption of fossil fuels is more than 13 terawatts and, if used at the present rate, fossil fuels would last less than a century. However, because of the very serious threats posed by climate change, human society would be well advised to stop the consumption of coal, oil and natural gas well before that time.

The rate of growth of of new renewable energy sources is increasing rapidly. These sources include small hydro, modern biomass, solar, wind, geothermal, wave and tidal energy. There is an urgent need for governments to set high taxes on fossil fuel consumption and to shift subsidies from the petroleum and nuclear industries to renewables. These changes in economic policy are needed to make the prices of renewables more competitive.

The shock to the global economy that will be caused by the end of the fossil fuel era will be compounded by the scarcity of other non-renewable resources, such as metals. While it is true (as neoclassical economists emphasize) that “matter and energy can neither be created nor destroyed”, free energy can be degraded into heat, and concentrated deposits of minerals can be dispersed. Both the degradation of free energy into heat and the dispersal of minerals involve increases of entropy.

The collective consciousness of superorganisms

Societies of social insects, as well as animal societies and human society, all can be regarded as having a collective consciousness, which is far more powerful than the consciousness of the individuals from which these societies are formed. Bees communicate to each other the location of food through the famous waggle dance, deciphered by Karl von Frisch. Ant colonies communicate food location information through pheromone trails and antennae contacts. Grazing animal herds have some members keeping watch for predators while other herd members feed. Isaac Newton once wrote, “If I have seen further than other men, it is by standing on the shoulders of Giants”.

Human cultural evolution is a monument to the sharing of information between all members of our species. This sharing allows us to transmit discoveries, such as agriculture, writing and printing, between generations and between geographically separated populations. Today, the Internet has made all human knowledge instantly available throughout the world.

The secret behind the success of science is the enormous concentration of attention and resources on a very small an limited problem. It would make no sense to proceed in this way if the resulting knowledge were not permanent and if the results were not widely shared. Thus the scientific method is an important example of the collective human consciousness. Human culture is a monument to which all nations and races have contributed.
Suggestions for further reading

27. E.F. Yates, Semiotics as a bridge between information (biology) and dynamics (physics), Recherches Semiotiques/Semiotic Inquiry 5, 347-360 (1985).
2.10. SUPERORGANISMS AND COLLECTIVE CONSCIOUSNESS

Chapter 3

AGRICULTURE

3.1 Accelerating cultural evolution

An acceleration of human cultural development seems to have begun approximately 40,000 years ago. The first art objects date from that period, as do migrations which ultimately took modern man across the Bering Strait to the western hemisphere. A land bridge extending from Siberia to Alaska is thought to have been formed approximately 70,000 years ago, disappearing again roughly 10,000 years before the present. Cultural and genetic studies indicate that migrations from Asia to North America took place during this period. Shamanism\(^1\) which is found both in Asia and the new world, as well as among the Sami (Lapps) of northern Scandinavia, is an example of the cultural links between the hunting societies of these regions.

In the caves of Spain and southern France are the remains of vigorous hunting cultures which flourished between 30,000 and 10,000 years ago. The people of these upper Paleolithic cultures lived on the abundant cold-weather game which roamed the southern edge of the ice sheets during the Wurm glacial period: huge herds of reindeer, horses and wild cattle, as well as mammoths and wooly rhinos. The paintings found in the Dordogne region of France, for example, combine decorative and representational elements in a manner which contemporary artists might envy. Sometimes among the paintings are stylized symbols which can be thought of as the first steps towards writing.

In this period, not only painting, but also tool-making and weapon-making were highly developed arts. For example, the Solutrian culture, which flourished in Spain and southern France about 20,000 years ago, produced beautifully worked stone lance points in the shape of laurel leaves and willow leaves. The appeal of these exquisitely pressure-flaked blades must have been aesthetic as well as functional. The people of the Solutrian culture had fine bone needles with eyes, bone and ivory pendants, beads and bracelets, and long bone pins with notches for arranging the hair. They also had red, yellow and black pigments

\(^1\) A shaman is a special member of a hunting society who, while in a trance, is thought to be able to pass between the upper world, the present world, and the lower world, to cure illnesses, and to insure the success of a hunt.
Figure 3.1: A cave painting showing a domesticated dog.

for painting their bodies. The Solutrian culture lasted for 4,000 years. It ended in about 17,000 B.C. when it was succeeded by the Magdalenian culture. Whether the Solutrian people were conquered by another migrating group of hunters, or whether they themselves developed the Magdalenian culture we do not know.

Wikipedia states that “The dog diverged from a now-extinct population of wolves immediately before the Last Glacial Maximum, when much of Eurasia was a cold, dry mammoth steppe biome.... The archaeological record shows the first undisputed dog remains buried beside humans 14,700 years ago, with disputed remains occurring 36,000 years ago. These dates imply that the earliest dogs arose in the time of human hunter-gatherers and not agriculturalists. The dog was the first species to be domesticated.”
3.1. ACCELERATING CULTURAL EVOLUTION

Figure 3.2: The family tree of dogs, showing their descent from the grey wolf.

Figure 3.3: Neolithic humans hunting a mammoth with the help of dogs.
3.2 Early agriculture in the Middle East

Beginning about 10,000 B.C., the way of life of the hunters was swept aside by a great cultural revolution: the invention of agriculture. The earth had entered a period of unusual climatic stability, and this may have helped to make agriculture possible. The first agricultural villages date from this time, as well as the earliest examples of pottery. Dogs and reindeer were domesticated, and later, sheep and goats. Radio-carbon dating shows that by 8,500 B.C., people living in the caves of Shanidar in the foothills of the Zagros mountains in Iran had domesticated sheep. By 7,000 B.C., the village farming community at Jarmo in Iraq had domesticated goats, together with barley and two different kinds of wheat.

Starting about 8000 B.C., rice came under cultivation in East Asia. This may represent an independent invention of agriculture, and agriculture may also have been invented independently in the western hemisphere, made possible by the earth’s unusually stable climate during this period. At Jericho, in the Dead Sea valley, excavations have revealed a prepottery neolithic settlement surrounded by an impressive stone wall, six feet wide and twelve feet high. Radiocarbon dating shows that the defenses of the town were built about 7,000 B.C. Probably they represent the attempts of a settled agricultural people to defend themselves from the plundering raids of less advanced nomadic tribes.

Starting in western Asia, the neolithic agricultural revolution swept westward into Europe, and eastward into the regions that are now Iran and India. By 4,300 B.C., the agricultural revolution had spread southwest to the Nile valley, where excavations along the shore of Lake Fayum have revealed the remains of grain bins and silos. The Nile carried farming and stock-breeding techniques slowly southward, and wherever they arrived, they swept away the hunting and food-gathering cultures. By 3,200 B.C. the agricultural revolution had reached the Hyrax Hill site in Kenya. At this point the southward movement of agriculture was stopped by the swamps at the headwaters of the Nile. Meanwhile, the Mediterranean Sea and the Danube carried the revolution westward into Europe. Between 4,500 and 2,000 B.C. it spread across Europe as far as the British Isles and Scandinavia.

However, western Asia was only one of the places where the agricultural revolution took place. Wikipedia states that “Agriculture began independently in different parts of the globe, and included a diverse range of taxa. At least eleven separate regions of the Old and New World were involved as independent centers of origin.

“Wild grains were collected and eaten from at least 20,000 BC. From around 9,500 BC, the eight Neolithic founder crops - emmer wheat, einkorn wheat, hulled barley, peas, lentils, bitter vetch, chick peas, and flax - were cultivated in the Levant. Rice was domesticated in China between 11,500 and 6,200 BC, followed by mung, soy and azuki beans. Pigs were domesticated in Mesopotamia around 11,000 BC, followed by sheep between 11,000 and 9,000 BC. Cattle were domesticated from the wild aurochs in the areas of modern Turkey and Pakistan around 8,500 BC. Sugarcane and some root vegetables were domesticated in New Guinea around 7,000 BC. Sorghum was domesticated in the Sahel region of Africa by 5,000 BC. In the Andes of South America, the potato was domesticated between 8,000 and 5,000 BC, along with beans, coca, llamas, alpacas, and guinea pigs. Bananas were
Figure 3.4: Early agriculture in Egypt: Plowing

Figure 3.5: Early agriculture in Egypt: Threshing
Figure 3.6: **Pigs were domesticated in Mesopotamia around 11,000 BC.**

cultivated and hybridized in the same period in Papua New Guinea. In Mesoamerica, wild teosinte was domesticated to maize by 4,000 BC. Cotton was domesticated in Peru by 3,600 BC. Camels were domesticated late, perhaps around 3,000 BC."
3.3 Rice cultivation in Asia

Wikipedia states that “Excavations at Kuahuqiao, the earliest known Neolithic site in eastern China, have documented rice cultivation 7,700 years ago. Approximately half of the plant remains belonged to domesticated japonica species, whilst the other half were wild types of rice. It is possible that the people at Kuahuqiao also cultivated the wild type. Finds at sites of the Hemudu Culture (c.5500-3300 BCE) in Yuyao and Banpo near Xi’an include millet and spade-like tools made of stone and bone. Evidence of settled rice agriculture has been found at the Hemudu site of Tianluoshan (5000-4500 BCE), with rice becoming the backbone of the agricultural economy by the Majiabang culture in southern China.”
Figure 3.8: A map showing sites of early rice-growing in China.

Figure 3.9: Ancient rice terraces in Yuanyang, Yunnan, a province in southern China.
3.4 Agriculture in the western hemisphere

During a glacial period between 20,000 and 10,000 years before the present, there was a land bridge across the Bering Strait. There is evidence that humans crossed this land bridge from Siberia and followed a coastal route past the glaciated regions of what is now Canada, finally reaching South America. Humans were able to build boats at that time, as evidenced by traces of very early settlements on islands off the coast of South America.

In a May 24, 2017 article in *Science*, Lizzie Wade wrote:

"About 600 kilometers north of Lima, an imposing earthen mound looms over the sea. People began building the ceremonial structure, called Huaca Prieta, about 7800 years ago. But according to a new study, the true surprise lies buried deep beneath the 30-meter-tall mound: stone tools, animal bones, and plant remains left behind by some of the earliest known Americans nearly 15,000 years ago. That makes Huaca Prieta one of the oldest archaeological sites in the Americas and suggests that the region’s first migrants may have moved surprisingly slowly down the coast.

"The evidence of early human occupation stunned Tom Dillehay, an archaeologist at Vanderbilt University in Nashville who led the new study. Initially, he was interested in examining the mound itself. But geologists on his team wanted to study the landform under the mound, so ‘we just kept going down,’ he says. The deepest pit, which took 5 years to excavate, reached down 31 meters. Shockingly, those deep layers contained telltale signs of human occupation, Dillehay’s team reports today in Science Advances: evidence of hearth fires, animal bones, plant remains, and simple but unmistakable stone tools. Radiocarbon dates from charcoal place the earliest human occupation at nearly 15,000 years ago.

"That’s made some researchers say Huaca Prieta should join the small but growing list of pre-14,000-year-old sites that have revolutionized scientists’ vision of the earliest Americans. Archaeologists used to think that people walked from Siberia through an ice-free passage down Alaska and Canada, reaching the interior of the United States about 13,000 years ago. In recent years, however, well documented earlier sites like Chile’s Monte Verde have convinced most archaeologists that humans made it deep into the Americas by 14,500 years ago, meaning that they would have had to cross Canada long before an ice-free corridor existed. That would have left them with one logical route into the Americas: down the Pacific coast. But direct evidence for such a migration is lacking."

Another site that shows evidence of early human presence is Piki Mach’ay cave in Peru. Radiocarbon dates from this cave give a human presence ranging from 22,200 to 14,700 years ago, but this evidence has been disputed. Wikipedia states that “Piki Mach’ay yielded some of the oldest plant remains in Peru, including an 11,000 year old bottle gourd. Strata from later periods at the site revealed fishtail points, manos, and metates. Plant remains indicate that, before 3,000 years BCE, amaranth, cotton, gourds, lucuma, quinoa, and squash were cultivated in the Ayacucho Basin before 3,000 years BCE. By 4,000 years BCE corn (Zea mays) and common beans were grown. Chili remains date from 5,500 to 4,300 years BCE. The large amounts of guinea pig bones suggest possible
Figure 3.10: Modern humans crossed the Bering Straits during a glacial period between 20,000 and 10,000 years before the present.

domestication, and llamas may have been domesticated by 4,300 to 2,800 years BCE.”
3.4. AGRICULTURE IN THE WESTERN HEMISPHERE

Figure 3.11: The “three sisters”, maize, squash and beans, traditionally grown by tribes of the first people in North America.

Figure 3.12: An artist’s guess at what the inhabitants of Piki Mach’ay cave in Peru might have looked like.
3.5 Peru gives potatoes to the world

Wikipedia states that “Cultivation of potatoes in South America may go back 10,000 years, yet the tubers do not preserve well in archaeological record, and there are problems with exact identification of those that are found... In the Altiplano, potatoes provided the principal energy source for the Inca Empire, its predecessors, and its Spanish successor... Potato was the staple food of most Pre-Columbian Mapuches\(^2\) ‘specially in the southern and coastal [Mapuche] territories where maize did not reach maturity’”

\(^2\)The Mapuche are a group of indigenous inhabitants of south-central Chile and southwestern Argentina, including parts of present-day Patagonia.
3.5. **PERU GIVES POTATOES TO THE WORLD**

Figure 3.13: In the mountainous regions of Peru, the ancient Incas built terraces for the cultivation of potatoes.

Figure 3.14: Sir Walter Raleigh presented potatoes to Queen Elizabeth I.
Figure 3.15: The Irish potato famine.

Figure 3.16: Vincent Van Gogh’s painting, “The Potato Eaters”.
3.6 The threat of widespread famine

“Unless progress with agricultural yields remains very strong, the next century will experience human misery that, on a sheer numerical scale, will exceed everything that has come before”

Nobel Laureate Norman Borlaug speaking of a global food crisis in the 21st century

As glaciers melt in the Himalayas, depriving India and China of summer water supplies; as sea levels rise, drowning the fertile rice fields of Viet Nam and Bangladesh; as drought threatens the productivity of grain-producing regions of North America; and as the end of the fossil fuel era impacts modern high-yield agriculture, there is a threat of wide-spread famine. There is a danger that the 1.5 billion people who are undernourished today will not survive an even more food-scarce future.

People threatened with famine will become refugees, desperately seeking entry into countries where food shortages are less acute. Wars, such as those currently waged in the Middle East, will add to the problem.

What can we do to avoid this crisis, or at least to reduce its severity? We must urgently address the problem of climate change; and we must shift money from military expenditure to the support of birth control programs and agricultural research. We must also replace the institution of war by a system of effective global governance and enforcible international laws.

Optimum population in the distant future

What is the optimum population of the world? It is certainly not the maximum number that can be squeezed onto the globe by eradicating every species of plant and animal that cannot be eaten. The optimum global population is one that can be supported in comfort, equality and dignity - and with respect for the environment.

Figure 3.17: Today, glaciers are melting rapidly many places in the world. The summer water supplies of both India and China are threatened.
Starting with the neolithic agricultural revolution and the invention of writing, human culture began to develop with explosive speed. This figure shows the estimated human population as a function of time during the last 4,000 years. The dots are population estimates in billions, while the solid curve is the hyperbola $p = c/(2020 - y)$, where p is the global human population, y is the year, and $c = 234000$. The curve reflects an explosively accelerating accumulation of information. Culturally transmitted techniques of agriculture allowed a much greater density of population than was possible for hunter-gatherers. The growth of population was further accelerated by the invention of printing and by the industrial and scientific developments which followed from this invention.
3.6. THE THREAT OF WIDESPREAD FAMINE

Figure 3.19: Population growth and fossil fuel use, seen on a time-scale of several thousand years. The dots are population estimates in millions from the US Census Bureau. Fossil fuel use appears as a spike-like curve, rising from almost nothing to a high value, and then falling again to almost nothing in the space of a few centuries. When the two curves are plotted together, the explosive rise of global population is seen to be simultaneous with, and perhaps partially driven by, the rise of fossil fuel use. This raises the question of whether the world’s population is headed for a crash when the fossil fuel era has ended. (Author’s own graph)
In 1848 (when there were just over one billion people in the world), John Stuart Mill described the optimal global population in the following words:

“The density of population necessary to enable mankind to obtain, in the greatest degree, all the advantages of cooperation and social intercourse, has, in the most populous countries, been attained. A population may be too crowded, although all be amply supplied with food and raiment.”

“... Nor is there much satisfaction in contemplating the world with nothing left to the spontaneous activity of nature; with every rood of land brought into cultivation, which is capable of growing food for human beings; every flowery waste or natural pasture plowed up, all quadrupeds or birds which are not domesticated for man’s use exterminated as his rivals for food, every hedgerow or superfluous tree rooted out, and scarcely a place left where a wild shrub or flower could grow without being eradicated as a weed in the name of improved agriculture. If the earth must lose that great portion of its pleasantness which it owes to things that the unlimited increase of wealth and population would extirpate from it, for the mere purpose of enabling it to support a larger, but not better or happier population, I sincerely hope, for the sake of posterity, that they will be content to be stationary, long before necessity compels them to it.”

Dennis Meadows, one of the authors of *Limits to Growth*, stated recently (in a private conversation) that the sustainable human population in the distant future may be about 2 billion people.

Has the number of humans in the world already exceeded the earth’s sustainable limits? Will the global population of humans crash catastrophically after having exceeded the carrying capacity of the environment? There is certainly a danger that this will happen - a danger that the 21st century will bring very large scale famines to vulnerable parts of the world, because modern energy-intensive agriculture will be dealt a severe blow by prohibitively high petroleum prices, and because climate change will reduce the world’s agricultural output. When the major glaciers in the Himalayas have melted, they will no longer be able to give India and China summer water supplies; rising oceans will drown much agricultural land; and aridity will reduce the output of many regions that now produce much of the world’s grain. Falling water tables in overdrawn aquifers, and loss of topsoil will add to the problem. We should be aware of the threat of a serious global food crisis in the 21st century if we are to have a chance of avoiding it.

The term *ecological footprint* was introduced by William Rees and Mathis Wackernagel in the early 1990’s to compare demands on the environment with the earth’s capacity to regenerate. In 2005, humanity used environmental resources at such a rate that it would take 1.3 earths to renew them. In other words, we have already exceeded the earth’s carrying capacity. Since eliminating the poverty that characterizes much of the world today will require more resources per capita, rather than less. it seems likely that in the era beyond fossil fuels, the optimum global population will be considerably less than the present population of the world.

3.7 Population growth and the Green Revolution

Limitations on cropland

In 1944 the Norwegian-American plant geneticist Norman Borlaug was sent to Mexico by the Rockefeller Foundation to try to produce new wheat varieties that might increase Mexico’s agricultural output. Borlaug’s dedicated work on this project was spectacularly successful. He remained with the project for 16 years, and his group made 6,000 individual crossings of wheat varieties to produce high-yield disease-resistant strains.

In 1963, Borlaug visited India, bringing with him 100 kg. of seeds from each of his most promising wheat strains. After testing these strains in Asia, he imported 450 tons of the Lerma Rojo and Sonora 64 varieties - 250 tons for Pakistan and 200 for India. By 1968, the success of these varieties was so great that school buildings had to be commandeered to store the output. Borlaug’s work began to be called a “Green Revolution”. In India, the research on high-yield crops was continued and expanded by Prof. M.S. Swaminathan and his coworkers. The work of Green Revolution scientists, such Norman Borlaug and M.S. Swaminathan, has been credited with saving the lives of as many as a billion people.

Despite these successes, Borlaug believes that the problem of population growth is still a serious one. “Africa and the former Soviet republics”, Borlaug states, “are the last frontiers. After they are in use, the world will have no additional sizable blocks of arable land left to put into production, unless you are willing to level whole forests, which you should not do. So, future food-production increases will have to come from higher yields. And though I have no doubt that yields will keep going up, whether they can go up enough to feed the population monster is another matter. Unless progress with agricultural yields remains very strong, the next century will experience human misery that, on a sheer numerical scale, will exceed the worst of everything that has come before.”

With regard to the prospect of increasing the area of cropland, a report by the United Nations Food and Agricultural Organization (Provisional Indicative World Plan for Agricultural Development, FAO, Rome, 1970) states that “In Southern Asia, in some countries of Eastern Asia, in the Near East and North Africa... there is almost no scope for expanding agricultural area... In the drier regions, it will even be necessary to return to permanent pasture the land that is marginal and submarginal for cultivation. In most of Latin America and Africa south of the Sahara, there are still considerable possibilities for expanding cultivated areas; but the costs of development are high, and it will often be more economical to intensify the utilization of areas already settled.” Thus there is a possibility of increasing the area of cropland in Africa south of the Sahara and in Latin America, but only at the cost of heavy investment and at the additional cost of destruction of tropical rain forests.

Rather than an increase in the global area of cropland, we may encounter a future loss of cropland through soil erosion, salination, desertification, loss of topsoil, depletion.

4 The Cerrado is a large savanna region of Brazil.
Figure 3.20: Professor M.S. Swaminathan, father of the Green Revolution in India. (Open and Shut)

Figure 3.21: Norman Borlaug and agronomist George Harrer in 1943. (Human Wrongs Watch)
Figure 3.22: This graph shows the total world production of coarse grain between 1960 and 2004. Because of high-yield varieties, the yield of grain increased greatly. Notice, however, that the land under cultivation remained almost constant. High-yield agriculture depends on large inputs of fossil fuel energy and irrigation, and may be difficult to maintain in the future. (FAO)
of minerals in topsoil, urbanization and failure of water supplies. In China and in the southwestern part of the United States, water tables are falling at an alarming rate. The Ogallala aquifer (which supplies water to many of the plains states in the central and southern parts of the United States) has a yearly overdraft of 160%.

In the 1950’s, both the U.S.S.R and Turkey attempted to convert arid grasslands into wheat farms. In both cases, the attempts were defeated by drought and wind erosion, just as the wheat farms of Oklahoma were overcome by drought and dust in the 1930’s.

If irrigation of arid lands is not performed with care, salt may be deposited, so that the land is ruined for agriculture. This type of desertification can be seen, for example, in some parts of Pakistan. Another type of desertification can be seen in the Sahel region of Africa, south of the Sahara. Rapid population growth in the Sahel has led to overgrazing, destruction of trees, and wind erosion, so that the land has become unable to support even its original population.

Especially worrying is a prediction of the International Panel on Climate Change concerning the effect of global warming on the availability of water: According to Model A1 of the IPCC, global warming may, by the 2050’s, have reduced by as much as 30% the water available in large areas of world that now a large producers of grain5.

Added to the agricultural and environmental problems, are problems of finance and distribution. Famines can occur even when grain is available somewhere in the world, because those who are threatened with starvation may not be able to pay for the grain, or for its transportation. The economic laws of supply and demand are not able to solve this type of problem. One says that there is no “demand” for the food (meaning demand in the economic sense), even though people are in fact starving.

3.8 Energy-dependence of modern agriculture

Food prices and energy prices

A very serious problem with Green Revolution plant varieties is that they require heavy inputs of pesticides, fertilizers and irrigation. Because of this, the use of high-yield varieties contributes to social inequality, since only rich farmers can afford the necessary inputs. Monocultures, such as the Green Revolution varieties may also prove to be vulnerable to future epidemics of plant diseases, such as the epidemic that caused the Irish Potato Famine in 1845. Even more importantly, pesticides, fertilizers and irrigation all depend on the use of fossil fuels. One must therefore ask whether high agricultural yields can be maintained in the future, when fossil fuels are expected to become prohibitively scarce and expensive.

Modern agriculture has become highly dependent on fossil fuels, especially on petroleum and natural gas. This is especially true of production of the high-yield grain varieties introduced in the Green Revolution, since these require especially large inputs of fertilizers, pesticides and irrigation. Today, fertilizers are produced using oil and natural gas, while

5See the discussion of the Stern Report in Chapter 7.
pesticides are synthesized from petroleum feedstocks, and irrigation is driven by fossil fuel energy. Thus agriculture in the developed countries has become a process where inputs of fossil fuel energy are converted into food calories. If one focuses only on the farming operations, the fossil fuel energy inputs are distributed as follows:

1. Manufacture of inorganic fertilizer, 31%
2. Operation of field machinery, 19%
3. Transportation, 16%
4. Irrigation, 13%
5. Raising livestock (not including livestock feed), 8%
6. Crop drying, 5%
7. Pesticide production, 5%
8. Miscellaneous, 8%

The ratio of the fossil fuel energy inputs to the food calorie outputs depends on how many energy-using elements of food production are included in the accounting. David Pimental and Mario Giampietro of Cornell University estimated in 1994 that U.S. agriculture required 0.7 kcal of fossil fuel energy inputs to produce 1.0 kcal of food energy. However, this figure was based on U.N. statistics that did not include fertilizer feedstocks, pesticide feedstocks, energy and machinery for drying crops, or electricity, construction and maintenance of farm buildings. A more accurate calculation, including these inputs, gives an input/output ratio of approximately 1.0. Finally, if the energy expended on transportation, packaging and retailing of food is included, Pimental and Giampietro found that the input/output ratio for the U.S. food system was approximately 10, and this figure did not include energy used for cooking.

The Brundtland Report’s estimate of the global potential for food production assumes “that the area under food production can be around 1.5 billion hectares (3.7 billion acres - close to the present level), and that the average yields could go up to 5 tons of grain equivalent per hectare (as against the present average of 2 tons of grain equivalent).” In other words, the Brundtland Report assumes an increase in yields by a factor of 2.5. This would perhaps be possible if traditional agriculture could everywhere be replaced by energy-intensive modern agriculture using Green Revolution plant varieties. However, Pimental and Giampietro’s studies show that modern energy-intensive agricultural techniques cannot be maintained after fossil fuels have been exhausted.

At the time when the Brundtland Report was written (1987), the global average of 2 tons of grain equivalent per hectare included much higher yields from the sector using modern agricultural methods. Since energy-intensive petroleum-based agriculture cannot be continued in the post-fossil-fuel era, future average crop yields will probably be much less than 2 tons of grain equivalent per hectare.

The 1987 global population was approximately 5 billion. This population was supported by 3 billion tons of grain equivalent per year. After fossil fuels have been exhausted, the

6 World Commission on Environment and Development, *Our Common Future*, Oxford University Press, (1987). This book is often called “The Brundtland Report” after Gro Harlem Brundtland, the head of WCED, who was then Prime Minister of Norway.
total world agricultural output is likely to be considerably less than that, and therefore the population that it will be possible to support will probably be considerably less than 5 billion, assuming that our average daily per capita use of food calories remains the same, and assuming that the amount of cropland and pasturage remains the same (1.5 billion hectares cropland, 3.0 billion hectares pasturage).

The Brundtland Report points out that “The present (1987) global average consumption of plant energy for food, seed and animal feed amounts to 6,000 calories daily, with a range among countries of 3,000-15,000 calories, depending on the level of meat consumption.” Thus there is a certain flexibility in the global population that can survive on a given total agricultural output. If the rich countries were willing to eat less meat, more people could be supported.

3.9 Effects of climate change on agriculture

Effects of temperature increase on crops

There is a danger that when climate change causes both temperature increases and increased aridity in regions like the US grain belt, yields will be very much lowered. Of the three main grain types (corn, wheat and rice) corn is the most vulnerable to the direct effect of increases in temperature. One reason for this is the mechanism of pollination of corn: A pollen grain lands on one end of a corn-silk strand, and the germ cell must travel the length of the strand in order to fertilize the kernel. At high temperatures, the corn silk becomes dried out and withered, and is unable to fulfill its biological function. Furthermore, heat can cause the pores on the underside of the corn leaf to close, so that photosynthesis stops.

According to a study made by Mohan Wali and coworkers at Ohio State University, the photosynthetic activity of corn increases until the temperature reaches 20 degrees Celsius. It then remains constant until the temperature reaches 35 degrees, after which it declines. At 40 degrees and above, photosynthesis stops altogether.

Scientists in the Philippines report that the pollination of rice fails entirely at 40 degrees Celsius, leading to crop failures. Wheat yields are also markedly reduced by temperatures in this range.

Predicted effects on rainfall

According to the Stern Report, some of the major grain-producing areas of the world might lose up to 30% of their rainfall by 2050. These regions include much of the United States, Brazil, the Mediterranean region, Eastern Russia and Belarus, the Middle East, Southern Africa and Australia. Of course possibilities for agriculture may simultaneously increase in other regions, but the net effect of climate change on the world’s food supply is predicted to be markedly negative.
 Unsustainable use of groundwater

It may seem surprising that fresh water can be regarded as a non-renewable resource. However, groundwater in deep aquifers is often renewed very slowly. Sometimes renewal requires several thousand years. When the rate of withdrawal of groundwater exceeds the rate of renewal, the carrying capacity of the resource has been exceeded, and withdrawal of water becomes analogous to mining a mineral. However, it is more serious than ordinary mining because water is such a necessary support for life.

In many regions of the world today, groundwater is being withdrawn faster than it can be replenished, and important aquifers are being depleted. In China, for example, groundwater levels are falling at an alarming rate. Considerations of water supply in relation to population form the background for China’s stringent population policy.

At a recent lecture, Lester Brown of the Worldwatch Institute was asked by a member of the audience to name the resource for which shortages would most quickly become acute. Most of the audience expected him to name oil, but instead he replied “water”. Lester Brown then cited China’s falling water table. He predicted that within decades, China would be unable to feed itself. He said that this would not cause hunger in China itself: Because of the strength of China’s economy, the country would be able to purchase grain on the world market. However Chinese purchases of grain would raise the price, and put world grain out of reach of poor countries in Africa. Thus water shortages in China will produce famine in parts of Africa, Brown predicted.

Under many desert areas of the world are deeply buried water tables formed during glacial periods when the climate of these regions was wetter. These regions include the Middle East and large parts of Africa. Water can be withdrawn from such ancient reservoirs by deep wells and pumping, but only for a limited amount of time.

In oil-rich Saudi Arabia, petroenergy is used to drill wells for ancient water and to bring it to the surface. Much of this water is used to irrigate wheat fields, and this is done to such an extent that Saudi Arabia exports wheat. The country is, in effect, exporting its ancient heritage of water, a policy that it may, in time, regret. A similarly short-sighted project is Muammar Qaddafi’s enormous pipeline, which will bring water from ancient sub-desert reservoirs to coastal cities of Libya.

In the United States, the great Ogallala aquifer is being overdrawn. This aquifer is an enormous stratum of water-saturated sand and gravel underlying parts of northern Texas, Oklahoma, New Mexico, Kansas, Colorado, Nebraska, Wyoming and South Dakota. The average thickness of the aquifer is about 70 meters. The rate of water withdrawal from the aquifer exceeds the rate of recharge by a factor of eight.

Thus we can see that in many regions, the earth’s present population is living on its inheritance of water, rather than its income. This fact, coupled with rapidly increasing populations and climate change, may contribute to a food crisis partway through the 21st century.
Figure 3.23: Whitechuck Glacier in the North Cascades National Park in 1973. (Nicholas College)

Figure 3.24: The same glacier in 2006 (Nicholas College)
Glacial melting and summer water supplies

The summer water supplies of both China and India are threatened by the melting of glaciers. The Gangotri glacier, which is the principle glacier feeding India’s great Ganges River, is reported to be melting at an accelerating rate, and it could disappear within a few decades. If this happens, the Ganges could become seasonal, flowing only during the monsoon season.

Chinese agriculture is also threatened by disappearing Himalayan glaciers, in this case those on the Tibet-Quinghai Plateau. The respected Chinese glaciologist Yao Tandong estimates that the glaciers feeding the Yangtze and Yellow Rivers are disappearing at the rate of 7% per year.

The Indus and Mekong Rivers will be similarly affected by the melting of glaciers. Lack of water during the summer season could have a serious impact on the irrigation of rice and wheat fields.

Forest loss and climate change

Mature forests contain vast amounts of sequestered carbon, not only in their trees, but also in the carbon-rich soil of the forest floor. When a forest is logged or burned to make way for agriculture, this carbon is released into the atmosphere. One fifth of the global carbon emissions are at present due to destruction of forests. This amount is greater than the CO_{2} emissions for the world’s transportation systems.

An intact forest pumps water back into the atmosphere, increasing inland rainfall and benefiting agriculture. By contrast, deforestation, for example in the Amazonian rainforest, accelerates the flow of water back into the ocean, thus reducing inland rainfall. There is a danger that the Amazonian rainforest may be destroyed to such an extent that the region will become much more dry. If this happens, the forest may become vulnerable to fires produced by lightning strikes. This is one of the feedback loops against which the Stern Report warns - the drying and burning of the Amazonian rainforest may become irreversible, greatly accelerating climate change, if destruction of the forest proceeds beyond a certain point.

Erosion of topsoil

Besides depending on an adequate supply of water, food production also depends on the condition of the thin layer of topsoil that covers the world’s croplands. This topsoil is being degraded and eroded at an alarming rate: According to the World Resources Institute and the United Nations Environment Programme, “It is estimated that since World War II, 1.2 billion hectares... has suffered at least moderate degradation as a result of human activity. This is a vast area, roughly the size of China and India combined.” This area is 27% of the total area currently devoted to agriculture. The report goes on to say that

The total area devoted to agriculture throughout the world is 1.5 billion hectares of cropland and 3.0 billion hectares of pasturage.
the degradation is greatest in Africa.

The risk of topsoil erosion is greatest when marginal land is brought into cultivation, since marginal land is usually on steep hillsides which are vulnerable to water erosion when wild vegetation is removed.

David Pimental and his associates at Cornell University pointed out in 1995 that “Because of erosion-associated loss of productivity and population growth, the per capita food supply has been reduced over the past 10 years and continues to fall. The Food and Agricultural Organization reports that the per capita production of grains which make up 80% of the world’s food supply, has been declining since 1984.”

Pimental et al. add that “Not only is the availability of cropland per capita decreasing as the world population grows, but arable land is being lost due to excessive pressure on the environment. For instance, during the past 40 years nearly one-third of the world’s cropland (1.5 billion hectares) has been abandoned because of soil erosion and degradation. Most of the replacement has come from marginal land made available by removing forests. Agriculture accounts for 80% of the annual deforestation.”

Topsoil can also be degraded by the accumulation of salt when irrigation water evaporates. The worldwide area of irrigated land has increased from 8 million hectares in 1800 to more than 100 million hectares today. This land is especially important to the world food supply because it is carefully tended and yields are large in proportion to the area. To protect this land from salination, it should be irrigated in such a way that evaporation is minimized.

Finally cropland with valuable topsoil is being be lost to urban growth and highway development, a problem that is made more severe by growing populations and by economic growth.

Laterization

Every year, more than 100,000 square kilometers of rain forest are cleared and burned, an area which corresponds to that of Switzerland and the Netherlands combined. Almost half of the world’s tropical forests have already been destroyed. Ironically, the land thus cleared often becomes unsuitable for agriculture within a few years.

Tropical soils may seem to be fertile when covered with luxuriant vegetation, but they are usually very poor in nutrients because of leaching by heavy rains. The nutrients which remain are contained in the vegetation itself; and when the forest cover is cut and burned, the nutrients are rapidly lost.

Often the remaining soil is rich in aluminum oxide and iron oxide. When such soils are exposed to oxygen and sun-baking, a rocklike substance called Laterite is formed. The temples of Angkor Wat in Cambodia are built of Laterite; and it is thought that laterization of the soil contributed to the disappearance of the Khmer civilization, which built these temples.
3.10 Harmful effects of industrialized farming

A major global public health crisis may soon be produced by the wholesale use of antibiotics in the food of healthy farm animals. The resistance factors produced by shovelling antibiotics into animal food produces resistance factors (plasmids) which can easily be transferred to human pathogens. A related problem is the excessive use of pesticides and artificial fossil-fuel-derived fertilizers in agriculture. Pharming is not a joke. It is a serious threat.

Plasmids

Bacteria belong to a class of organisms (prokaryotes) whose cells do not have a nucleus. Instead, the DNA of the bacterial chromosome is arranged in a large loop. In the early...

8http://ecowatch.com/2014/03/06/misuse-antibiotics-fatal-superbug-crisis/
http://ecowatch.com/2013/12/06/8-scary-facts-about-antibiotic-resistance/
http://ecowatch.com/2015/03/27/obama-fight-superbug-crisis/
http://ecowatch.com/2014/03/12/fda-regulation-antibiotics-factory-farms/
http://sustainableagriculture.net/about-us/
https://pwcce.wordpress.com/programa/
1950’s, Joshua Lederberg discovered that bacteria can exchange genetic information. He found that a frequently-exchanged gene, the F-factor (which conferred fertility), was not linked to other bacterial genes; and he deduced that the DNA of the F-factor was not physically a part of the main bacterial chromosome. In 1952, Lederberg coined the word “plasmid” to denote any extrachromosomal genetic system.

In 1959, it was discovered in Japan that genes for resistance to antibiotics can be exchanged between bacteria; and the name “R-factors” was given to these genes. Like the F-factors, the R-factors did not seem to be part of the main loop of bacterial DNA.

Because of the medical implications of this discovery, much attention was focused on the R-factors. It was found that they were plasmids, small loops of DNA existing inside the bacterial cell, but not attached to the bacterial chromosome. Further study showed that, in general, between one percent and three percent of bacterial genetic information is carried by plasmids, which can be exchanged freely even between different species of bacteria.

In the words of the microbiologist, Richard Novick, “Appreciation of the role of plasmids has produced a rather dramatic shift in biologists’ thinking about genetics. The traditional view was that the genetic makeup of a species was about the same from one cell to another, and was constant over long periods of time. Now a significant proportion of genetic traits are known to be variable (present in some individual cells or strains, absent in others), labile (subject to frequent loss or gain) and mobile, all because those traits are associated with plasmids or other atypical genetic systems.”

Because of the ease with which plasmids conferring resistance to antibiotics can be transferred from animal bacteria to the bacteria carrying human disease, the practice of feeding antibiotics to healthy farm animals is becoming a major human health hazard. The World Health Organization has warned that if we lose effective antibiotics through this mechanism, “Many common infections will no longer have a cure, and could kill unabated”. The US Center for Disease Control has pointed to the emergence of “nightmare bacteria”, and the chief medical officer for England Prof Dame Sally Davies has evoked parallels with the “apocalypse”.

Pesticides, artificial fertilizers and topsoil

A closely analogous danger results from the overuse of pesticides and petroleum-derived fertilizers in agriculture. A very serious problem with Green Revolution plant varieties is that they require heavy inputs of pesticides, fertilizers and irrigation. Because of this, the use of high-yield varieties contributes to social inequality, since only rich farmers can afford the necessary inputs. Monocultures, such as the Green Revolution varieties may also prove to be vulnerable to future plant diseases, such as the epidemic that caused the Irish Potato Famine in 1845. Even more importantly, pesticides, fertilizers and irrigation all depend on the use of fossil fuels. One must ask, therefore, whether high-yield agriculture can be maintained in the post-fossil-fuel era.

Topsoil is degraded by excessive use of pesticides and artificial fertilizers. Natural topsoil is rich in organic material, which contains sequestered carbon that would otherwise
be present in our atmosphere in the form of greenhouse gases. In addition, natural topsoil contains an extraordinarily rich diversity of bacteria and worms that act to convert agricultural wastes from one year’s harvest into nutrients for the growth of next year’s crop. Pesticides kill these vital organisms, and make the use of artificial fertilizers necessary.

Finally, many small individual farmers, whose methods are sustainable, are being eliminated by secret land-grabs or put out of business because they cannot compete with unsustainable high-yield agriculture. Traditional agriculture contains a wealth of knowledge and biodiversity, which it would be wise for the world to preserve.

3.11 The demographic transition

The phrase “developing countries” is more than a euphemism; it expresses the hope that with the help of a transfer of technology from the industrialized nations, all parts of the world can achieve prosperity. Some of the forces that block this hope have just been mentioned. Another factor that prevents the achievement of worldwide prosperity is population growth.

In the words of Dr. Halfdan Mahler, former Director General of the World Health Organization, “Country after country has seen painfully achieved increases in total output, food production, health and educational facilities and employment opportunities reduced or nullified by excessive population growth.”

The growth of population is linked to excessive urbanization, infrastructure failures and unemployment. In rural districts in the developing countries, family farms are often divided among a growing number of heirs until they can no longer be subdivided. Those family members who are no longer needed on the land have no alternative except migration to overcrowded cities, where the infrastructure is unable to cope with many new arrivals. Often the new migrants are forced to live in excrement-filled makeshift slums, where dysentery, hepatitis and typhoid are endemic, and where the conditions for human life sink to the lowest imaginable level. In Brazil, such shanty towns are called “favelas”.

If modern farming methods are introduced in rural areas while population growth continues, the exodus to cities is aggravated, since modern techniques are less labor-intensive and favor large farms. In cities, the development of adequate infrastructure requires time, and it becomes a hopeless task if populations are growing rapidly. Thus, population stabilization is a necessary first step for development.

It can be observed that birth rates fall as countries develop. However, development is sometimes blocked by the same high birth rates that economic progress might have prevented. In this situation (known as the “demographic trap”), economic gains disappear immediately because of the demands of an exploding population.

For countries caught in the demographic trap, government birth control programs are especially important, because one cannot rely on improved social conditions to slow birth rates. Since health and lowered birth rates should be linked, it is appropriate that family-planning should be an important part of programs for public health and economic development.
Figure 3.26: Child suffering with the deficiency disease Marasmus in India. (Public domain)
A recent study conducted by Robert F. Lapham of Demographic Health Surveys and W. Parker Maudlin of the Rockefeller Foundation has shown that the use of birth control is correlated both with socio-economic setting and with the existence of strong family-planning programs. The implication of this study is that even in the absence of increased living standards, family-planning programs can be successful, provided they have strong government support.

China, the world’s most populous nation, has adopted the somewhat draconian policy of allowing only one child for families in living in towns and cities (35.9% of the population). Chinese leaders obtained popular support for their one-child policy by means of an educational program which emphasized future projections of diminishing water resources and diminishing cropland per person if population increased unchecked. Like other developing countries, China has a very young population, which will continue to grow even when fertility has fallen below the replacement level because so many of its members are contributing to the birth rate rather than to the death rate. China’s present population is 1.3 billion. Its projected population for the year 2025 is 1.5 billion. China’s one-child policy is supported by 75% of the country’s people, but the methods of enforcement are sometimes criticized, and it has led to a M/F sex ratio of 1.17/1.00. The natural baseline for the sex ratio ranges between 1.03/1.00 and 1.07/1.00.

Education of women and higher status for women are vitally important measures, not only for their own sake, but also because in many countries these social reforms have proved to be the key to lower birth rates. Religious leaders who oppose programs for the education of women and for family planning on “ethical” grounds should think carefully about the scope and consequences of the catastrophic global famine which will undoubtedly occur within the next 50 years if population is allowed to increase unchecked. Do these leaders really wish to be responsible for the suffering and death from starvation of hundreds of millions of people?

At the United Nations Conference on Population and Development, held in Cairo in September, 1994, a theme which emerged very clearly was that one of the most important keys to controlling the global population explosion is giving women better education and equal rights. These goals are desirable for the sake of increased human happiness, and for the sake of the uniquely life-oriented point of view which women can give us; but in addition, education and improved status for women have shown themselves to be closely connected with lowered birth rates. When women lack education and independent careers outside the home, they can be forced into the role of baby-producing machines by men who do not share in the drudgery of cooking, washing and cleaning; but when women have educational, legal, economic, social and political equality with men, experience has shown that they choose to limit their families to a moderate size.

Sir Partha Dasgupta of Cambridge University has pointed out that the changes needed to break the cycle of overpopulation and poverty are all desirable in themselves. Besides education and higher status for women, they include state-provided social security for old people, provision of water supplies near to dwellings, provision of health services to all, abolition of child labor and general economic development.
The UN Summit on Addressing Large Movements of Refugees and Migrants

On September 19, 2016, the United Nations General Assembly held a 1-day summit meeting to address the pressing problem of refugees. It is a problem that has been made acute by armed conflicts in the Middle East and Africa, and by climate change.

One of the outcomes of the summit was the a Declaration for Refugees and Migrants. Here is a statement of the severity of the problem from paragraph 3 of the Declaration:

“We are witnessing in today’s world an unprecedented level of human mobility. More people than ever before live in a country other than the one in which they were born. Migrants are present in all countries of the world. Most of them move without incident. In 2015, their number surpassed 244 million, growing at a rate faster than the world’s population. However, there are 65 million forcibly displaced persons, including over 21 million refugees, 3 million asylum seekers and over 40 million internally displaced persons.”

Sadly, the world’s response to the tragic plight of refugees fleeing from zones of armed conflict has been less than generous. Men, women and many children, trying to escape from almost certain death in the war-torn Middle East, have been met, not with sympathy and kindness, but with barbed wire and tear gas.

Germany’s Chancellor, Angela Merkel, courageously made arrangements for her country to accept a large number of refugees, but as a consequence her party has suffered political setbacks. On the whole, European governments have moved to the right, as anti-refugee parties gained strength. The United States, Canada Australia and Russia, countries that could potentially save the lives of many refugees, have accepted almost none. In contrast,
3.12. ILLEGAL BURNING FOR PALM OIL PLANTATIONS

tiny Lebanon, despite all its problems, has become the home of so many refugees that they are a very large fraction of the country’s total population.

As the effects of climate change become more pronounced, we can expect the suffering and hopelessness of refugees to become even more severe. This is a challenge which the world must meet with humanity and solidarity.

The World Cities Report, 2016

According to the World Cities Report[9], by 2030, two thirds of the world’s population will be living in cities. As the urban population increases, the land area occupied by cities is increasing at a higher rate. It is projected that by 2030, the urban population of developing countries will double, while the area covered by cites could triple.

Commenting on this, the UN-Habitat Executive Director, Joan Clos, said: “In the twenty years since the Habitat II conference, the world has seen a gathering of its population in urban areas. This has been accompanied by socioeconomic growth in many instances. But the urban landscape is changing and with it, the pressing need for a cohesive and realistic approach to urbanization”.

“Such urban expansion is wasteful in terms of land and energy consumption and increases greenhouse gas emissions. The urban centre of gravity, at least for megacities, has shifted to the developing regions.”

One can foresee that in the future, as fossil fuels become increasingly scarce, the problem of feeding urban populations will become acute.

3.12 Illegal burning for palm oil plantations

According to a recent article published by the Union of Concerned Scientists, “One huge source of global warming emissions associated with palm oil is the draining and burning of the carbon-rich swamps known as peatlands. Peatlands can hold up to 18 to 28 times as much carbon as the forests above them; when they are drained and burned, both carbon and methane are released into the atmosphere - and unless the water table is restored, peatlands continue to decay and release global warming emissions for decades.

“As if that wasn’t bad enough, the burning of peatlands releases a dangerous haze into the air, resulting in severe health impacts and significant economic losses. Each year, more than 100,000 deaths in Southeast Asia can be attributed to particulate matter exposure from landscape fires, many of which are peat fires.

“Beyond its global warming and human health impacts, palm oil production also takes a toll on biodiversity and human rights. Only about 15 percent of native animal species can survive the transition from primary forest to plantation. Among the species vulnerable to palm oil expansion are orangutans, tigers, rhinoceros, and elephants. Furthermore, palm oil growers have also been accused of using forced labor, seizing land from local populations, and other human rights abuses.”

Licences to burn forests for palm oil plantations are often granted by corrupt government officials. Fortunately, through the efforts of NGO’s the public has become increasingly aware of the problem, and supermarkets are being urged to purchase products containing deforestation-free palm oil.

Another recent article10 states that "Indonesia is being deforested faster than any other country in the world, and it has everything to do with one product: palm oil."

"According to a new study in the journal Nature Climate Change, deforestation in the Southeast Asian archipelago is nearly double the rate in the Amazon. Indonesia is said to have lost 840,000 hectares (3,250 square miles) of forest in 2012 while Brazil - which has four times Indonesia’s rainforest - lost a still-massive 460,000 hectares.

"The report’s authors found that government figures underestimated the true toll of forest clearing by as much as half. In the last 12 years, it’s possible that the destruction of one million hectares of 'primary forest' went unreported.

"The tree-killing spree is largely due to slashing and burning vegetation for the expansion of palm oil plantations to feed growing demand in countries like China and India. Americans and Europeans are still far and away the top consumers per capita - it’s estimated that palm oil can be found in roughly half the manufactured goods in any supermarket or drug store. Everything from peanut butter to soap to cosmetics contains the oil in its various forms.

"In Indonesia, where much of the land consists of carbon-rich soil known as peat, the problem is acute. Water-logged peat is commonly found in the jungles of Sumatra and Borneo, and merely exposing it to the air releases carbon dioxide into the atmosphere.”

10https://news.vice.com/article/indonesia-is-killing-the-planet-for-palm-oil
3.13 The beef industry in South America

Beef is killing the rainforest

Beef Production is Killing the Amazon Rainforest. That is the title of an article published by onegreenplanet.org. Here are some excerpts from the article

“The Amazon rainforest has been facing severe deforestation problems for several decades - it has lost about a fifth of its forest in the past three. While there are many causes, one of the main causes is cattle ranching, particularly in Brazil. Trees are cut and the land is converted into a pasture for cattle grazing. According to one report, an estimated 70 percent of deforestation in the Amazon basin can be attributed to cattle ranching. Using these numbers, cattle ranching in the Amazon has resulted in the loss of an area larger than the state of Washington.

“The government of Brazil offers loans of billions of dollars to support the expansion of its beef industry. Approximately 200 million pounds of beef is imported by the United States from Central America every year. While the chief importers of Brazilian beef were previously Europe and North America, nowadays Asian countries such as China and Russia

http://www.onegreenplanet.org/animalsandnature/beef-production-is-killing-the-amazon-rainforest/
Figure 3.30: Population density and forest size.
Figure 3.31: This figure shows the causes of Amazonian deforestation. The largest is beef production.

consume more Brazilian beef than the European market. So, the demand is increasing day by day.

“With increasing population and increased per capita meat consumption, the rate of deforestation is increasing every day as well. It is expected that by 2018, the beef export will increase 93 percent, thereby increasing Brazil’s beef market share of world exports to 61 percent. Beef is the most carbon-intensive form of meat production on the planet. The United Nations Food and Agriculture Organization finds that beef production gives rise to more greenhouse gases than the transportation industry.”

Beef production and methane

A cow (or a bull) releases between 70 and 120 kg of methane per year. Methane is a greenhouse gas like carbon dioxide, but the negative effect on the climate of methane (CH₄) is 23 times higher than the effect of CO₂. Therefore the release of about 100 kg
methane per year for each cow is equivalent to about 2,300 kg CO₂ per year.

Worldwide, there are about 1.5 billion cows and bulls. All ruminants (animals which regurgitates food and re-chews it) on the world emit about two billion metric tons of CO₂ equivalents per year. In addition, clearing of tropical forests and rain forests to get more grazing land and farm land is responsible for an extra 2.8 billion metric tons of CO₂ emission per year!

According to the Food and Agriculture Organization of the United Nations (FAO) agriculture is responsible for 18% of the total release of greenhouse gases world-wide (this is more than the whole transportation sector). Cattle-breeding is taking a major factor for these greenhouse gas emissions according to FAO. Says Henning Steinfeld, Chief of FAO’s Livestock Information and Policy Branch and senior author of the report: “Livestock are one of the most significant contributors to today’s most serious environmental problems. Urgent action is required to remedy the situation.”

Livestock now use 30 percent of the earth’s entire land surface, mostly permanent pasture but also including 33 percent of the global arable land used to producing feed for livestock, the report notes. As forests are cleared to create new pastures, it is a major driver of deforestation, especially in Latin America where, for example, some 70 percent of former forests in the Amazon have been turned over to grazing.

Dietary changes can help

You and I can help to save our common future by changing our diets, especially by cutting out beef. Not only does beef production produce methane and destroy rainforests, it also requires much more land per calorie than other forms of agriculture. By switching from beef to other protein-rich foods, we not only substantially reduce greenhouse gas emissions, but we also shorten the food chain, so that more grain will be available to feed the world’s growing population. Furthermore a changed diet with less meat would improve our health, since animal fats have been linked with heart disease, circulatory problems and strokes.

3.14 Growing populations and forest loss

Deforestation is occurring at alarming rates, especially in countries that have high levels of population growth. The following table shows the forest loss in some countries where it is particularly high, together with there present and projected populations. In the table, the annual rate of forest loss in the period 2000-2010, measured both in thousands of hectares and in percent. Populations in millions in 2010 are shown, together with projected populations in 2050.

Desertification and soil erosion

The Princeton University Dictionary defines *desertification* as "the process of fertile land transforming into desert typically as a result of deforestation, drought or improper/inappropriate agriculture." It is estimated that approximately a billion people are under threat from further expansions of deserts.

Southward expansion of the Gobi desert

The Gobi desert is the fastest moving desert on earth. The rapid southward expansion of the Gobi is mainly due to human activities, such as overgrazing, deforestation and overuse of water. Dust storms from the Gobi desert are becoming more and more frequent. Sand dunes are reportedly forming only 70 km north of Beijing.
The Sahel

Another region in which the threat of desertification is extremely acute is the Sahel, which is the boundary between Africa’s Sahara desert to the north and a region of savanna to the south. The Sahel stretches between the Atlantic Ocean and the Red Sea. During the last 50 years, the Sahel has lost approximately 650,000 km2 of fertile land to the desert, and the boundary of the Sahara has moved 250 km southward.

The southward expansion of the Sahara has been caused partly by climate change, and partly by human activities. Growing human populations have put pressure on the fragile arid environment by overgrazing, tree-cutting for firewood and inappropriate agriculture.

3.16 Forest drying and wildfires: a feedback loop

When climate change produces aridity in a forested region, wildfires produced by lightning, stray sparks from falling stones, or human carelessness become increasingly likely. Forest fires contribute to global warming by releasing CO$_2$ into the atmosphere and by destroying climate-friendly tree-covered areas. Thus a dangerous feedback loop can be formed, and as was discussed in Chapter 4, with every feedback loop there is an associated tipping point. In the case of forest drying and wildfires, passing the tipping point means that forest cover will be lost irrevocably. We must avoid passing wildfire tipping points through human activities, such as the deliberate burning of rainforests for the sake of oil palm plantations.

3.17 Degraded forests are carbon emitters

According to an article published in the journal *Science* on 28 September, 2017 degraded tropical forest throughout the world have stopped being carbon absorbers, and are now carbon emitters.

Reporting on the study, *The Guardian* noted that "Researchers found that forest areas in South America, Africa and Asia - which have until recently played a key role in absorbing greenhouse gases - are now releasing 425 teragrams of carbon annually, which is more than all the traffic in the United States."

"The study went further than any of its predecessors in measuring the impact of disturbance and degradation - the thinning of tree density and the culling of biodiversity below an apparently protected canopy - usually as a result of selective logging, fire, drought and hunting."

"Overall, more carbon was lost to degradation and disturbance than deforestation. The researchers stressed this was an opportunity as well as a concern because it was now possible..."
to identify which areas are being affected and to restore forests before they disappeared completely."

3.18 Replanting forests

Around the world, people interested in replanting forests can take inspiration from the Green Belt Movement, which was founded in 1977 by Wangari Maathai.

The Green Belt Movement organizes women in rural Africa to combat deforestation by planting trees. In this way they restore their main source of fuel for cooking, generate income and stop soil erosion. Since its foundation in 1977, the movement has planted 51 million trees. Over 30,000 women have been trained in forestry, food processing, bee-keeping, and other trades. The movement emphasizes economic justice and empowerment of women. This work is particularly valuable in regions of water scarcity, because besides preventing soil erosion, forests prevent the rapid run-off of water.

In order to combat climate change and to prevent southward expansion of the Sahara, the African Union has initiated a project called the Great Green Wall. The project aims at creating a mosaic of green and productive landscapes stretching across Africa, the Sahel region to the Horn of Africa, a strip of forested land 15 km wide and 7,500 km long, stretching from Dakar to Djibouti.

In China, the Green Great Wall project aims at preventing the expansion of the Gobi desert by planting a 4,500-kilometer-long windbreaking line of forests. The project is expected to be completed by 2050.

Reforestation initiatives also exist in other countries, for example in India, Lebanon, Philippines, Japan, Germany, Canada and the United States.
3.19 Algae as a source of food

The amount of fresh water needed to produce food by conventional methods is very large, and limitations on the world’s supply of fresh water may also limit our efforts to expand global food production unless new methods are found. One such method is the use of algae as a food source.\footnote{See \textit{Algae as a Potential Source of Food and Energy in the Developing Countries}, edited by Alvise Perosa, Guido Bordignon, Giampietro Ravagnan, and Sergey Zinoviev. The pdf file of this book is available for free downloading.}

Algae can be grown in desert areas in closed waterfilled containers, supplied with carbon dioxide. No water evaporates because the containers are closed, and the conversion of CO$_2$ into organic matter is an additional benefit. Protein-rich algae are already in baking mixes, cookies, milk, nondairy creamers, vegan eggs, salad dressing, ice-cream, smoothies, and protein powders, to name a few.
Figure 3.33: Cyanobacteria (blue-green alga) Anabaena spherica.

Figure 3.34: Red alga Polysiphonia spp.
3.20 Farming the seas

A second way in which the shortage of fresh water for global agriculture can be circumvented is to farm the seas and oceans with crops and other edible species that thrive in salt water. A study by Frank Asche of the University of Stvanger\footnote{http://www.umb.no/statisk/ior/refsnes/asche.pdf} points out that:

- In 1970 aquaculture contributed 5% of the total supply of seafood. In 2005 aquaculture’s share was 40% with a production of 62.9 million tonnes.
- Although aquaculture is old, a revolution occurred in the 1970s.
- New technologies and better feeding has led to an enormous increase in production.
- Increasing control with the production process, and semiintensive and intensive farming allow productivity growth and market development.
- Aquaculture is increasingly becoming more like any other crop, and one is Farming the Sea.
- The farming practice varies from highly extensive and very close to hunting and gathering (fisheries) to highly intensive and industrialized.
- It is intensive industrialized farming that allows us to produce much more, and that makes aquaculture a significant source of food.
- This development is still in the early beginning, and there is still a substantial scope for innovation.
- Compared to agriculture, there is still a long way to go.
- Aquaculture is in many ways still in its infancy. There are still only a few species with closed production cycles and selective breeding. There are even fewer species that primarily are sold as fresh packed beside the chicken fillet. There are no farmers that specialize in producing feed for the food crops.
- One can still only observe the first crude attempts to farm the sea.
- We will therefore see a tremendous development during the next decades.
- Aquaculture is likely to be like any other crop or livestock in the future, because one has the same type of control with the production process. There will be a large range of practices but the large volume producers will be the most intensive.
- Local environmental issues are a management problem and can be solved.
Suggestions for further reading

Chapter 4

WRITING. PAPER AND PRINTING

4.1 Mesopotamia

In Mesopotamia (which in Greek means “between the rivers”), the settled agricultural people of the Tigris and Euphrates valleys evolved a form of writing. Among the earliest Mesopotamian writings are a set of clay tablets found at Tepe Yahya in southern Iran, the site of an ancient Elamite trading community halfway between Mesopotamia and India.

The Elamite trade supplied the Sumarian civilization of Mesopotamia with silver, copper, tin, lead, precious gems, horses, timber, obsidian, alabaster and soapstone. The practical Sumerians and Elamites probably invented writing as a means of keeping accounts.

The tablets found at Tepe Yahya are inscribed in proto-Elamite, and radio-carbon dating of organic remains associated with the tablets shows them to be from about 3,600 B.C. The inscriptions on these tablets were made by pressing the blunt and sharp ends of a stylus into soft clay. Similar tablets have been found at the Sumerian city of Susa at the head of the Tigris River.

In about 3,100 B.C. the cuneiform script was developed, and later Mesopotamian tablets are written in cuneiform, which is a phonetic script where the symbols stand for syllables.
4.2 Egypt

The Egyptian hieroglyphic (priest writing) system began its development in about 4,000 B.C.. At that time, it was pictorial rather than phonetic. However, the Egyptians were in contact with the Sumerian civilization of Mesopotamia, and when the Sumerians developed a phonetic system of writing in about 3,100 B.C., the Egyptians were quick to adopt the idea. In the cuneiform writing of the Sumerians, a character stood for a syllable. In the Egyptian adaptation of this idea, most of the symbols stood for combinations of two consonants, and there were no symbols for vowels. However, a few symbols were purely alphabetic, i.e. they stood for sounds which we would now represent by a single letter. This was important from the standpoint of cultural history, since it suggested to the Phoenicians the idea of an alphabet of the modern type.

In Sumer, the pictorial quality of the symbols was lost at a very early stage, so that in the cuneiform script the symbols are completely abstract. By contrast, the Egyptian system of writing was designed to decorate monuments and to be impressive even to an illiterate viewer; and this purpose was best served by retaining the elaborate pictographic form of the symbols.
Figure 4.2: The Phoenician alphabet

Figure 4.3: Hieroglyphics
4.3 China

Writing was developed at a very early stage in Chinese history, but the system remained a pictographic system, with a different character for each word. A phonetic system of writing was never developed.

The failure to develop a phonetic system of writing had its roots in the Chinese imperial system of government. The Chinese empire formed a vast area in which many different languages were spoken. It was necessary to have a universal language of some kind in order to govern such an empire. The Chinese written language solved this problem admirably.

Suppose that the emperor sent identical letters to two officials in different districts. Reading the letters aloud, the officials might use entirely different words, although the characters in the letters were the same. Thus the Chinese written language was a sort of “Esperanto” which allowed communication between various language groups, and its usefulness as such prevented its replacement by a phonetic system.

The disadvantages of the Chinese system of writing were twofold: First, it was difficult to learn to read and write; and therefore literacy was confined to a small social class whose members could afford a prolonged education. The system of civil-service examinations made participation in the government dependant on a high degree of literacy; and hence the old, established scholar-gentry families maintained a long-term monopoly on power, wealth and education. Social mobility was possible in theory, since the civil service examinations were open to all, but in practice, it was nearly unattainable.

The second great disadvantage of the Chinese system of writing was that it was unsuitable for printing with movable type. An “information explosion” occurred in the west following the introduction of printing with movable type, but this never occurred in China. It is ironical that although both paper and printing were invented by the Chinese, the full effect of these immensely important inventions bypassed China and instead revolutionized the west.

Figure 4.4: Very early Chinese writing on a bone
4.4 The Americas

The Mayan system of writing is thought to have been invented in about 700 B.C., and this invention is believed to be entirely independent of the invention of writing elsewhere. Some of the Mayan glyphs represented entire words, but the could also represent syllables.

Knotted string systems of keeping records were used by the Andean peoples of South America, especially by the Inca civilization. In the Incan language collections of knotted strings were known as *quipus* or talking knots. Quipus could have only a few, or as many as 2000 knotted strings.

Belts made from shell beads (*wampum*) were used by the natives peoples of North America, both as currency and as a means of recording events.
4.5 The invention of paper

The ancient Egyptians were the first to make books. As early as 4,000 B.C., they began to make books in the form of scrolls by cutting papyrus reeds into thin strips and pasting them into sheets of double thickness. The sheets were glued together end to end, so that they formed a long roll. The rolls were sometimes very long indeed. For example, one roll, which is now in the British Museum, is 17 inches wide and 135 feet long.

(Paper of the type which we use today was not invented until 105 A.D.. This enormously important invention was made by a Chinese eunuch named Tsai Lun. The kind of paper invented by Tsai Lun could be made from many things: for example, bark, wood, hemp, rags, etc.. The starting material was made into a pulp, mixed together with water and binder, spread out on a cloth to partially dry, and finally heated and pressed into thin sheets. The art of paper-making spread slowly westward from China, reaching Baghdad in 800 A.D.. It was brought to Europe by the crusaders returning from the Middle East. Thus paper reached Europe just in time to join with Gütengberg’s printing press to form the basis for the information explosion which has had such a decisive effect on human history.)

Many centers of paper production were established throughout the Muslim world, and their techniques were eventually transmitted to Christian Europe. Not only was paper convenient to use, transport, and store, it was, most importantly, considerably cheaper than papyrus and parchment, probably partly because of the use of recycled rags as raw material in its manufacture. Whereas an early Qur’an copy on parchment is reckoned to have required the skins of about 300 sheep, an equivalent amount of paper could be produced much more rapidly, in much greater quantities, and at much lower cost. This transformed the economics of book production, and made possible a greatly increased production of manuscript books, on a scale which was unprecedented and unmatched in Europe at that time.

The career of Leonardo da Vinci illustrates the first phase of the “information explosion” which has produced the modern world: During Leonardo’s lifetime, inexpensive paper was being manufactured in Europe, and it formed the medium for Leonardo’s thousands of pages of notes. His notes and sketches would never have been possible if he had been forced to use expensive parchment as a medium. On the other hand, the full force of Leonardo’s genius and diligence was never felt because his notes were not printed.

Copernicus, who was a younger contemporary of Leonardo, had a much greater effect on the history of ideas, because his work was published. Thus, while paper alone made a large contribution to the information explosion, it was printing combined with paper which had an absolutely decisive and revolutionary impact: The modern scientific era began with the introduction of printing.
4.5. THE INVENTION OF PAPER

Figure 4.7: Papyrus

Figure 4.8: Paper is a Chinese invention
Figure 4.9: Italian paper-mill, probably from the 16th century.
Figure 4.10: The impact of Leonardo da Vinci’s genius would have been far greater if his thousands of pages of notes had been printed.
4.6 Printing

It was during the T'ang period that the Chinese made an invention of immense importance to the cultural evolution of mankind. This was the invention of printing. Together with writing, printing is one of the key inventions which form the basis of human cultural evolution.

Printing was invented in China in the 8th or 9th century A.D., probably by Buddhist monks who were interested in producing many copies of the sacred texts which they had translated from Sanskrit. The act of reproducing prayers was also considered to be meritorious by the Buddhists.

The Chinese had for a long time followed the custom of brushing engraved official seals with ink and using them to stamp documents. The type of ink which they used was made from lamp-black, water and binder. In fact, it was what we now call “India ink”. However, in spite of its name, India ink is a Chinese invention, which later spread to India, and from there to Europe.

We mentioned that paper of the type which we now use was invented in China in the first century A.D.. Thus, the Buddhist monks of China had all the elements which they needed to make printing practical: They had good ink, cheap, smooth paper, and the tradition of stamping documents with ink-covered engraved seals. The first block prints which they produced date from the 8th century A.D.. They were made by carving a block of wood the size of a printed page so that raised characters remained, brushing ink onto the block, and pressing this onto a sheet of paper.

The oldest known printed book, the “Diamond Sutra”, is dated 868 A.D.., and it consists of only six printed pages. It was discovered in 1907 by an English scholar who obtained permission from Buddhist monks in Chinese Turkestan to open some walled-up monastery rooms, which were said to have been sealed for 900 years. The rooms were found to contain a library of about 15,000 manuscripts, among which was the Diamond Sutra.

Block printing spread quickly throughout China, and also reached Japan, where wood-block printing ultimately reached great heights in the work of such artists as Hiroshige and Hokusai. The Chinese made some early experiments with movable type, but movable type never became popular in China, because the Chinese written language contains 10,000 characters. However, printing with movable type was highly successful in Korea as early as the 15th century A.D..

The unsuitability of the Chinese written language for the use of movable type was the greatest tragedy of the Chinese civilization. Writing had been developed at a very early stage in Chinese history, but the system remained a pictographic system, with a different character for each word. A phonetic system of writing was never developed.

The failure to develop a phonetic system of writing had its roots in the Chinese imperial system of government. The Chinese empire formed a vast area in which many different languages were spoken. It was necessary to have a universal language of some kind in order to govern such an empire. The Chinese written language solved this problem admirably.

Suppose that the emperor sent identical letters to two officials in different districts.
4.7 ISLAMIC CIVILIZATION AND PRINTING

Figure 4.11: The Diamond Sutra, 868 A.D., is the first known printed book.

Reading the letters aloud, the officials might use entirely different words, although the characters in the letters were the same. Thus the Chinese written language was a sort of “Esperanto” which allowed communication between various language groups, and its usefulness as such prevented its replacement by a phonetic system.

The invention of block printing during the T’ang dynasty had an enormously stimulating effect on literature, and the T’ang period is regarded as the golden age of Chinese lyric poetry. A collection of T’ang poetry, compiled in the 18th century, contains 48,900 poems by more than 2,000 poets.

4.7 Islamic civilization and printing

Some Islamic contributions to civilization

In the 5th century A.D., there was a split in the Christian church of Byzantium; and the Nestorian church, separated from the official Byzantine church. The Nestorians were bitterly persecuted by the Byzantines, and therefore they migrated, first to Mesopotamia, and later to south-west Persia. (Some Nestorians migrated as far as China.)

During the early part of the middle ages, the Nestorian capital at Gondisapur was a great center of intellectual activity. The works of Plato, Aristotle, Hippocrates, Euclid, Archimedes, Ptolemy, Hero and Galen were translated into Syriac by Nestorian scholars, who had brought these books with them from Byzantium.
Among the most distinguished of the Nestorian translators were the members of a family called Bukht-Yishu (meaning “Jesus hath delivered”), which produced seven generations of outstanding scholars. Members of this family were fluent not only in Greek and Syriac, but also in Arabic and Persian.

In the 7th century A.D., the Islamic religion suddenly emerged as a conquering and proselytizing force. Inspired by the teachings of Mohammad (570 A.D. - 632 A.D.), the Arabs and their converts rapidly conquered western Asia, northern Africa, and Spain. During the initial stages of the conquest, the Islamic religion inspired a fanaticism in its followers which was often hostile to learning. However, this initial fanaticism quickly changed to an appreciation of the ancient cultures of the conquered territories; and during the middle ages, the Islamic world reached a very high level of culture and civilization.

Thus, while the century from 750 to 850 was primarily a period of translation from Greek to Syriac, the century from 850 to 950 was a period of translation from Syriac to Arabic. It was during this latter century that Yuhanna Ibn Masawiah (a member of the Bukht-Yishu family, and medical advisor to Caliph Harun al-Rashid) produced many important translations into Arabic.

The skill of the physicians of the Bukht-Yishu family convinced the Caliphs of the value of Greek learning; and in this way the family played an extremely important role in the preservation of the western cultural heritage. Caliph al-Mamun, the son of Harun al-Rashid, established at Baghdad a library and a school for translation, and soon Baghdad replaced Gondisapur as a center of learning.

The English word “chemistry” is derived from the Arabic words “al-chimia”, which mean “the changing”. The earliest alchemical writer in Arabic was Jabir (760-815), a friend of Harun al-Rashid. Much of his writing deals with the occult, but mixed with this is a certain amount of real chemical knowledge. For example, in his Book of Properties, Jabir gives the following recipe for making what we now call lead hydroxycarbonate (white lead), which is used in painting and pottery glazes: “Take a pound of litharge, powder it well and heat it gently with four pounds of vinegar until the latter is reduced to half its original volume. The take a pound of soda and heat it with four pounds of fresh water until the volume of the latter is halved. Filter the two solutions until they are quite clear, and then gradually add the solution of soda to that of the litharge. A white substance is formed, which settles to the bottom. Pour off the supernatant water, and leave the residue to dry. It will become a salt as white as snow.”

Another important alchemical writer was Rahzes (c. 860 - c. 950). He was born in the ancient city of Ray, near Teheran, and his name means “the man from Ray”. Rahzes studied medicine in Baghdad, and he became chief physician at the hospital there. He wrote the first accurate descriptions of smallpox and measles, and his medical writings include methods for setting broken bones with casts made from plaster of Paris. Rahzes was the first person to classify substances into vegetable, animal and mineral. The word “al-kali”, which appears in his writings, means “the calcined” in Arabic. It is the source of our word “alkali”, as well as of the symbol K for potassium.

The greatest physician of the middle ages, Avicenna, (Abu-Ali al Hussein Ibn Abdullah Ibn Sina, 980-1037), was also a Persian, like Rahzes. More than a hundred books are at-
4.7. ISLAMIC CIVILIZATION AND PRINTING

Figure 4.12: Al-Hazen invented the camera-obscura during the years 1012-1021. It was a forerunner of the modern camera.

tributed to him. They were translated into Latin in the 12th century, and they were among the most important medical books used in Europe until the time of Harvey. Avicenna also wrote on alchemy, and he is important for having denied the possibility of transmutation of elements.

In mathematics, one of the most outstanding Arabic writers was al-Khwarizmi (c. 780 - c. 850). The title of his book, *Ilm al-jabr wa’l-muqabalah*, is the source of the English word “algebra”. In Arabic *al-jabr* means “the equating”. Al-Khwarizmi’s name has also become an English word, “algorithm”, the old word for arithmetic. Al-Khwarizmi drew from both Greek and Hindu sources, and through his writings the decimal system and the use of zero were transmitted to the west.

One of the outstanding Arabic physicists was al-Hazen (965-1038). He made the mistake of claiming to be able to construct a machine which could regulate the flooding of the Nile. This claim won him a position in the service of the Egyptian Caliph, al-Hakim. However, as al-Hazen observed Caliph al-Hakim in action, he began to realize that if he did not construct his machine immediately, he was likely to pay with his life! This led al-Hazen to the rather desperate measure of pretending to be insane, a ruse which he kept up for many years. Meanwhile he did excellent work in optics, and in this field he went far beyond anything done by the Greeks.

Al-Hazen studied the reflection of light by the atmosphere, an effect which makes the stars appear displaced from their true positions when they are near the horizon; and he calculated the height of the atmospheric layer above the earth to be about ten miles. He also studied the rainbow, the halo, and the reflection of light from spherical and parabolic mirrors. In his book, *On the Burning Sphere*, he shows a deep understanding of the
properties of convex lenses. Al-Hazen also used a dark room with a pin-hole opening to study the image of the sun during an eclipse. This is the first mention of the *camera obscura*, and it is perhaps correct to attribute the invention of the *camera obscura* to al-Hazen.

Another Islamic philosopher who had great influence on western thought was Averroës, who lived in Spain from 1126 to 1198. His writings took the form of thoughtful commentaries on the works of Aristotle. He shocked both his Moslem and his Christian readers by maintaining that the world was not created at a definite instant, but that it instead evolved over a long period of time, and is still evolving.

Like Aristotle, Averroës seems to have been groping towards the ideas of evolution which were later developed in geology by Steno, Hutton and Lyell and in biology by Darwin and Wallace. Much of the scholastic philosophy which developed at the University of Paris during the 13th century was aimed at refuting the doctrines of Averroës; but nevertheless, his ideas survived and helped to shape the modern picture of the world.

Muslims in Egypt and probably elsewhere were using printing to mass-produce texts as early as the 10th century. Dozens of examples of their output are preserved in museums and libraries, but have, until recently, been overlooked and neglected by scholars. This phenomenon is yet another example of the 1000-year missing history of science and technology.

It is, however, true that Muslims did not use printing to produce books, nor extended texts in any form, until the 18th century. This challenge was taken up by Europeans from the 15th century onwards, and it would not have been possible there, without the availability of another gift from the Muslims, paper, which had earlier reached Europe from the Muslim world, via Spain and Italy.
Figure 4.13: A handwritten Islamic manuscript: Qazwini, 'Ajaib al-makhluqat, MS probably from Mosul, ca.1305. British Library.
4.8 Gutenberg

Johannes Gensfleisch zur Laden zum Gutenberg (c.1400-1468) was born in the German city of Mainz. He was the youngest son of an upper-class merchant, Friele Gensfleisch zur Laden, whose long-established family traced its roots back to the 13th century.

Johannes Gutenberg was educated as a goldsmith and blacksmith, and may also have attended the University of Erfurt. In 1440, while he was living in Strassburg. he is said to have perfected and unveiled his system of printing with movable type.

By 1448, he was back in Mainz, where he took a loan from his brother-on-law to meet the expenses of setting up a printing press. In 1450, the press was in operation, and Gutenberg took a further loan, 800 guilders, from the moneylender Johann Fust. Peter Schöffer, who became Fust’s son-in-law also joined the enterprise, and is believed to have designed the type faces.

Among the many technical innovations introduced by Gutenberg are the invention of a process for mass-producing movable type; the use of oil-based ink for printing books; adjustable molds; mechanical movable type; and the use of a wooden printing press similar to the agricultural screw presses of the period. The alloy which he used was a mixture of lead, tin, and antimony that melted at a relatively low temperature for faster and more economical casting, cast well, and created a durable type. The combination of all these elements made the mass production of books both practical and economically feasible.

Gutenberg’s greatest artistic achievement was his printed Bible, but this project also cost so much that it left him with debts of more than 20,000 guilders. A court order gave Fust control of the Bible printing project, and half of the printed Bibles.

Although he had suffered bankruptcy, the aging Gutenberg’s greatness was acknowledged in 1465. He was given the tithe “Hofmann” (Gentleman of the Court) and awarded a yearly stipend, as well as 2,180 liters of grain and 2,000 liters of wine tax-free. He died in 1468, having enjoyed this official recognition for only three years.

Printing quickly affected both religion and science in Europe. By 1517, when Martin Luther posted his Ninety-Five Theses on the door of All Saint’s Church in Wittenburg, many cities had printing presses. The theses were quickly reprinted and translated, and they spread throughout Europe. This initiated a pamphlet war, in which both sides used printing to spread their views. The impact of Luther’s German translation of the Bible was greatly increased by the fact that inexpensive printed copies were widely available.

Science was similarly revolutionized. Nicolaus Copernicus (1473-1543) had a far greater impact on the history of science than his near contemporary Leonardo da Vinci (1452-1519) because of printing. Leonardo’s thousands of pages of notes and his innovations in virtually all the fields of human knowledge have only recently become available in printed form. By contrast, the publication Copernicus’ great book, *De revolutionibus orbium coelestium* (On the Revolutions of the Celestial Spheres) initiated a sequence of discoveries by Tycho Brahe, Galileo, Johannes Kepler and Isaac Newton, discoveries upon which the modern world is built.
Figure 4.14: Gutenberg is credited with introducing printing with movable type into Europe, with many improvements of technique. His inventions were a turning point in European history, and ushered in the modern era, the Reformation, the Age of Reason and the Industrial Revolution.
Figure 4.15: Gutenberg’s printing press

Figure 4.16: Gutenberg’s bible
4.9 The Enlightenment

Political philosophy of the Enlightenment

The 16th, 17th and 18th centuries have been called the “Age of Discovery”, and the “Age of Reason”, but they might equally well be called the “Age of Observation”. On every side, new worlds were opening up to the human mind. The great voyages of discovery had revealed new continents, whose peoples demonstrated alternative ways of life. The telescopic exploration of the heavens revealed enormous depths of space, containing myriads of previously unknown stars; and explorations with the microscope revealed a new and marvelously intricate world of the infinitesimally small.

In the science of this period, the emphasis was on careful observation. This same emphasis on observation can be seen in the Dutch and English painters of the period. The great Dutch masters, such as Jan Vermeer (1632-1675), Frans Hals (1580-1666), Pieter de Hooch (1629-1678) and Rembrandt van Rijn (1606-1669), achieved a careful realism in their paintings and drawings which was the artistic counterpart of the observations of the pioneers of microscopy, Anton van Leeuwenhoek and Robert Hooke. These artists were supported by the patronage of the middle class, which had become prominent and powerful both in England and in the Netherlands because of the extensive world trade in which these two nations were engaged.

Members of the commercial middle class needed a clear and realistic view of the world in order to succeed with their enterprises. (An aristocrat of the period, on the other hand, might have been more comfortable with a somewhat romanticized and out-of-focus vision, which would allow him to overlook the suffering and injustice upon which his privileges were based.) The rise of the commercial middle class, with its virtues of industriousness, common sense and realism, went hand in hand with the rise of experimental science, which required the same virtues for its success.

In England, the House of Commons (which reflected the interests of the middle class), had achieved political power, and had demonstrated (in the Puritan Rebellion of 1640 and the Glorious Revolution of 1688) that Parliament could execute or depose any monarch who tried to rule without its consent. In France, however, the situation was very different.

After passing through a period of disorder and civil war, the French tried to achieve order and stability by making their monarchy more absolute. The movement towards absolute monarchy in France culminated in the long reign of Louis XIV, who became king in 1643 and who ruled until he died in 1715.

The historical scene which we have just sketched was the background against which the news of Newton’s scientific triumph was received. The news was received by a Europe which was tired of religious wars; and in France, it was received by a middle class which was searching for an ideology in its struggle against the ancien régime.

To the intellectuals of the 18th century, the orderly Newtonian cosmos, with its planets circling the sun in obedience to natural law, became an imaginative symbol representing rationality. In their search for a society more in accordance with human nature, 18th
century Europeans were greatly encouraged by the triumphs of science. Reason had shown itself to be an adequate guide in natural philosophy. Could not reason and natural law also be made the basis of moral and political philosophy? In attempting to carry out this program, the philosophers of the Enlightenment laid the foundations of psychology, anthropology, social science, political science and economics.

One of the earliest and most influential of these philosophers was John Locke (1632-1705), a contemporary and friend of Newton. In his *Second Treatise on Government*, published in 1690, John Locke’s aim was to refute the doctrine that kings rule by divine right, and to replace that doctrine by an alternative theory of government, derived by reason from the laws of nature. According to Locke’s theory, men originally lived together without formal government:

> "Men living together according to reason," he wrote, "without a common superior on earth with authority to judge between them, is properly the state of nature... A state also of equality, wherein all the power and jurisdiction is reciprocal, no one having more than another; there being nothing more evident than that creatures of the same species, promiscuously born to all the same advantages of nature and the use of the same facilities, should also be equal amongst one another without subordination or subjection..."

> "But though this be a state of liberty, yet it is not a state of licence... The state of nature has a law to govern it, which obliges every one; and reason, which is that law, teaches all mankind who will but consult it, that being equal and independent, no one ought to harm another in his life, health, liberty or possessions."

In Locke’s view, a government is set up by means of a social contract. The government is given its powers by the consent of the citizens in return for the services which it renders to them, such as the protection of their lives and property. If a government fails to render these services, or if it becomes tyrannical, then the contract has been broken, and the citizens must set up a new government.

Locke’s influence on 18th century thought was very great. His influence can be seen, for example, in the wording of the American Declaration of Independence. In England, Locke’s political philosophy was accepted by almost everyone. In fact, he was only codifying ideas which were already in wide circulation and justifying a revolution which had already occurred. In France, on the other hand, Locke’s writings had a revolutionary impact.

Credit for bringing the ideas of both Newton and Locke to France, and making them fashionable, belongs to Francois Marie Arouet (1694-1778), better known as “Voltaire”. Besides persuading his mistress, Madame de Chatelet, to translate Newton’s *Principia* into French, Voltaire wrote an extremely readable commentary on the book; and as a result, Newton’s ideas became highly fashionable among French intellectuals. Voltaire lived with Madame du Chatelet until she died, producing the books which established him as the leading writer of Europe, a prophet of the Age of Reason, and an enemy of injustice, feudalism and superstition.

The Enlightenment in France is considered to have begun with Voltaire’s return from England in 1729; and it reached its high point with the publication of of the *Encyclopedia* between 1751 and 1780. Many authors contributed to the *Encyclopedia*, which was an enormous work, designed to sum up the state of human knowledge.
Figure 4.17: John Locke (1632-1705): “Men living together according to reason, without a common superior on earth with authority to judge between them, is properly the state of nature... A state also of equality, wherein all the power and jurisdiction is reciprocal, no one having more than another; there being nothing more evident than that creatures of the same species, promiscuously born to all the same advantages of nature and the use of the same facilities, should also be equal amongst one another without subordination or subjugation...”
Turgot and Montesquieu wrote on politics and history; Rousseau wrote on music, and Buffon on natural history; Quesnay contributed articles on agriculture, while the Baron d’Holbach discussed chemistry. Other articles were contributed by Condorcet, Voltaire and d’Alembert. The whole enterprise was directed and inspired by the passionate faith of Denis Diderot (1713-1784). The men who took part in this movement called themselves “philosophes”. Their creed was a faith in reason, and an optimistic belief in the perfectibility of human nature and society by means of education, political reforms, and the scientific method.

The philosophes of the Enlightenment visualized history as a long progression towards the discovery of the scientific method. Once discovered, this method could never be lost; and it would lead inevitably (they believed) to both the material and moral improvement of society. The philosophes believed that science, reason, and education, together with the principles of political liberty and equality, would inevitably lead humanity forward to a new era of happiness. These ideas were the faith of the Enlightenment; they influenced the French and American revolutions; and they are still the basis of liberal political belief.

Voltaire and Rousseau

Voltaire (1694-1778)

Francois-Marie Arouet, who later changed his name to Voltaire, was born in Paris. His father was a lawyer and a minor treasury official, while his mother’s family was on the lowest rank if the French nobility. He was educated by Jesuits at Collège Louis-le-Grande, where he learned Latin theology and rhetoric. He later became fluent in Italian, Spanish and English.

Despite his father’s efforts to make him study law, the young Voltaire was determined to become a writer. He eventually became the author of more than 2,000 books and pamphlets and more than 20,000 letters. His works include many forms of writing, including plays, poems, novels, essays and historical and scientific works. His writings advocated civil liberties, and he used his satirical and witty style of writing to criticize intolerance, religious dogma and absolute monarchy. Because of the intolerance and censorship of his day, he was frequently in trouble and sometimes imprisoned. Nevertheless, his works were very popular, and he eventually became extremely rich, partly through clever investment of money gained through part ownership of a lottery.

During a period of forced exile in England, Voltaire mixed with the English aristocracy, meeting Alexander Pope, John Gay, Jonathan Swift, Lady Mary Wortley Montagu, Sarah, Duchess of Marlborough, and many other members of the nobility and royalty. He admired the English system of constitutional monarchy, which he considered to be far superior to the absolutism then prevailing in France. In 1733, he published a book entitled *Letters concerning the English Nation*, in London. When French translation was published in 1734, Voltaire was again in deep trouble. In order to avoid arrest, he stayed in the country château belonging to Émilie du Châtelet and her husband, the Marquis du Châtelet.

As a result, Madame du Châtelet became his mistress and the relationship lasted for
16 years. Her tolerant husband, the Marquis, who shared their intellectual and scientific interests, often lived together with them. Voltaire paid for improvements to the château, and together, the Marquis and Voltaire collected more than 21,000 books, and enormous number for that time. Madame du Châtelet translated Isaac Newton’s great book, Principia Mathematica, into French, and her translation was destined to be the standard one until modern times. Meanwhile, Voltaire wrote a French explanation of the ideas of the Principia, which made these ideas accessible to a wide public in France. Together, the Marquis, his wife and Voltaire also performed many scientific experiments, for example experiments designed to study the nature of fire.

Voltaire’s vast literary output is available today in approximately 200 volumes, published by the University of Oxford, where the Voltaire Foundation is now established as a research department.

Rousseau (1712-1778)

In 1754 Rousseau wrote: “The first man who, having fenced in a piece of land, said ‘This is mine’, and found people naïve enough to believe him, that man was the true founder of civil society. From how many crimes, wars, and murders, from how many horrors and misfortunes might not any one have saved mankind, by pulling up the stakes, or filling up the ditch, and crying to his fellows: Beware of listening to this impostor; you are undone if you once forget that the fruits of the earth belong to us all, and the earth itself to nobody.”

Later, he began his influential book The Social Contract, published in 1752, with the dramatic words: “Man is born free, and everywhere he is in chains. Those who think themselves the masters of others are indeed greater slaves than they.” Rousseau concludes Chapter 3 of this book with the words: “Let us then admit that force does not create right, and that we are obliged to obey only legitimate powers”. In other words, the ability to coerce is not a legitimate power, and there is no rightful duty to submit to it. A state has no right to enslave a conquered people.

These ideas, and those of John Locke, were reaffirmed in 1776 by the American Declaration of Independence: “We hold these truths to be self-evident: That all men are created equal. That they are endowed by their Creator with certain inalienable rights, and the among these are the rights to life, liberty and the pursuit of happiness; and that to pursue these rights, governments are instituted among men, deriving their just powers from the consent of the governed.”

Today, in an era of government tyranny and subversion of democracy, we need to remember that the just powers of any government are not derived from the government’s ability to use of force, but exclusively from the consent of the governed.
Figure 4.18: Voltaire used his satirical and witty style of writing to criticize intolerance, religious dogma and absolute monarchy. He wrote more than 2,000 books and pamphlets and more than 20,000 letters. His writings made a significant contribution to the Enlightenment, and paved the way for revolutions both in France and America.
Figure 4.19: The frontpiece of Voltaire’s book popularizing Newton’s ideas for French readers. Madame du Châtelet appears as a muse, reflecting Newton’s thoughts down to Voltaire.
Figure 4.20: The work of Sir Isaac Newton (1642-1726) illustrates a key aspect of human cultural evolution: Because of the introduction of printing in Europe, Newton was able to build on the work of his predecessors, Copernicus, Brahe, Galileo and Kepler. He could never have achieved his great synthesis alone. During the Enlightenment, Newton became a symbol of rationality and reason. Alexander Pope wrote: “Nature, and nature’s laws, lay hid in night. God said ‘Let Newton be’, and all was light!”
Unlike Voltaire, Rousseau was not an advocate of science, but instead believed in the importance of emotions. He believed that civilization has corrupted humans rather than making them better. Rousseau was a pioneer of the romantic movement. His book, *The Social Contract*, remains influential today.
The printer and publisher Joseph Johnson

As an example of the influence of printing on the liberation of ideas, we can consider the circle of important authors that formed around the English printer and publisher Joseph Johnson (1738-1809). His weekly dinners for authors were famous. Among the many great thinkers, artists, scientists, writers and religious dissenters who attended these dinners, or whose works he published, were William Cowper, Erasmus Darwin, William Blake, Henry Fuselli, Mary Wollstonecraft, William Godwin, Thomas Robert Malthus, Thomas Paine, Pricilla Wakefield, Gilbert Wakefield. Benjamin Franklin, Richard Price and Joseph Priestly.

Throughout her career, the pioneering feminist writer Mary Wollstonecraft was aided by Johnson. As she wrote to her sister, she had decided to become the first of a new genus: a professional female writer. Having learned French and German, she translated Necker’s *Of the Importance of Religious Opinions* and Saltzman’s *Elements of Morality for the Use of Children*. Mary was helped in her new career by the liberal publisher, Joseph Johnson, who was also the publisher of Thomas Paine and William Godwin. Mary met these already famous authors at Johnson’s dinner parties, and conversations with them helped to expand her knowledge and ambitions. Joseph Johnson was a very brave man. By publishing the works of radical authors, he was risking arrest by England’s repressive government. In her letters, Mary described Johnson as “a father and brother”.

At Johnson’s parties Mary met, for the second time, the famous novelist and philosopher William Godwin. This time, they both formed a higher opinion of each other than at their first meeting. A passionate love affair developed between them, and when Mary became pregnant, they were married. Tragically, Mary Wollstonecraft died in childbirth. Her daughter Mary would later become the wife of Godwin’s admirer, the poet Percy Bysshe Shelley, and Mary Shelly created the enduring masterpiece *Frankenstein*.
Figure 4.23: Mary Wollstonecraft in a painting by John Opie. She called Joseph Johnson “my father and brother”.
Figure 4.24: The famous scientist and dissenter, Joseph Priestly, in a portrait by Henry Fuselli, commissioned by Joseph Johnson. Priestly and Fuselli were among Johnson’s closest friends.
4.10 Universal education

Today, there is some form of compulsory education in most countries. However, regional differences are still very great, as shown in the maps below.

The percentage of the global population without any schooling decreased from 36% in 1960 to 25% in 2000. In the developed countries, illiteracy rates and the number of children without schooling both were approximately halved between 1970 and 2000. However, illiteracy in the less developed countries exceeded that of the developed ones by a factor of ten in 1970. By 2000, this factor had increased to approximately 20.

As economies become more and more knowledge-based, high and higher educational levels of education are required. For many modern professions, students may be 30 years old before they complete their doctoral and post-doctoral educations. For this reason high educational levels are linked with lower fertility rates. Teenagers are biologically ready to have children, but in modern societies, they are not yet sufficiently educated to obtain well-paid work.

The Human Development Report

Since 1990, the Human Development Report has been published annually by the United Nations. It was launched jointly by the Pakistani economist Mahbub ul Haq and Indian Nobel laureate Amartya Sen. The purpose of the report has been to place people rather than material goods at the center of evaluations of economic progress. As Mahbub ul Haq put it, “People are the real wealth of a nation. The basic objective of development is to create an enabling environment for people to enjoy long, healthy and creative lives. This may appear to be a simple truth. But it is often forgotten in the immediate concern with the accumulation of commodities and financial wealth.”

Among the Human Development Index indicators used by the report is based on life expectancy, education and per-capita income. In 2010, the Human Development Report also introduced a Inequality Adjusted Human Development Index (IHDI).

In a recent ranking of countries according to their Human Development Indices, the highest ranked countries were Norway, Australia, Switzerland, Germany, Denmark, Singapore, Netherlands, Ireland, Iceland, Canada, Hong Kong, United States, New Zealand, Sweden, Lichtenstein, United Kingdom, Japan, South Korea, Israel, Luxembourg, France, Belgium, Switzerland, Austria, Slovenia and Italy in that order.

The lowest ranked countries were Swaziland, Syria, Angola, Tanzania, Nigeria, Cameroon, Papua New Guinea, Zimbabwe, Solomon Islands, Mauritania, Madagascar, Rwanda, Comoros, Lethoso, Senegal, Haiti, Uganda, Sudan, Togo, Benin and Yemen, with Yemen having the lowest human development index of all the world’s countries. In fact Yemen is currently experiencing a humanitarian crisis of huge proportions, and immediate international help is urgently needed.
Figure 4.25: A map showing global educational indices based on data from 2006 and 2007. Progressively darker shades of green indicate very high indices, while yellow, orange and red represent the low indices, red being the lowest.

Figure 4.26: A map showing the Human Development Index based on data from 2015 and 2016. The dark shades of blue indicate a very high index, while white indicates very low values. Grey indicates that data were not available.
4.11 The importance of education for women

Maria Montessori and modern educational methods

Dr. Maria Montessori (1870-1952) was an Italian physician and educator who pioneered modern non-authoritarian methods of education. Her father was an official in the Italian Ministry of Finance, while her mother belonged to a family that greatly valued education. Encouraged by her mother, the young Maria first studied to become an engineer, at that time an unusual profession for a woman, and then changed to the even more unusual study of medicine.

After passing examinations in botany, zoology, experimental physics, histology, anatomy, and general and organic chemistry at the University of Rome, she was finally accepted as a medical student. Because she was a woman, Montessori encountered discrimination and opposition from both the students and staff of Rome’s medical school. She was forced to perform anatomy dissections alone at night, because it was considered improper for a woman to view naked bodies in the company of men. Nevertheless, Maria Montessori graduated with distinction, having specialized in pediatrics and psychology during her last two years.

Dr. Montessori then became interested in the problem of educating retarded children. The experimental methods which she introduced were built on the natural tendencies of all children to explore their environments and to learn new skills. She gave her students the materials that they needed to be creative, and let them use these materials in their own spontaneous way. Her results were astonishingly successful, and most of her students, despite having been classified as retarded, were able to pass normal examinations. Encouraged by this success, Montessori tried the same methods on normal students. Again the results were remarkable. The normal children became super-good students. Her astonishingly good results made Maria Montessori internationally famous. She later studied anthropology and added this discipline to medicine, pediatrics and psychology as a background for her educational work.

Some quotations from Dr. Maria Montessori’s many books

“And so we discovered that education is not something which the teacher does, but that it is a natural process which develops spontaneously in the human being. It is not acquired by listening to words, but in virtue of experiences in which the child acts on his environment. The teacher’s task is not to talk, but to prepare and arrange a series of motives for cultural activity in a special environment made for the child” (from The Absorbent Mind).

“...the task of the educator lies in seeing that the child does not confound good with immobility, and evil with activity, as often happens in old-time discipline... A room in which all the children move about usefully, intelligently, and voluntarily, without committing any rough or rude act, would seem to me a classroom very well disciplined indeed.” (from The Montessori Method)
“The instructions of the teacher consist then merely in a hint, a touch - enough to give a start to the child. The rest develops of itself.” (from Dr. Montessori’s Own Handbook)

“Today, however, those things which occupy us in the field of education are the interests of humanity at large and of civilization, and before such great forces we can recognize only one country - the entire world.” (from The Montessori Method)

“How can we speak of Democracy or Freedom when from the very beginning of life we mould the child to undergo tyranny, to obey a dictator? How can we expect democracy when we have reared slaves? Real freedom begins at the beginning of life, not at the adult stage. These people who have been diminished in their powers, made short-sighted, devitalized by mental fatigue, whose bodies have become distorted, whose wills have been broken by elders who say: ‘your will must disappear and mine prevail!’ - how can we expect them, when school-life is finished, to accept and use the rights of freedom?” (from Education for a New World)

“Nowadays nobody’s life is safe. An absurd war may be declared in which all men - young and old, women and children - are in mortal danger. Civilians are bombed and people have to take refuge in underground shelters just as primitive men took refuge in caves to defend themselves against wild beasts. The supply of food may be cut off and millions may die of famine and plague. Do we not see men in rags or even naked, freezing to death, families separated and torn apart, children abandoned and roaming about in wild hordes?

“This we see, not only among those vanquished in war, but everywhere. Humanity itself is vanquished and enslaved - but why enslaved? Because all men are slaves, the victors as well as the vanquished, insecure, frightened, suspicious and hostile, compelled to defend themselves by means of spying and brigandage, using and fostering immorality as a means of defense...”

“It may seem that we have drifted rather far from our original subject - Education. This digression, however, must open up the new road along which we now have to go. In the same way in which we help the patients in a hospital to recover their health and continue to live so we must now help humanity to save itself. We must be nurses in a hospital, as vast as the world itself.” (from The Formation of Man).
Figure 4.27: Dr. Maria Montessori (1870-1952).
Mary Wollstonecraft’s *Vindication of the Rights of Woman*

Mary Wollstonecraft, whom we mentioned above in connection with the publisher Joseph Johnson, published a book in 1792 entitled *Vindication of the Rights of Woman*. In it she said:

“My main argument is built on this simple principle, that if [woman] be not prepared by education to become the companion of man, she will stop the progress of knowledge and virtue; for truth must be common to all”.

Wollstonecraft contends that society will degenerate without educated women, particularly because mothers are the primary educators of young children. She attributes the problem of uneducated women to men and to “...a false system of education, gathered from the books written on this subject by men who [consider] females rather as women than human creatures”

“Taught from their infancy that beauty is woman’s scepter, the mind shapes itself to the body, and, roaming round its gilt cage, only seeks to adorn its prison.

“I then would fain convince reasonable men of the importance of some of my remarks; and prevail on them to weigh dispassionately the whole tenor of my observations. I appeal to their understandings; and, as a fellow-creature, claim, in the name of my sex, some interest in their hearts. I entreat them to assist to emancipate their companion, to make her a help meet for them! Would men but generously snap our chains, and be content with rational fellowship instead of slavish obedience, they would find us more observant daughters, more affectionate sisters, more faithful wives, more reasonable mothers: in a word, better citizens.

Malala Yousafzai

Malala Yousafzai was born in 1997 in the beautiful Swat Valley of Pakistan. Her father, Ziauddin Yousafzai, is a poet, educational activist, and school owner. In 2008, he was contacted by a representative of the BBC’s Urdu service and asked to recommend a girl from one of his schools to write a continuing blog about what life was like under the Taliban. When all of the girls whom Ziauddin asked were too frightened, he finally recommended his own daughter, Malala. Her blog was aired anonymously by the BBC Urdu service.

After the BBC diary ended, Malala Yousafzai and her father were approached by a New York Times reporter about filming a documentary. Wikipedia states that “Following the documentary, Yousafzai was interviewed on the national Pashto-language station AVT Khyber, the Urdu-language Daily Aaj, and Canada’s Toronto Star.[34] She made a second appearance on Capital Talk on 19 August 2009. Her BBC blogging identity was being revealed in articles by December 2009. She also began appearing on television to publicly advocate for female education. From 2009 to 2010 she was the chair of the District Child Assembly of the Khpal Kor Foundation through 2009 and 2010.”

“In October 2011, Archbishop Desmond Tutu, a South African activist, nominated Yousafzai for the International Children’s Peace Prize of the Dutch international children’s advocacy group KidsRights Foundation. She was the first Pakistani girl to be nominated
4.11. THE IMPORTANCE OF EDUCATION FOR WOMEN

for the award. The announcement said, ‘Malala dared to stand up for herself and other girls and used national and international media to let the world know girls should also have the right to go to school.’ The award was won by Michaela Mycroft of South Africa.

“Her public profile rose even further when she was awarded Pakistan’s first National Youth Peace Prize two months later in December. On 19 December 2011, Prime Minister Yousaf Raza Gillani awarded her the National Peace Award for Youth. At the proceedings in her honor, Yousafzai stated that she was not a member of any political party, but hoped to found a national party of her own to promote education. The prime minister directed the authorities to set up an IT campus in the Swat Degree College for Women at Yousafzai’s request, and a secondary school was renamed in her honor. By 2012, Yousafzai was planning to organize the Malala Education Foundation, which would help poor girls go to school

“As Yousafzai became more recognized, the dangers facing her increased. Death threats against her were published in newspapers and slipped under her door. On Facebook, where she was an active user, she began to receive threats and fake profiles were created under her name. Eventually, a Taliban spokesman said they were ‘forced’ to act. In a meeting held in the summer of 2012, Taliban leaders unanimously agreed to kill her.

“On 9 October 2012, a Taliban gunman shot Yousafzai as she rode home on a bus after taking an exam in Pakistan’s Swat Valley. Yousafzai was 15 years old at the time. According to reports, a masked gunman shouted “Which one of you is Malala? Speak up, otherwise I will shoot you all”, and, on upon her being identified, shot her. She was hit with one bullet, which went through her head, neck, and ended in her shoulder. Two other girls were also wounded in the shooting.”

Malala did not die, however. The shooting resulted in an enormous international wave of sympathy for her, and outrage at Taliban’s murder attempt. She became the world’s most famous teenager. She met Queen Elizabeth II and Barak Obama, and spoke at the Oxford Union. Harvard University and the Canadian Parliament. In 2014, she shared the Nobel Peace Prize with Kailash Satyarthi, a children’s rights activist from India. Here are some excerpts from her Nobel Address:

“We had a thirst for education, we had a thirst for education because our future was right there in that classroom. We would sit and learn and read together. We loved to wear neat and tidy school uniforms and we would sit there with big dreams in our eyes. We wanted to make our parents proud and prove that we could also excel in our studies and achieve those goals, which some people think only boys can.

“But things did not remain the same. When I was in Swat, which was a place of tourism and beauty, suddenly it changed into a place of terrorism. I was just ten when more than 400 schools were destroyed. Women were flogged. People were killed. And our beautiful dreams turned into nightmares.

“Education went from being a right to being a crime. Girls were stopped from going to school. When my world suddenly changed, my priorities changed too. I had two options. One was to remain silent and wait to be killed. And the second was to speak up and then be killed. I chose the second one. I decided to speak up.
“We could not just stand by and see those injustices of the terrorists denying our rights, ruthlessly killing people and misusing the name of Islam. We decided to raise our voice and tell them: Have you not learnt, have you not learnt that in the Holy Quran Allah says: if you kill one person it is as if you kill the whole humanity?

“...I tell my story, not because it is unique, but because it is not. It is the story of many girls. Today, I tell their stories too. I have brought with me some of my sisters from Pakistan, from Nigeria and from Syria, who share this story. My brave sisters Shazia and Kainat who were also shot that day on our school bus. But they have not stopped learning. And my brave sister Kainat Soomro who went through severe abuse and extreme violence, even her brother was killed, but she did not succumb.

“Also my sisters here, whom I have met during my Malala Fund campaign. My 16-year-old courageous sister, Mezon from Syria, who now lives in Jordan as refugee and goes from tent to tent encouraging girls and boys to learn. And my sister Amina, from the North of Nigeria, where Boko Haram threatens, and stops girls and even kidnaps girls, just for wanting to go to school.

“I am Malala. But I am also Shazia. I am Kainat. I am Kainat Soomro. I am Mezon. I am Amina. I am those 66 million girls who are deprived of education. And today I am not raising my voice, it is the voice of those 66 million girls.

“...Dear sisters and brothers, today, in half of the world, we see rapid progress and development. However, there are many countries where millions still suffer from the very old problems of war, poverty, and injustice.

“We still see conflicts in which innocent people lose their lives and children become orphans. We see many people becoming refugees in Syria, Gaza and Iraq. In Afghanistan, we see families being killed in suicide attacks and bomb blasts.

“Many children in Africa do not have access to education because of poverty. And as I said, we still see, we still see girls who have no freedom to go to school in the north of Nigeria.

“Many children in countries like Pakistan and India, as Kailash Satyarthi mentioned, many children, especially in India and Pakistan are deprived of their right to education because of social taboos, or they have been forced into child marriage or into child labour.

“...Dear sisters and brothers, dear fellow children, we must work - not wait. Not just the politicians and the world leaders, we all need to contribute. Me. You. We. It is our duty.

“Let us become the first generation to decide to be the last, let us become the first generation that decides to be the last that sees empty classrooms, lost childhoods, and wasted potentials. Let this be the last time that a girl or a boy spends their childhood in a factory. Let this be the last time that a girl is forced into early child marriage. Let this be the last time that a child loses life in war. Let this be the last time that we see a child out of school. Let this end with us. Let’s begin this ending ... together ... today ... right here, right now. Let’s begin this ending now.”
4.11. THE IMPORTANCE OF EDUCATION FOR WOMEN

Figure 4.28: Malala Yousafzai: “We realize the importance of our voice when we are silenced”.

Figure 4.29: Women are the intellectual equals of men.
Figure 4.30: When he was Sweden’s Prime Minister, Olof Palme declared that his administration’s goal was that “neither in education, nor in opportunities for employment, nor in law, nor in social custom, should there be any difference whatever between men and women”.

Figure 4.31: Experts agree that educational and legal equality for women are vitally important steps towards stabilizing, and ultimately reducing, global population. These reforms are also extremely important for their own sake, and for the sake of the uniquely life-oriented insights that women can give to the world.
4.12 Printing and the rise of nationalism

Printing, the Reformation and nationalism

We saw above how the introduction of printing in Europe led to the Protestant Reformation. The resulting changes were not only religious, but also political. The Catholic Church, like the Roman Empire, had given Europe some degree of political unity, but individual rulers, such as Henry VIII in England, wished to have complete power within their own countries. Thus the Reformation, aided by printing, resulted in the fragmentation of Europe into totally independent nation-states.

From tribalism to nationalism

A hundred thousand years ago, our hunter-gatherer ancestors lived in tribes, competing with each other for territory on the grasslands of Africa. Loyalty to the tribe was natural for our ancestors, as was collective work on tribal projects. Since marriage within a tribe was more frequent than marriage outside it, the tribe was a genetically homogeneous unit, on which Darwinian forces acted. In competition between tribes, loyalty and cooperation within the tribe combined with aggression towards outsiders were characteristics that led to survival of the tribe as a whole. This explains how tribalism may have been produced in the evolution of inherited human nature. Today, at the start of the 21st century, we live in nation-states to which we feel emotions of loyalty very similar to the tribal emotions of our ancestors.

The enlargement of the fundamental political and social unit from tribe to nation-state has been made necessary and possible by improved transportation and communication, and by changes in the techniques of warfare. Printing allowed larger groups of people to read the same books and newspapers, and thus to experience the same emotions. Therefore the size of the geographical unit over which it was possible to establish social and political cohesion became enlarged.

The tragedy of our present situation is that the same forces that made the nation-state replace the tribe as the fundamental political and social unit have continued to operate with constantly increasing intensity. For this reason, the totally sovereign nation-state has become a dangerous anachronism. Although the world now functions as a single unit because of modern technology, its political structure is based on fragments, on absolutely sovereign nation-states - large compared to tribes, but too small for present-day technology, since they do not include all of mankind. Gross injustices mar today’s global economic interdependence, and because of the development of thermonuclear weapons, the continued existence of civilization is threatened by the anarchy that exists today at the international level.
“You supply the pictures and I’ll supply the war.”

There is a true story about the powerful newspaper owner William Randolph Hearst that illustrates the relationship between the mass media and the institution of war: When an explosion sank the American warship USS Maine in the harbor of Havana, Hearst anticipated (and desired) that the incident would lead to war between the United States and Spain. He therefore sent his best illustrator, Fredrick Remington, to Havana to produce drawings of the scene. After a few days in Havana, Remington cabled to Hearst, “All’s quiet here. There will be no war.” Hearst cabled back, “You supply the pictures. I’ll supply the war.” Hearst was true to his words. His newspapers inflamed American public opinion to such an extent that the Spanish-American War became inevitable. During the course of the war, Hearst sold many newspapers, and Remington many drawings. From this story one might almost conclude that newspapers thrive on war, while war thrives on newspapers.

Printing and newspapers made it possible for nationalist movements to grow in Europe. Before the advent of widely-read newspapers, European wars tended to be fought by mercenary soldiers, recruited from the lowest ranks of society, and motivated by financial considerations. The emotions of the population were not aroused by such limited and decorous wars. However, the French Revolution and the power of newspapers changed this situation, and war became a total phenomenon that involved emotions. The media were able to mobilize on a huge scale the communal defense mechanism that Konrad Lorenz called “militant enthusiasm” - self-sacrifice for the defense of the tribe.

The media as a battleground

Throughout history, art was commissioned by rulers to communicate, and exaggerate, their power, glory, absolute rightness etc, to the populace. The pyramids gave visual support to the power of the Pharaoh; portraits of rulers are a traditional form of propaganda supporting monarchies; and palaces were built as symbols of power.

Modern powerholders are also aware of the importance of propaganda. Thus the media are a battleground where reformers struggle for attention, but are defeated with great regularity by the wealth and power of the establishment. This is a tragedy because today there is an urgent need to make public opinion aware of the serious problems facing civilization, and the steps that are needed to solve these problems. The mass media could potentially be a great force for public education, but often their role is not only unhelpful - it is negative.
4.12. PRINTING AND THE RISE OF NATIONALISM

Figure 4.32: Remington cabled to Hearst, “All’s quiet here. There will be no war.” Hearst cabled back, “You supply the pictures. I’ll supply the war.” Hearst was true to his words. His newspapers inflamed American public opinion to such an extent that the Spanish-American War became inevitable.

Figure 4.33: Sigmund Freud’s “double-nephew”, Edward Bernays (1891-1995) is considered to be the father of modern propaganda methods. Among his best-known campaigns was a 1929 effort to promote female smoking by calling cigarettes “Torches of Freedom”.
Suggestions for further reading

Chapter 5

AN EXPLOSION OF COMMUNICATION

5.1 A revolution in communication

The modern communication revolution began with the prediction of electromagnetic waves by James Clerk Maxwell, their discovery by Heinrich Hertz, Marconi’s wireless telegraph messages across the Atlantic, and the invention of the telephone by Alexander Graham Bell. Radio and television programs were quick to follow. Today cell phones and Skype allow us to talk across vast distances with little effort and almost no expense. The Internet makes knowledge universally and instantly available.

Galvani and Volta

While Dalton’s atomic theory was slowly gaining ground in chemistry, the world of science was electrified (in more ways than one) by the discoveries of Franklin, Galvani, Volta, Ørsted, Ampère, Coulomb and Faraday.

A vogue for electrical experiments had been created by the dramatic experiments of Benjamin Franklin (1706-1790), who drew electricity from a thundercloud, and thus showed that lightning is electrical in nature. Towards the end of the 18th century, almost every scientific laboratory in Europe contained some sort of machine for generating static electricity. Usually these static electricity generators consisted of a sphere of insulating material which could be turned with a crank and rubbed, and a device for drawing off the accumulated static charge. Even the laboratory of the Italian anatomist, Luigi Galvani (1737-1798), contained such a machine; and this was lucky, since it led indirectly to the invention of the electric battery.

In 1771, Galvani noticed that some dissected frog’s legs on his work table twitched violently whenever they were touched with a metal scalpel while his electrostatic machine was running. Since Franklin had shown lightning to be electrical, it occurred to Galvani to hang the frog’s legs outside his window during a thunderstorm. As he expected, the frog’s
Figure 5.1: Luigi Galvani (1737-1798)

Figure 5.2: Alessandro Volta (1745-1827).
legs twitched violently during the thunderstorm, but to Galvani’s surprise, they continued to move even after the storm was over. By further experimentation, he found that what made the frog’s legs twitch was a closed electrical circuit, involving the brass hook from which they were hanging, and the iron lattice of the window.

Galvani mentioned these experiments to his friend, the physicist Alessandro Volta (1745-1827). Volta was very much interested, but he could not agree with Galvani about the source of the electrical current which was making the frog’s legs move. Galvani thought that the current was “animal electricity”, coming from the frog’s legs themselves, while Volta thought that it was the two different metals in the circuit which produced the current.

The argument over this question became bitter, and finally destroyed the friendship between the two men. Meanwhile, to prove his point, Volta constructed the first electrical battery. This consisted of a series of dishes containing salt solution, connected with each other by bridges of metal. One end of each bridge was made of copper, while the other end was made of zinc. Thus, as one followed the circuit, the sequence was: copper, zinc, salt solution, copper, zinc, salt solution, and so on.

Volta found that when a closed circuit was formed by such an arrangement, a steady electrical current flowed through it. The more units connected in series in the battery, the stronger was the current. He next constructed a more compact arrangement, which came to be known as the “Voltaic pile”. Volta’s pile consisted of a disc of copper, a disc of zinc, a disc of cardboard soaked in salt solution, another disc of copper, another disc of zinc, another disc of cardboard soaked in salt solution, and so on. The more elements there were in the pile, the greater was the electrical potential and current which it produced.

The invention of the electric battery lifted Volta to a peak of fame where he remained for the rest of his life. He was showered with honors and decorations, and invited to demonstrate his experiments to Napoleon, who made him a count and a senator of the
Kingdom of Lombardy. When Napoleon fell from power, Volta adroitly shifted sides, and he continued to receive honors as long as he lived.

News of the Voltaic pile spread like wildfire throughout Europe and started a series of revolutionary experiments both in physics and in chemistry. On March 20, 1800, Sir Joseph Banks, the President of the Royal Society, received a letter from Volta explaining the method of constructing batteries. On May 2 of the same year, the English chemist, William Nicholson (1755-1815), (to whom Banks had shown the letter), used a Voltaic pile to separate water into hydrogen and oxygen.

Shortly afterwards, the brilliant young English chemist, Sir Humphrey Davy (1778-1829), constructed a Voltaic pile with more than two hundred and fifty metal plates. On October 6, 1807, he used this pile to pass a current through molten potash, liberating a previously unknown metal, which he called potassium. During the year 1808, he isolated barium, strontium, calcium, magnesium and boron, all by means of Voltaic currents.

5.2 Ørsted, Ampère and Faraday

In 1819, the Danish physicist, Hans Christian Ørsted (1777-1851), was demonstrating to his students the electrical current produced by a Voltaic pile. Suspecting some connection between electricity and magnetism, he brought a compass needle near to the wire carrying the current. To his astonishment, the needle turned from north, and pointed in a direction perpendicular to the wire. When he reversed the direction of the current, the needle pointed in the opposite direction.

Ørsted’s revolutionary discovery of a connection between electricity and magnetism was extended in France by André Marie Ampère (1775-1836). Ampère showed that two parallel wires, both carrying current, repel each other if the currents are in the same direction, but they attract each other if the currents are opposite. He also showed that a helical coil of wire carrying a current produces a large magnetic field inside the coil; and the more turns in the coil, the larger the field.

The electrochemical experiments of Davy, and the electromagnetic discoveries of Ørsted and Ampère, were further developed by the great experimental physicist and chemist, Michael Faraday (1791-1867). He was one of ten children of a blacksmith, and as a boy, he had little education. At the age of 14, he was sent out to work, apprenticed to a London bookbinder. Luckily, the bookbinder sympathized with his apprentice’s desire for an education, and encouraged him to read the books in the shop (outside of working hours). Faraday’s favorites were Lavoisier’s textbook on chemistry, and the electrical articles in the Encyclopedia Britannica.

In 1812, when Michael Faraday was 21 years old, a customer in the bookshop gave him tickets to attend a series of lectures at the Royal Institution, which were to be given by the famous chemist Humphrey Davy. At that time, fashionable London socialites (particularly ladies) were flocking to the Royal Institution to hear Davy. Besides being brilliant, he was also extremely handsome, and his lectures, with their dramatic chemical demonstrations, were polished to the last syllable.
Michael Faraday was, of course, thrilled to be present in the glittering audience, and he took careful notes during the series of lectures. These notes, to which he added beautiful colored diagrams, came to 386 pages. He bound the notes in leather and sent them to Sir Joseph Banks, the President of the Royal Society, hoping to get a job related to science. He received no reply from Banks, but, not discouraged, he produced another version of his notes, which he sent to Humphrey Davy.

Faraday accompanied his notes with a letter saying that he wished to work in science because of “the detachment from petty motives and the unselfishness of natural philosophers”. Davy told him to reserve judgement on that point until he had met a few natural philosophers, but he gave Faraday a job as an assistant at the Royal Institution.

In 1818, Humphrey Davy was knighted because of his invention of the miner’s safety lamp. He married a wealthy and fashionable young widow, resigned from his post as Director of the Royal Institution, and set off on a two-year excursion of Europe, taking Michael Faraday with him. Lady Davy regarded Faraday as a servant; but in spite of the humiliations which she heaped on him, he enjoyed the tour of Europe and learned much from it. He met, and talked with, Europe’s most famous scientists; and in a sense, Europe was his university.

Returning to England, the modest and devoted Faraday finally rose to outshine Sir Humphrey Davy, and he became Davy’s successor as Director of the Royal Institution. Faraday showed enormous skill, intuition and persistence in continuing the electrical and chemical experiments begun by Davy.

In 1821, a year after H.C. Ørsted’s discovery of the magnetic field surrounding a current-carrying wire, Michael Faraday made the first electric motor. His motor was simply a current-carrying wire, arranged so that it could rotate around the pole of a magnet; but out of this simple device, all modern electrical motors have developed. When asked what use his motor was, Faraday replied: “What use is a baby?”

Ørsted had shown that electricity could produce magnetism; and Faraday, with his strong intuitive grasp of the symmetry of natural laws, believed that the relationship could be reversed. He believed that magnetism could be made to produce electricity. In 1822, he wrote in his notebook: “Convert magnetism to electricity”. For almost ten years, he tried intermittently to produce electrical currents with strong magnetic fields, but without success. Finally, in 1831, he discovered that a changing magnetic field would produce a current.

Faraday had wrapped two coils of wire around a soft iron ring; and he discovered that at precisely the instant when he started a current flowing in one of the coils, a momentary current was induced in the other coil. When he stopped the current in the first coil, so that the magnetic field collapsed, a momentary current in the opposite direction was induced in the second coil.

Next, Faraday tried pushing a permanent magnet in and out of a coil of wire; and he found that during the time when the magnet was in motion, so that the magnetic field in the coil was changing, a current was induced in the coil. Finally, Faraday made the first dynamo in history by placing a rotating copper disc between the poles of a magnet. He demonstrated that when the disc rotated, an electrical current flowed through a circuit...
Figure 5.4: Faraday’s experiment showing that an electric current could produce mechanical rotation in a magnetic field. This was the first electric motor! On the right side of the figure, a current-carrying rod rotates about a fixed magnet in a pool of mercury. On the left, the rod is fixed and the magnet rotates.
5.2. ØRSTED, AMPÈRE AND FARADAY

Figure 5.5: Faraday also showed that a copper disc, rotating between the poles of a magnet could produce an electric current.

connecting the center with the edge. He also experimented with static electricity, and showed that insulating materials become polarized when they are placed in an electric field.

Faraday continued the experiments on electrolysis begun by Sir Humphrey Davy. He showed that when an electrical current is passed through a solution, the quantities of the chemical elements liberated at the anode and cathode are directly proportional to the total electrical charge passed through the cell, and inversely proportional to the valence of the elements. He realized that these laws of electrolysis supported Dalton’s atomic hypothesis, and that they also pointed to the existence of an indivisible unit of electrical charge.

Faraday believed (correctly) that light is an electromagnetic wave; and to prove the connection of light with the phenomena of electricity and magnetism, he tried for many years to change light by means of electric and magnetic fields. Finally, towards the end of his career, he succeeded in rotating the plane of polarization of a beam of light passing through a piece of heavy glass by placing the glass in a strong magnetic field. This phenomenon is now known as the “Faraday effect”.

Because of his many contributions both to physics and to chemistry (including the discovery of benzene and the first liquefaction of gases), and especially because of his contributions to electromagnetism and electrochemistry, Faraday is considered to be one of the greatest masters of the experimental method in the history of science. He was also a splendid lecturer. Fashionable Londoners flocked to hear his discourses at the Royal Institution, just as they had flocked to hear Sir Humphrey Davy. Prince Albert, Queen Victoria’s husband, was in the habit of attending Faraday’s lectures, bringing with him Crown Prince Edward (later Edward VII).

As Faraday grew older, his memory began to fail, probably because of mercury poisoning. Finally, his unreliable memory forced him to retire from scientific work. He refused both an offer of knighthood and the Presidency of the Royal Society, remaining to the last the simple, modest and devoted worker who had first gone to assist Davy at the Royal Institution.
Figure 5.6: Michael Faraday (1791-1867) is considered to be one of the greatest experimental physicists in history. His family was too poor to give him an ordinary education and as a boy he was apprenticed to a bookbinder. In the evenings, after work, he educated himself by reading scientific books. After hearing lectures by Sir Humphrey Davy at the Royal Institution, Faraday wrote and bound a beautiful set of notes for the lectures. Impressed by the notes, Davy accepted Faraday as an assistant. In the end, through his brilliant discoveries in electromagnetism and electrochemistry, Faraday rose in fame and became Davy’s successor as Director of the Royal Institution.
5.3 Electromagnetic waves: Maxwell and Hertz

The experimental discoveries of Galvani, Volta, Ørsted and Faraday, demonstrated that electricity and magnetism were two faces of a larger phenomenon: electromagnetism.

During the nine years from 1864 to 1873, the great Scottish mathematician James Clerk Maxwell worked on the problem of putting Faraday’s laws of electricity and magnetism into mathematical form. In 1873, he published *A Treatise on Electricity and Magnetism*, one of the truly great scientific classics. Maxwell achieved a magnificent synthesis by expressing in a few simple equations the laws governing electricity and magnetism in all its forms. His electromagnetic equations have withstood the test of time; and now, a century later, they are considered to be among the most fundamental laws of physics.

Maxwell’s equations not only showed that visible light is indeed and electromagnetic wave, as Faraday had suspected, but they also predicted the existence of many kinds of invisible electromagnetic waves, both higher and lower in frequency than visible light. We now know that the spectrum of electromagnetic radiation includes (starting at the low-frequency end) radio waves, microwaves, infra-red radiation, visible light, ultraviolet rays, X-rays and gamma rays. All these types of radiation are fundamentally the same, except that their frequencies and wave lengths cover a vast range. They all are oscillations of the electromagnetic field; they all travel with the speed of light; and they all are described by Maxwell’s equations.

Maxwell’s book opened the way for a whole new category of inventions, which have had a tremendous impact on society. However, when it was published, very few scientists could understand it. Part of the problem was that the scientists of the 19th century would have liked a mechanical explanation of electromagnetism.

The German physicist Hermann von Helmholtz (1821-1894), tried hard to understand Maxwell’s theory in mechanical terms, and ended by accepting Maxwell’s equations without ever feeling that he really understood them. In 1883, the struggles of von Helmholtz to understand Maxwell’s theory produced a dramatic proof of its correctness: Helmholtz had a brilliant student named Heinrich Hertz (1857-1894), whom he regarded almost as a son. In 1883, the Berlin Academy of Science offered a prize for work in the field of electromagnetism; and von Helmholtz suggested to Hertz that he should try to win the prize by testing some of the predictions of Maxwell’s theory.

Hertz set up a circuit in which a very rapidly oscillating electrical current passed across a spark gap. He discovered that electromagnetic waves were indeed produced by this rapidly-oscillating current, as predicted by Maxwell! The waves could be detected with a small ring of wire in which there was a gap. As Hertz moved about the darkened room with his detector ring, he could see a spark flashing across the gap, showing the presence of electromagnetic waves, and showing them to behave exactly as predicted by Maxwell.
Figure 5.7: James Clerk Maxwell (1831-1879).

Figure 5.8: Heinrich Hertz (1857-1894).
5.4 The discovery of electrons

In the late 1880’s and early 1890’s, a feeling of satisfaction, perhaps even smugness, prevailed in the international community of physicists. It seemed to many that Maxwell’s electromagnetic equations, together with Newton’s equations of motion and gravitation, were the fundamental equations which could explain all the phenomena of nature. Nothing remained for physicists to do (it was thought) except to apply these equations to particular problems and to deduce the consequences. The inductive side of physics was thought to be complete.

However, in the late 1890’s, a series of revolutionary discoveries shocked the physicists out of their feeling of complacency and showed them how little they really knew. The first of these shocks was the discovery of a subatomic particle, the electron. In Germany, Julius Plücker (1801-1868), and his friend, Heinrich Geisler (1814-1879), had discovered that an electric current could be passed through the gas remaining in an almost completely evacuated glass tube, if the pressure were low enough and the voltage high enough. When this happened, the gas glowed, and sometimes the glass sides of the tube near the cathode (the negative terminal) also glowed. Plücker found that the position of the glowing spots on the glass near the cathode could be changed by applying a magnetic field.

In England, Sir William Crookes (1832-1919) repeated and improved the experiments of Plücker and Geisler: He showed that the glow on the glass was produced by rays of some kind, streaming from the cathode; and he demonstrated that these “cathode rays” could cast shadows, that they could turn a small wheel placed in their path, and that they heated the glass where they struck it.

Sir William Crookes believed that the cathode rays were electrically charged particles of a new kind - perhaps even a “fourth state of matter”. His contemporaries laughed at these speculations; but a few years later a brilliant young physicist named J.J. Thomson (1856-1940), working at Cambridge University, entirely confirmed Crookes’ belief that the cathode rays were charged particles of a new kind.

Thomson, an extraordinarily talented young scientist, had been appointed full professor and head of the Cavendish Laboratory at Cambridge at the age of 27. His predecessors in this position had been James Clerk Maxwell and the distinguished physicist, Lord Rayleigh, so the post was quite an honor for a man as young as Thomson. However, his brilliant performance fully justified the expectations of the committee which elected him. Under Thomson’s direction, and later under the direction of his student, Ernest Rutherford, the Cavendish Laboratory became the world’s greatest center for atomic and subatomic research; and it maintained this position during the first part of the twentieth century.

J.J. Thomson’s first achievement was to demonstrate conclusively that the “cathode rays” observed by Plücker, Geisler and Crookes were negatively charged particles. He and his students also measured their ratio of charge to mass. If the charge was the same as that on an ordinary negative ion, then the mass of the particles was astonishingly small - almost two thousand times smaller than the mass of a hydrogen atom! Since the hydrogen atom is the lightest of all atoms, this indicated that the cathode rays were subatomic particles.
Figure 5.9: Sir William Crookes showed that cathode rays could cast shadows.

Figure 5.10: Sir Joseph John Thomson (1856-1940).

The charge which the cathode rays particles carried was recognized to be the fundamental unit of electrical charge, and they were given the name “electrons”. All charges observed in nature were found to be integral multiples of the charge on an electron. The discovery of the electron was the first clue that the atom, thought for so long to be eternal and indivisible, could actually be torn to pieces.

5.5 History of the electrical telegraph

Many people contributed to the development of the telegraph. Here is a timeline showing some important events:
5.5. HISTORY OF THE ELECTRICAL TELEGRAPH

1774 Georges-Louis Le Sage (26 separate wires)
1800 Alessandro Volta invents the electric pile
1809 Samuel Thomas von Sömmering (up to 35 wires for letters and numerals)
1816 Francis Ronalds demonstrates an electrostatic telegraph at Hammersmith
1820 H.C. Ørsted discovers that an electric current produces a magnetic field
1821 André Marie Ampère suggests telegraph using a galvanometer
1828 Joseph Henry invents an improved electromagnet
1830 Joseph Henry demonstrates magnetic telegraph to Albany Academy
1832 Baron Schilling von Canstatt’s 16-key transmitting device (binary system)
1833 C.F. Gauss and W. Weber install 1200-meter-long telegraph in Göttingen
1835 C.F. Gauss installs a telegraph along a German railway line
1835 Joseph Henry and Edward Davy invent electrical relay
1836 David Alter’s telegraph system in America
1837 Edward Davy demonstrates his telegraph system in Regents Park
1837 Samuel Morse develops and patents recording telegraph
1837 W.F. Cooke and C. Wheatstone patent the first commercial telegraph
1838 Morse and his assistant Alfred Vale develop Morse code
1840 Charles Wheatstone’s ABC system could be used by an unskilled operator
1846 Royal Earl House develops and patents letter printing telegraph
1855 David Edward Hughes invents a printing telegraph using a spinning type wheel
1861 Overland telegraph connects east and west coasts of the United States

Figure 5.11: An early telegraph key
Figure 5.12: Professor Samuel F.B. Morse (1791-1872). For many years, most telegraph systems throughout the world made use of Morse code, which allowed messages to be sent over a single wire.
5.6 The transatlantic cable

The first durable transatlantic cable was laid in 1866 by Isambard Kingdom Brunel’s unprecedentedly large ship, the Great Eastern. Brunel had pioneered many engineering innovations, including the Great Western Railway, the first tunnel under a navigable river, and the first propeller-driven ocean-going iron steamship, the SS Great Britain, launched in 1843. He had realized that in order to carry enough coal for a transatlantic crossing, a ship had to be very large, since water resistance to be overcome is proportional to surface area, while the amount of coal (and cargo) that can be carried is proportional to volume. As a ship becomes larger, the ratio of volume to surface increases.

At first, transatlantic telegraphic transmissions were extremely slow, because the designers of the cable had not realized that for efficient signal transmission the ratio of the cable’s inductance to capacitance had to be correctly adjusted.

The first message sent was “Directors of Atlantic Telegraph Company, Great Britain, to Directors in America: Europe and America are united by telegraph. Glory to God in the highest; on earth peace, good will towards men.” The second message was from Queen Victoria to President Buchanan of the United States, expressing the hope that the cable link would prove to be “an additional link between the nations whose friendship is founded on their common interest and reciprocal esteem.” Buchanan replied that “it is a triumph more glorious, because far more useful to mankind, than was ever won by conqueror on the field of battle. May the Atlantic telegraph, under the blessing of Heaven, prove to be a bond of perpetual peace and friendship between the kindred nations, and an instrument destined by Divine Providence to diffuse religion, civilization, liberty, and law throughout the world.”

Public enthusiasm for the transatlantic cable was enormous. In New York, 100 guns were fired, the streets were decorated with flags, and church bells were rung.
Figure 5.13: Landing of the Atlantic Cable of 1866, Heart’s Content, Newfoundland, a painting by Robert Charles Dudley.

Figure 5.14: Under Sir James Anderson, the Great Eastern laid 4,200 kilometers (2,600 mi) of the 1865 transatlantic telegraph cable. Under Captains Anderson and then Robert Halpin, from 1866 to 1878 the ship laid over 48,000 kilometers (30,000 mi) of submarine telegraph cable including from Brest, France to Saint Pierre and Miquelon in 1869, and from Aden to Bombay in 1869 and 1870.
Figure 5.15: The great 19th century engineer, Isambard Kingdom Brunel (1806-1959), beside the launching chain of the Great Eastern.
5.7 Marconi

The waves detected by Hertz were, in fact, radio waves; and it was not long before the Italian engineer, Guglielmo Marconi (1874-1937), turned the discovery into a practical means of communication. In 1898, Marconi used radio signals to report the results of the boat races at the Kingston Regatta, and on December 12, 1901, using balloons to lift the antennae as high as possible, he sent a signal across the Atlantic Ocean from England to Newfoundland.

In 1904, a demonstration of a voice-carrying radio apparatus developed by Fessenden was the sensation of the St. Louis World’s Fair; and in 1909, Marconi received the Nobel Prize in physics for his development of radio communications. In America, the inventive genius of Alexander Graham Bell (1847-1922) and Thomas Alva Edison (1847-1931) turned the discoveries of Faraday and Maxwell into the telephone, the electric light, the cinema and the phonograph.

![Figure 5.16: Marconi’s wireless telegraph](image-url)
5.8 Alexander Graham Bell

Alexander Graham Bell (1847-1922) is credited with inventing the first workable telephone, but in addition, his inventions and scientific work reached many other fields. Bell was born in Edinburgh, Scotland, where his father. Professor Alexander Melville Bell, worked in phonetics, a branch of linguistics that studies the sounds of human speech and their physical properties. Alexander Graham Bell’s grandfather and his two brothers also worked in this field.

At the age of 12, Alexander Graham Bell invented a dehusking machine that was used for many years to prepare grain to be milled into flour. As a reward, the local mill owner gave young Bell the materials and workshop that he needed to work on other inventions.

Motivated not only by the fact that so many of his family members worked in phonetics but also by his mother’s gradually increasing deafness, Bell began experiments on the mechanical reproduction of sound. When he was 19, a report on Bell’s work in this field was sent to Alexander Ellis. Ellis informed Bell that very similar work had been done in Germany by Hermann von Helmholtz. Unable to read German, Bell studied a French translation of the work of von Helmholtz. He later said:

“Without knowing much about the subject, it seemed to me that if vowel sounds could be produced by electrical means, so could consonants, so could articulate speech. I thought that Helmholtz had done it ... and that my failure was due only to my ignorance of electricity. It was a valuable blunder ... If I had been able to read German in those days, I might never have commenced my experiments!”

When Bell was 23, he and his family moved to Canada because several family members were threatened with tuberculosis. They hoped that Canada’s climate would help their struggles with the disease. Two years later Bell moved to Boston, Massachusetts, where he opened his School of Vocal Physiology and Mechanics of Speech. Among his numerous students was Helen Keller.

Because the late nights and overwork resulting from combining electrical voice transmission experimentation with teaching was affecting his health, Bell decided to keep only two students, 6 year old Georgie Sanders and 15 year old Mable Hubbard. Georgie Sanders’ wealthy father provided Bell with free lodging and a laboratory. Mable was a bright and attractive girl, ten years younger than Bell, and she later became his wife.

At that time, in 1874, the telegraph was becoming more and more commercially important, and William Orton, the President of the Western Union telegraph company had hired Thomas Edison and Elisha Gray to invent a method for sending multiple messages over the same wire. When Bell confided to the wealthy fathers of his two pupils that he was working on a method to send multiple voice messages over the same wire, the two fathers supported Bell’s race with Edison and Gray to be first with a practical method and a patent.

1 later portrayed as Henry Higgins in Shaw’s play Pygmalion
2 Both of Bell’s brothers eventually died of tuberculosis.
In the same year, Bell happened to meet Thomas A. Watson, an experienced designer of electrical machines. With the financial help of Sanders and Hubbard, Bell hired Watson as his assistant. In 1876, Bell spoke the first intelligible words over his newly invented telephone: “Mr. Watson, come here. I need you.” That same year U.S. and U.K patents were granted to Bell, but a somewhat similar patent application from Elisha Gray had arrived almost simultaneously, initiating a controversy over priority.

Bell and his supporters offered to sell another patent which covered their method for sending multiple messages over the same telegraph wire to Western Union for $100,000, but the offer was refused. Two years later the President of Western Union said that if he could obtain the patent for $25,000,000, he would consider it a bargain, but by that time, the Bell Telephone Company no longer wished to sell.

Although Bell is best known for the telephone, his interests were very wide. According to Wikipedia,

Bell’s work ranged “unfettered across the scientific landscape” and he often went to
bed voraciously reading the Encyclopedia Britannica, scouring it for new areas of interest. The range of Bell’s inventive genius is represented only in part by the 18 patents granted in his name alone and the 12 he shared with his collaborators. These included 14 for the telephone and telegraph, four for the photophone, one for the phonograph, five for aerial vehicles, four for “hydroairplanes”, and two for selenium cells. Bell’s inventions spanned a wide range of interests and included a metal jacket to assist in breathing, the audiometer to detect minor hearing problems, a device to locate icebergs, investigations on how to separate salt from seawater, and work on finding alternative fuels.

Bell worked extensively in medical research and invented techniques for teaching speech to the deaf. During his Volta Laboratory period, Bell and his associates considered impressing a magnetic field on a record as a means of reproducing sound. Although the trio briefly experimented with the concept, they could not develop a workable prototype. They abandoned the idea, never realizing they had glimpsed a basic principle which would one day find its application in the tape recorder, the hard disc and floppy disc drive, and other magnetic media.

Bell’s own home used a primitive form of air conditioning, in which fans blew currents of air across great blocks of ice. He also anticipated modern concerns with fuel shortages and industrial pollution. Methane gas, he reasoned, could be produced from the waste of farms and factories. At his Canadian estate in Nova Scotia, he experimented with composting toilets and devices to capture water from the atmosphere. In a magazine interview published shortly before his death, he reflected on the possibility of using solar panels to heat houses.

As of today, the Bell Laboratories, funded by the Bell Telephone Company, has produced 13 Nobel Prize winners. Most notably, the 1956 Nobel Prize in Physics was shared by Bell Laboratory scientists John Bardeen, Walter Brattain, and William Shockley for the invention of the transistor, a device that has made the astonishing modern stages of the information explosion possible.

5.9 Cinema

The technology of films has a long history, and very many people contributed to its development. Here is a timeline showing some of the more important events:
1645 Athanasius Kircher publishes "Ars Magna Lucis et Umbrae"
1659 Christiaan Huygens invents the magic lantern with moving images
1664 T.R. Walgensten demonstrates the magic lantern in Paris
1670 Walgensten demonstrates magic lantern to Frederick III of Denmark
1709 German optician Themme makes moving magic lantern slides
1807 Multiple projectors and dissolving views
1823 Magic lanterns very widely used in education
1824 Peter Mark Roget describes persistence of vision
1833 Simon Stampler develops the Stroboscope
1861 Coleman Sellers II builds the Kinematoscope
1866 J. Beale: Choreotoscope using synchronized shutter action
1868 Simple and convenient flip book patented
1878 Eadweard Muybridge: moving picture sequence of a running horse
1882 Étienne-Jules Marey invents the chronophotographic gun
1887 Louis Le Prince develops first motion picture camera
1889 William Friese-Greene uses celluloid film for motion pictures
1891 W.K.L. Dickson in Thomas Edison's lab. develops 35 mm. film technique

Wikipedia states that “In or before 1659 the magic lantern was developed by Christiaan Huygens. It projected slides that were usually painted in color on glass. A 1659 sketch by Huygens indicates that moving images may have been part of the earliest screenings. Around 1790 multi-media phantasmagoria spectacles were developed. Rear projection, animated slides, multiple projectors (superimposition), mobile projectors (on tracks or handheld), projection on smoke, sounds, odors and even electric shocks were used to frighten audiences with a convincing ghost horror experience. In the 19th century several other popular magic lantern techniques were developed, including dissolving views and several types of mechanical slides that created dazzling abstract effects (chromatrope, et cetera) or that showed for instance falling snow or the planets and their moons revolving...”

“[Thomas] Edison was... granted a patent for the motion picture camera or 'Kinetograph'. He did the electromechanical design while his employee W. K. L. Dickson, a photographer, worked on the photographic and optical development. Much of the credit for the invention belongs to Dickson. In 1891, Thomas Edison built a Kinetoscope or peep-hole viewer. This device was installed in penny arcades, where people could watch short, simple films. The kinetograph and kinetoscope were both first publicly exhibited May 20, 1891.”

“Edison’s film studio made close to 1,200 films. The majority of the productions were short films showing everything from acrobats to parades to fire calls including titles such as Fred Ott’s Sneeze (1894), The Kiss (1896), The Great Train Robbery (1903), Alice's Adventures in Wonderland (1910), and the first Frankenstein film in 1910.”
5.10. THE INVENTION OF TELEVISION

Figure 5.18: Thomas Alva Edison (1837-1931).

5.10 The invention of television

A television timeline

<table>
<thead>
<tr>
<th>Year</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>1843</td>
<td>Alexander Bain introduces the facsimile machine</td>
</tr>
<tr>
<td>1851</td>
<td>Frederick Bakewell demonstrates a working facsimile machine</td>
</tr>
<tr>
<td>1856</td>
<td>Giovanni Caselli: first practical facsimile system, working on telegraph lines</td>
</tr>
<tr>
<td>1873</td>
<td>Willoughby Smith discovers the photoconductivity of the element selenium</td>
</tr>
<tr>
<td>1884</td>
<td>Paul Julius Gottlieb Nipkow proposes and patents the Nipkow disc</td>
</tr>
<tr>
<td>1900</td>
<td>Constantin Perskyi coins the word “television” at the Paris World’s Fair</td>
</tr>
<tr>
<td>1907</td>
<td>Lee de Forest and Arthur Korn develop amplification tube technology</td>
</tr>
<tr>
<td>1909</td>
<td>Georges Rignoux and A. Fournier: first instantaneous transmission of images</td>
</tr>
<tr>
<td>1911</td>
<td>Boris Rosing and Vladimir Zworykin: mechanical mirror-drum transmitter</td>
</tr>
<tr>
<td>1913</td>
<td>Charles Francis Jenkins publishes article on “Motion Pictures by Wireless”</td>
</tr>
<tr>
<td>1914</td>
<td>First commercial cathode ray tube developed by Western Electric</td>
</tr>
<tr>
<td>1915</td>
<td>Vladimir Zworykin experiments with cathode ray tube TV at Western Electric</td>
</tr>
<tr>
<td>1922</td>
<td>Kenjiro Takayanagi demonstrates a television system using Nipkow disk</td>
</tr>
<tr>
<td>1926</td>
<td>Hungarian Kálmán Tihanyi designs fully electronic television system</td>
</tr>
<tr>
<td>1927</td>
<td>Léon Theremin develops mirror drum-based television in Soviet Union</td>
</tr>
<tr>
<td>1928</td>
<td>John Logie Baird uses the Nipkow disk in his prototype video systems</td>
</tr>
<tr>
<td>1928</td>
<td>World’s first television station opens in Schenectady, NY.</td>
</tr>
<tr>
<td>1928</td>
<td>Baird’s company broadcasts first transatlantic television signal</td>
</tr>
<tr>
<td>1929</td>
<td>Farnsworth’s first electronic television demonstration</td>
</tr>
<tr>
<td>1930</td>
<td>Vladimir Zworykin demonstrates electronic television</td>
</tr>
<tr>
<td>1931</td>
<td>Baird makes first outdoor broadcast, showing the Derby</td>
</tr>
<tr>
<td>1936</td>
<td>Baird’s system reaches peak of 240 lines resolution on BBC broadcasts</td>
</tr>
</tbody>
</table>
Figure 5.19: The Scottish inventor John Logie Baird (1888-1946).

Television has a long history and many people contributed to its development. A timeline is shown above. In the end fully electronic television proved to be greatly superior to mechanical systems that preceded it.
5.10. THE INVENTION OF TELEVISION

Figure 5.20: Watching a homemade mechanical-scan television receiver in 1928.

Figure 5.21: A stamp commemorating Philo T. Farnsworth (1906-1971). The key ideas for electronic television came to him while he was still a schoolboy. Although his demonstration of electronic television came a year before Zworykin’s, a patent war developed between them.
5.11 The history of the Internet

The history of the Internet began in 1961, when Leonard Kleinrock, a student at MIT, submitted a proposal for Ph.D. thesis entitled “Information Flow in Large Communication Nets”. In his statement of the problem, Kleinrock wrote: “The nets under consideration consist of nodes, connected to each other by links. The nodes receive, sort, store, and transmit messages that enter and leave via the links. The links consist of one-way channels, with fixed capacities. Among the typical systems which fit this description are the Post Office System, telegraph systems, and satellite communication systems.” Kleinrock’s theoretical treatment of package switching systems anticipated the construction of computer networks which would function on a principle analogous to a post office rather than a telephone exchange: In a telephone system, there is a direct connection between the sender and receiver of information. But in a package switching system, there is no such connection - only the addresses of the sender and receiver on the package of information, which makes its way from node to node until it reaches its destination.

Further contributions to the concept of package switching systems and distributed communications networks were made by J.C.R. Licklider and W. Clark of MIT in 1962, and by Paul Baran of the RAND corporation in 1964. Licklider visualized what he called a “Galactic Network”, a globally interconnected network of computers which would allow social interactions and interchange of data and software throughout the world. The distributed computer communication network proposed by Baran was motivated by the desire to have a communication system that could survive a nuclear war. The Cold War had also provoked the foundation (in 1957) of the Advanced Research Projects Agency (ARPA) by the U.S. government as a response to the successful Russian satellite “Sputnik”.

In 1969, a 4-node network was tested by ARPA. It connected computers at the University of California divisions at Los Angeles and Santa Barbara with computers at the Stanford Research Institute and the University of Utah. Describing this event, Leonard Kleinrock said in an interview: “We set up a telephone connection between us and the guys at SRI. We typed the L and we asked on the phone ‘Do you see the L?’ ‘Yes we see the L’, came the response. We typed the 0 and we asked ‘Do you see the 0?’ ‘Yes we see the O.’ Then we typed the G and the system crashed.” The ARPANET (with 40 nodes) performed much better in 1972 at the Washington Hilton Hotel where the participants at a Conference on Computer Communications were invited to test it.

Although the creators of ARPANET visualized it as being used for long-distance computations involving several computers, they soon discovered that social interactions over the Internet would become equally important if not more so. An electronic mail system was introduced in the early 1970’s, and in 1976 Queen Elizabeth II of the United Kingdom became one of the increasing number of e-mail users.

In September, 1973, Robert F. Kahn and Vinton Cerf presented the basic ideas of the Internet at a meeting of the International Network Working Group at the University Sussex in Brighton, England. Among these principles was the rule that the networks to be connected should not be changed internally. Another rule was that if a packet did not arrive at its destination, it would be retransmitted from its original source. No information
was to be retained by the gateways used to connect networks; and finally there was to be no global control of the Internet at the operations level.

Computer networks devoted to academic applications were introduced in the 1970’s and 1980’s, both in England, the United States and Japan. The Joint Academic Network (JANET) in the U.K. had its counterpart in the National Science Foundation’s network (NSFNET) in America and Japan’s JUNET (Japan Unix Network). Internet traffic is approximately doubling each year\(^3\) and it is about to overtake voice communication in the volume of information transferred.

In March, 2011, there were more than two billion Internet users in the world. In North America they amounted to 78.3 % of the total population, in Europe 58.3 % and worldwide, 30.2 %. Another index that can give us an impression of the rate of growth of digital data generation and exchange is the “digital universe”, which is defined to be the total volume of digital information that human information technology creates and duplicates in a year. In 2011 the digital universe reached 1.2 zettabytes, and it is projected to quadruple by 2015. A zettabyte is \(10^{21}\) bytes, an almost unimaginable number, equivalent to the information contained in a thousand trillion books, enough books to make a pile that would stretch twenty billion kilometers.

\(^3\) In the period 1995-1996, the rate of increase was even faster - a doubling every four months
Table 5.1: **Historical total world Internet traffic** (after Cisco Visual Networking Index Forecast). 1 terabyte = 1,000,000,000,000 bytes. The figures for 2018-2021 are predictions.

<table>
<thead>
<tr>
<th>Year</th>
<th>Terabytes per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>1</td>
</tr>
<tr>
<td>1991</td>
<td>2</td>
</tr>
<tr>
<td>1992</td>
<td>4</td>
</tr>
<tr>
<td>1993</td>
<td>10</td>
</tr>
<tr>
<td>1994</td>
<td>20</td>
</tr>
<tr>
<td>1995</td>
<td>170</td>
</tr>
<tr>
<td>1996</td>
<td>1,800</td>
</tr>
<tr>
<td>1997</td>
<td>5,000</td>
</tr>
<tr>
<td>1998</td>
<td>11,000</td>
</tr>
<tr>
<td>1999</td>
<td>26,000</td>
</tr>
<tr>
<td>2000</td>
<td>75,000</td>
</tr>
<tr>
<td>2001</td>
<td>175,000</td>
</tr>
<tr>
<td>2002</td>
<td>358,000</td>
</tr>
<tr>
<td>2003</td>
<td>681,000</td>
</tr>
<tr>
<td>2004</td>
<td>1,267,000</td>
</tr>
<tr>
<td>2005</td>
<td>2,055,000</td>
</tr>
<tr>
<td>2006</td>
<td>3,339,000</td>
</tr>
<tr>
<td>2007</td>
<td>5,219,000</td>
</tr>
<tr>
<td>2008</td>
<td>7,639,000</td>
</tr>
<tr>
<td>2009</td>
<td>10,676,000</td>
</tr>
<tr>
<td>2010</td>
<td>14,984,000</td>
</tr>
<tr>
<td>2016</td>
<td>65,942,000</td>
</tr>
<tr>
<td>2017</td>
<td>83,371,000</td>
</tr>
<tr>
<td>2018</td>
<td>102,960,000</td>
</tr>
<tr>
<td>2019</td>
<td>127,008,000</td>
</tr>
<tr>
<td>2020</td>
<td>155,121,000</td>
</tr>
<tr>
<td>2021</td>
<td>187,386,000</td>
</tr>
</tbody>
</table>
5.12 Skype

Skype is the name of a telecommunications software that was developed in 2003 by a Swede, Niklas Zennström, a Dane, Janus Friis, and three Estonians, Ahti Heinla, Priit Kasesalu, and Jaan Tallinn. Skype allows users to use the Internet for voice and video communication. For Skype to Skype conversations, the service is free, but users are charged for conversations connecting Skype to telephones.

At the end of 2010 there were 660 million Skype users worldwide, i.e. 8.8% of the world’s population. In May, 2011, Microsoft bought Skype for $8.5 billion. Skype’s division headquarters are in Luxembourg, but 44% of the technical development team are located in Estonia. During 2016 and 2017, Microsoft redesigned Skype for Windows, iOS, Android, Mac and Linux. iOS (formerly iPhone OS) is a mobile operating system created and developed by Apple Inc. exclusively for its hardware. It is the operating system that presently powers many of the company’s mobile devices, including the iPhone, iPad, and iPod Touch. It is the second most popular mobile operating system globally after Android.

In a 1964 BBC special entitled Horizon, the famous science-fiction writer Arthur C. Clark predicted that in 50 years, satellites would “make possible a world where we can be in instant contact with each other, wherever we may be.” Today, we must acknowledge the striking correctness of this prediction.

Today there are over 2,000 communications satellites in Earth’s orbit, used by both private and government organizations. Because of the curvature of the Earth, radio communications between widely separated locations would be impossible without the help of satellites, but with their help, technologies such as Skype connect millions of users simultaneously.

Figure 5.22: A communications satellite.
5.13 Facebook

The social media network Facebook was launched in 2004 by Mark Zuckerberg and a few of his friends at Harvard. Initially membership was restricted to Harvard students, but later the network expanded to include students at other colleges and universities. Today, anyone who claims to be 13 or more years old can be a member of Facebook. The company that runs the network is now based in Menlo Park, California. It makes its money from advertisers, who make use of information gleaned from Facebook users to target them more accurately. Other Internet giants, such as Google, also make money by selling information about their users to advertisers. But unquestionably both Facebook and Google provide extremely valuable public services.

The Facebook-Cambridge Analytica data scandal

Cambridge Analytica is a British political consulting firm which combines data mining, data brokerage, and data analysis with strategic communication for the electoral process. In 2016 the company worked for Donald Trump’s political campaign as well as for the campaign that lead to Britain’s exit from the European Union. Cambridge Analytica is involved in ongoing criminal investigations both in the United States and in Britain.

Facebook is involved because Cambridge Analytica obtained the personal data of approximately 50 million Facebook users without their knowledge or consent. A small number of Facebook users consented to be subjects for the app “thisisyourdigitallife”, but once inside the Facebook network, the app took the data from millions of other users without their knowledge.

In October, 2016, Alexander Nix, the CEO of Cambridge Analytica, stated that “Today in the United States we have somewhere close to four or five thousand data points on every individual ... So we model the personality of every adult across the United States, some 230 million people.” Regarding the use of sex workers reportedly used for honey trapping; targeted people, Nix said “It sounds a dreadful thing to say, but these are things that don’t necessarily need to be true as long as they’re believed.”

![Graph showing the growth of Facebook users from 2004 to 2017.](image)

Figure 5.23: In June, 2017, the number of monthly users of Facebook reached 2 billion, an appreciable fraction of the world’s population.
5.14 Mainstream media fail in their duty

Television as a part of our educational system

In the mid-1950's, television became cheap enough so that ordinary people in the industrialized countries could afford to own sets. During the infancy of television, its power was underestimated. The great power of television is due to the fact that it grips two senses simultaneously, both vision and hearing. The viewer becomes an almost-hypnotized captive of the broadcast.

In the 1950's, this enormous power, which can be used both for good and for ill, was not yet fully apparent. Thus insufficient attention was given to the role of television in education, in setting norms, and in establishing values. Television was not seen as an integral part of the total educational system. It is interesting to compare the educational systems of traditional cultures with those of modern industrial societies.

In traditional societies, multigenerational families often live together in the same dwelling. In general, there is a great deal of contact between grandparents and grandchildren, with much transmission of values and norms between generations. Old people are regarded with great respect, since they are considered to be repositories of wisdom, knowledge, and culture.

By contrast, modern societies usually favor nuclear families, consisting of only parents and children. Old people are marginalized. They live by themselves in communities or homes especially for the old. Their cultural education knowledge and norms are not valued because they are “out of date”. In fact, during the life of a young person in one of the rapidly-changing industrial societies of the modern world, there is often a period when they rebel against the authority of their parents and are acutely embarrassed by their parents, who are “so old-fashioned that they don’t understand anything”.

Although the intergenerational transmission of values, norms, and culture is much less important in industrial societies than it is in traditional ones, modern young people of the West and North are by no means at a loss over where to find their values, fashions and role models. With every breath, they inhale the values and norms of the mass media. Totally surrounded by a world of television and film images, they accept this world as their own.

Neglect of serious dangers to society in the mass media

The greatest threats that we face are catastrophic climate change and thermonuclear war, but a large-scale global famine also has to be considered. The predicament of humanity today has been called “a race between education and catastrophe”: How do the media fulfil this life-or-death responsibility? Do they give us insight? No, they give us pop music. Do they give us an understanding of the sweep of evolution and history? No, they give us sport. Do they give us an understanding of the ecological catastrophes that threaten our planet because of unrestricted growth of population and industries? No, they give us sit-coms and soap operas. Do they give us unbiased news? No, they give us news that has been edited to conform with the interests of powerful lobbys. Do they present us with the
urgent need to leave fossil fuels in the ground? No, they do not, because this would offend the powerholders. Do they tell of the danger of passing tipping points after which human efforts to prevent catastrophic climate change will be useless? No, they give us programs about gardening and making food.

A consumer who subscribes to the “package” of broadcasts sold by a cable company can often search through all 95 channels without finding a single program that offers insight into the various problems that are facing the world today. What the viewer finds instead is a mixture of pro-establishment propaganda and entertainment. Meanwhile the neglected global problems are becoming progressively more severe.

In general, the mass media behave as though their role is to prevent the peoples of the world from joining hands and working to change the world and to save it from thermonuclear war, environmental catastrophes and threatened global famine. The television viewer sits slumped in a chair, passive, isolated, disempowered and stupefied. The future of the world hangs in the balance, the fate of children and grandchildren hangs in the balance, but the television viewer feels no impulse to work actively to change the world or to save it. The Roman emperors gave their people bread and circuses to numb them into political inactivity. The modern mass media seem to be playing a similar role.

Climate change denial in mass media

The Wikipedia article on climate change denial describes it with the following words: “Although scientific opinion on climate change is that human activity is extremely likely to be the primary driver of climate change, the politics of global warming have been affected by climate change denial, hindering efforts to prevent climate change and adapt to the warming climate. Those promoting denial commonly use rhetorical tactics to give the appearance of a scientific controversy where there is none.”

It is not surprising that the fossil fuel industry supports, on a vast scale, politicians and mass media that deny the reality of climate change. The amounts of money at stake are vast. If catastrophic climate change is to be avoided, coal, oil and natural gas “assets” worth trillions of dollars must be left in the ground. Giant fossil fuel corporations are desperately attempting to turn these “assets” into cash.

Showing unsustainable lifestyles in mass media

Television and other mass media contribute indirectly to climate change denial by showing unsustainable lifestyles. Television dramas show the ubiquitous use of gasoline-powered automobiles and highways crowded with them, just as though their did not exist an urgent need to transform our transportation systems. Motor racing is shown. A program called “Top Gear” tells viewers about the desirability of various automobiles. In general, cyclists are not shown. In television dramas, the protagonists fly to various parts of the world. The need for small local self-sustaining communities is not shown.

Advertisements in the mass media urge us to consume more, to fly, to purchase large houses, and to buy gasoline-driven automobiles, just as though such behavior ought to be
the norm. Such norms are leading us towards environmental disaster.

5.15 Alternative media

Luckily, the mass media do not have a complete monopoly on public information. With a little effort, citizens who are concerned about the future can find alternative media. These include a large number of independent on-line news services that are supported by subscriber donations rather than by corporate sponsors. YouTube videos also represent an extremely important source of public information. Below we discuss a few outstanding people who have made extremely important YouTube videos on climate change.

Attempts to eliminate net neutrality

The media are a battleground where powerholders struggle to maintain their monopoly and the voices of reformers must struggle against immensely wealthy oligarchies. It is therefore not surprising that attempts are now being made to undermine net neutrality.

In the United States there were protests against the FCC’s Ajit Pai’s plan to destroy internet neutrality. One protester stated that “Pai stands against an open internet, online privacy, local control of local media and affordable access for everyone. Team Internet will continue to remind Congress that you can’t do harm to the people you represent without hearing from us every day and everywhere. You can’t sell out our rights in Washington without consequences.”

Killing journalists

On 12 November 1997, UNESCO’s General Conference, at its 29th session, adopted the Resolution 29 “Condemnation of Violence against Journalists” inviting the Director-General to condemn assassination and any physical violence against journalists as a crime against society, since this curtails freedom of expression and, as a consequence, the other rights and freedoms set forth in international human rights instruments and to urge that the competent authorities discharge their duty of preventing, investigating and punishing such crimes and remedying their consequences.” Nevertheless a significant number of journalists continue to be assassinated every year.

A few outstanding voices

It is impossible to list all of the many thousands of brave, dedicated and eloquent people who write for the alternative media, or the equally brave and dedicated editors who publish these articles. But here are pictures of a few famous names that come to mind:
Figure 5.24: Daisaku Ikeda (born 1928), President of the 12-million-strong Buddhist organization Soka Gakkai International. Throughout his long life he has worked with courage and dedication for peace and international dialogue.
Figure 5.25: Former US Vice President Al Gore
Figure 5.26: Johan Galtung (born 1930), pioneer of the discipline Conflict Resolution.
Figure 5.27: Jan Oberg (born 1951), co-founder and Director of the Transnational Foundation for Peace and Future Research.

Figure 5.28: Mrs. Fumiko Galtung, TMS editor Antonio C.S. Rosa, Johan Galtung in Norway, 2007.
Figure 5.29: Baher Kamal is an Egyptian-born, Spanish-national, secular journalist. He coordinated and edited all Inter Press Services stories focusing on poverty, agriculture, environment, development, emigration and immigration, gender, urbanization, health, children, education, trade and South-South and North-South cooperation, among other issues.

Figure 5.30: John Pilger (born 1939).
5.15. ALTERNATIVE MEDIA

Figure 5.31: Oliver Stone (born 1946).
Figure 5.32: Amy Goodman of Democracy Now
Figure 5.33: Leonardo DiCaprio
Figure 5.34: Thom Hartmann

Figure 5.35: Noam Chomsky. The portrait is part of Robert Shetterly’s series of paintings, “Americans Who Tell the Truth”.
5.15. ALTERNATIVE MEDIA

Figure 5.36: James Hansen

Figure 5.37: Chris Hedges
Figure 5.38: Kathy Kelly

Figure 5.39: Naomi Klein
5.15. ALTERNATIVE MEDIA

Figure 5.40: Dennis Kucinich

Figure 5.41: Bill McKibben
5.16 The advertising industry

Shooting Santa Claus

No one wants to shoot Santa Claus. That goes without saying! Who would want to harm that jolly old man, with his reindeer and sleigh, and his workshop at the North Pole? Who would want to prevent him from bringing happiness to everyone? Who would want to stop him from making the children’s eyes light up like stars? Surely no one!

But the sad truth today is that we have to get rid of Santa somehow, before he kills us, and before he kills most of the plants and animals with which we share our world. Perhaps shooting is too harsh. Perhaps we should just forget Santa and all that he stands for, with his red suit, invented by the advertising department of Coca Cola.

This is what Santa stands for: The customer is always right. Your wish is our command. You have a right to whatever you desire. If you feel like taking a vacation on the other side of the world, don’t hesitate, just do it. If you feel like buying an SUV, just do it. Self-fulfillment is your birthright. Spending makes the economy grow, and growth is good. Isn’t that right?

But sadly that isn’t right. We have to face the fact that endless economic growth on a finite planet is a logical impossibility, and that we have reached or passed the the sustainable limits to growth.

In today’s world, we are pressing against the absolute limits of the earth’s carrying capacity, and further growth carries with it the danger of future collapse. In the long run, neither the growth of industry nor that of population is sustainable; and we have now reached or exceeded the sustainable limits.

The size of the human economy is, of course, the product of two factors: the total number of humans, and the consumption per capita. Let us first consider the problem of reducing the per-capita consumption in the industrialized countries. The whole structure of western society seems designed to push its citizens in the opposite direction, towards ever-increasing levels of consumption. The mass media hold before us continually the ideal of a personal utopia, filled with material goods.

Every young man in a modern industrial society feels that he is a failure unless he fights his way to the “top”; and in recent years, women too have been drawn into the competition. Of course, not everyone can reach the top; there would not be room for everyone; but society urges us all to try, and we feel a sense of failure if we do not reach the goal. Thus, modern life has become a competition of all against all for power and possessions.

When possessions are used for the purpose of social competition, demand has no natural upper limit; it is then limited only by the size of the human ego, which, as we know, is boundless. This would be all to the good if unlimited industrial growth were desirable; but today, when further industrial growth implies future collapse, western society urgently needs to find new values to replace our worship of power, our restless chase after excitement, and our admiration of excessive consumption.

If you turn on your television set, the vast majority of the programs that you will be
Figure 5.42: The mass media hold before us continually the ideal of a personal utopia, filled with material goods. Self-fulfillment is your birthright. Spending makes the economy grow, and growth is good. Isn’t that right?
offered give no hint at all of the true state of the world or of the dangers which we will face in the future. Part of the reason for this willful blindness is that no one wants to damage consumer confidence. No one wants to bring on a recession. No one wants to shoot Santa Claus.

But sooner or later a severe recession will come, despite our unwillingness to recognize this fact. Perhaps we should prepare for it by reordering the world’s economy and infrastructure to achieve long-term sustainability, i.e. steady-state economics, population stabilization, and renewable energy.
Suggestions for further reading

1. Abarbanel A, McClusky T (1950) *Is the world getting warmer?* Saturday Evening Post, 1 Jul, p22
8. CEI (2006) *We Call it Life.* Washington, DC, USA: Competitive Enterprise Institute
5.16. THE ADVERTISING INDUSTRY

Chapter 6

AN EXPLOSION OF POPULATION

6.1 The warning voice of Malthus

A debate between father and son

T.R. Malthus’ "Essay on The Principle of Population," the first edition of which was published in 1798, was one of the first systematic studies of the problem of population in relation to resources. Earlier discussions of the problem had been published by Bottero in Italy, Robert Wallace in England, and Benjamin Franklin in America. However Malthus’ Essay was the first to stress the fact that, in general, powerful checks operate continuously to keep human populations from increasing beyond their available food supply. In a later edition, published in 1803, he buttressed this assertion with carefully collected demographic and sociological data from many societies at various periods of their histories.

The publication of Malthus’ Essay coincided with a wave of disillusionment which followed the optimism of the Enlightenment. The utopian societies predicted by the philosophers of the Enlightenment were compared with reign of terror in Robespierre’s France and with the miseries of industrial workers in England; and the discrepancy required an explanation.

The optimism which preceded the French Revolution, and the disappointment which followed a few years later, closely paralleled the optimistic expectations of our own century, in the period after the Second World War, when it was thought that the transfer of technology to the less developed parts of the world would eliminate poverty, and the subsequent disappointment when poverty persisted.

Science and technology developed rapidly in the second half of the twentieth century, but the benefits which they conferred were just as rapidly consumed by a global population which today is increasing at the rate of one billion people every fourteen years. Because of the close parallel between the optimism and disappointments of Malthus’ time and those of our own, much light can be thrown on our present situation by rereading the debate between Malthus and his contemporaries.
Figure 6.1: Thomas Robert Malthus (1766-1834).
Thomas Robert Malthus (1766-1834) came from an intellectual family: His father, Daniel Malthus, was a moderately well-to-do English country gentleman, an enthusiastic believer in the optimistic ideas of the Enlightenment, and a friend of the philosophers Henry Rousseau, David Hume and William Godwin. The famous book on population by the younger Malthus grew out of conversations with his father.

In 1793, Robert Malthus was elected a fellow of Jesus College, and he also took orders in the Anglican Church. He was assigned as Curate to Okewood Chapel in Surrey. This small chapel stood in a woodland region, and Malthus’ illiterate parishioners were so poor that the women and children went without shoes. They lived in low thatched huts made of woven branches plastered with mud. The floors of these huts were of dirt, and the only light came from tiny window openings. Malthus’ parishioners diet consisted almost entirely of bread. The children of these cottagers developed late, and were stunted in growth. Nevertheless, in spite of the harsh conditions of his parishioners’ lives, Malthus noticed that the number of births which he recorded in the parish register greatly exceeded the number of deaths. It was probably this fact which first turned his attention to the problem of population.

Robert Malthus lived with his parents at Albury, about nine miles from Oakwood, and it was here that the famous debates between father and son took place. As Daniel Malthus talked warmly about Godwin, Condorcet, and the idea of human progress, the mind of his son, Robert, turned to the unbalance between births and deaths which he had noticed among his parishioners at Okewood Chapel. He pointed out to his father that no matter what benefits science might be able to confer, they would soon be eaten up by population growth.

Regardless of technical progress, the condition of the lowest social class would remain exactly the same: The poor would continue to live, as they always had, on the exact borderline between survival and famine, clinging desperately to the lower edge of existence. For them, change for the worse was impossible since it would loosen their precarious hold on life; their children would die and their numbers would diminish until they balanced the supply of food. But any change for the better was equally impossible, because if more nourishment should become available, more of the children of the poor would survive, and the share of food for each of them would again be reduced to the precise minimum required for life.

Observation of his parishioners at Okewood had convinced Robert Malthus that this sombre picture was a realistic description of the condition of the poor in England at the end of the 18th century. Techniques of agriculture and industry were indeed improving rapidly; but among the very poor, population was increasing equally fast, and the misery of society’s lowest class remained unaltered.

Publication of the first essay in 1798

Daniel Malthus was so impressed with his son’s arguments that he urged him to develop them into a small book. Robert Malthus’ first essay on population, written in response to his father’s urging, was only 50,000 words in length. It was published anonymously in
1798, and its full title was *An Essay on the Principle of Population, as it affects the future improvement of society, with remarks on the speculations of Mr. Godwin, M. Condorcet, and other writers.* Robert Malthus’ *Essay* explored the consequences of his basic thesis: that “the power of population is indefinitely greater than the power in the earth to produce subsistence for man”.

“That population cannot increase without the means of subsistence”, Robert Malthus wrote, “is a proposition so evident that it needs no illustration. That population does invariably increase, where there are means of subsistence, the history of every people who have ever existed will abundantly prove. And that the superior power cannot be checked without producing misery and vice, the ample portion of these two bitter ingredients in the cup of human life, and the continuance of the physical causes that seem to have produced them, bear too convincing a testimony.”

In order to illustrate the power of human populations to grow quickly to enormous numbers if left completely unchecked, Malthus turned to statistics from the United States, where the population had doubled every 25 years for a century and a half. Malthus called this type of growth “geometrical” (today we would call it “exponential”); and, drawing on his mathematical education, he illustrated it by the progression $1, 2, 4, 8, 16, 32, 64, 128, 256, ...$ etc. In order to show that, in the long run, no improvement in agriculture could possibly keep pace with unchecked population growth, Malthus allowed that, in England, agricultural output might with great effort be doubled during the next quarter century; but during a subsequent 25-year period it could not again be doubled. The growth of agricultural output could at the very most follow an arithmetic (linear) progression, $1, 2, 3, 4, 5, 6, ...$ etc.

Because of the overpoweringly greater numbers which can potentially be generated by exponential population growth, as contrasted to the slow linear progression of sustenance, Malthus was convinced that at almost all stages of human history, population has not expanded freely, but has instead pressed painfully against the limits of its food supply. He maintained that human numbers are normally held in check either by “vice or misery”. (Malthus classified both war and birth control as forms of vice.) Occasionally the food supply increases through some improvement in agriculture, or through the opening of new lands; but population then grows very rapidly, and soon a new equilibrium is established, with misery and vice once more holding the population in check.

Like Godwin’s *Political Justice*, Malthus’ *Essay on the Principle of Population* was published at exactly the right moment to capture the prevailing mood of England. In 1793, the mood had been optimistic; but by 1798, hopes for reform had been replaced by reaction and pessimism. Public opinion had been changed by Robespierre’s Reign of Terror and by the threat of a French invasion. Malthus’ clear and powerfully written essay caught the attention of readers not only because it appeared at the right moment, but also because his two contrasting mathematical laws of growth were so striking.

One of Malthus’ readers was William Godwin, who recognized the essay as the strongest challenge to his utopian ideas that had yet been published. Godwin several times invited Malthus to breakfast at his home to discuss social and economic problems. (After some years, however, the friendship between Godwin and Malthus cooled, the debate between them having become more acrimonious.)
In 1801, Godwin published a reply to his critics, among them his former friends James Mackintosh and Samuel Parr, by whom he recently had been attacked. His *Reply to Parr* also contained a reply to Malthus: Godwin granted that the problem of overpopulation raised by Malthus was an extremely serious one. However, Godwin wrote, all that is needed to solve the problem is a change of the attitudes of society. For example we need to abandon the belief “that it is the first duty of princes to watch for (i.e. encourage) the multiplication of their subjects, and that a man or woman who passes the term of life in a condition of celibacy is to be considered as having failed to discharge the principal obligations owed to the community”.

“On the contrary”, Godwin continued, “it now appears to be rather the man who rears a numerous family that has to some degree transgressed the consideration he owes to the public welfare”. Godwin suggested that each marriage should be allowed only two or three children or whatever number might be needed to balance the current rates of mortality and celibacy. This duty to society, Godwin wrote, would surely not be too great a hardship to be endured, once the reasons for it were thoroughly understood.

The second essay, published in 1803

Malthus’ small essay had captured public attention in England, and he was anxious to expand it with empirical data which would show his principle of population to be valid not only in England in his own day, but in all societies and all periods. He therefore traveled widely, collecting data. He also made use of the books of explorers, such as Cook and Vancouver.

Malthus’ second edition, more than three times the length of his original essay on population, was ready in 1803. Book I and Book II of the 1803 edition of Malthus’ *Essay* are devoted to a study of the checks to population growth which have operated throughout history in all the countries of the world for which he possessed facts.

In his first chapter, Malthus stressed the potentially enormous power of population growth contrasted the slow growth of the food supply. He concluded that strong checks to the increase of population must almost always be operating to keep human numbers within the bounds of sustenance. He classified the checks as either preventive or positive, the preventive checks being those which reduce fertility, while the positive checks are those which increase mortality. Among the positive checks, Malthus listed “unwholesome occupations, severe labour and exposure to the seasons, extreme poverty, bad nursing of children, great towns, excesses of all kinds, the whole train of common diseases and epidemics, wars, plague, and famine”.

In the following chapters of Books I, Malthus showed in detail the mechanisms by which population is held at the level of sustenance in various cultures. He first discussed primitive hunter-gatherer societies, such as the inhabitants of Tierra del Fuego, Van Diemens Land and New Holland, and those tribes of North American Indians living predominantly by hunting. In hunting societies, he pointed out, the population is inevitably very sparse: “The great extent of territory required for the support of the hunter has been repeatedly stated and acknowledged”, Malthus wrote, “...The tribes of hunters, like beasts of prey,
whom they resemble in their mode of subsistence, will consequently be thinly scattered over the surface of the earth. Like beasts of prey, they must either drive away or fly from every rival, and be engaged in perpetual contests with each other... The neighboring nations live in a perpetual state of hostility with each other. The very act of increasing in one tribe must be an act of aggression against its neighbors, as a larger range of territory will be necessary to support its increased numbers. The contest will in this case continue, either till the equilibrium is restored by mutual losses, or till the weaker party is exterminated or driven from its country... Their object in battle is not conquest but destruction. The life of the victor depends on the death of the enemy”. Malthus concluded that among the American Indians of his time, war was the predominant check to population growth, although famine, disease and infanticide each played a part.

In Book II, Malthus turned to the nations of Europe, as they appeared at the end of the 18th century, and here he presents us with a different picture. Although in these societies poverty, unsanitary housing, child labour, malnutrition and disease all took a heavy toll, war produced far less mortality than in hunting and pastoral societies, and the preventive checks, which lower fertility, played a much larger roll.

Malthus painted a very dark panorama of population pressure and its consequences in human societies throughout the world and throughout history: At the lowest stage of cultural development are the hunter-gatherer societies, where the density of population is extremely low. Nevertheless, the area required to support the hunters is so enormous that even their sparse and thinly scattered numbers press hard against the limits of sustenance. The resulting competition for territory produces merciless intertribal wars.

The domestication of animals makes higher population densities possible; and wherever this new mode of food production is adopted, human numbers rapidly increase; but very soon a new equilibrium is established, with the population of pastoral societies once more pressing painfully against the limits of the food supply, growing a little in good years, and being cut back in bad years by famine, disease and war.

Finally, agricultural societies can maintain extremely high densities of population; but the time required to achieve a new equilibrium is very short. After a brief period of unrestricted growth, human numbers are once more crushed against the barrier of limited resources; and if excess lives are produced by overbreeding, they are soon extinguished by deaths among the children of the poor.

Malthus was conscious that he had drawn an extremely dark picture of the human condition. He excused himself by saying that he has not done it gratuitously, but because he was convinced that the dark shades really are there, and that they form an important part of the picture. He did allow one ray of light, however: By 1803, his own studies of Norway, together with personal conversations with Godwin and the arguments in Godwin’s *Reply to Parr*, had convinced Malthus that “moral restraint” should be included among the possible checks to population growth. Thus he concluded Book II of his 1803 edition by saying that the checks which keep population down to the level of the means of subsistence can all be classified under the headings of “moral restraint, vice and misery”. (In his first edition he had maintained that vice and misery are the only possibilities).
Replies to Malthus

The second edition of Malthus’ Essay was published in 1803. It provoked a storm of controversy, and a flood of rebuttals. In 1803 England’s political situation was sensitive. Revolutions had recently occurred both in America and in France; and in England there was much agitation for radical change, against which Malthus provided counter-arguments. Pitt and his government had taken Malthus’ first edition seriously, and had abandoned their plans for extending the Poor Laws. Also, as a consequence of Malthus’ ideas, England’s first census was taken in 1801. This census, and subsequent ones, taken in 1811, 1821 and 1831, showed that England’s population was indeed increasing rapidly, just as Malthus had feared. (The population of England and Wales more than doubled in 80 years, from an estimated 6.6 million in 1750 to almost 14 million in 1831.) In 1803, the issues of poverty and population were at the center of the political arena, and articles refuting Malthus began to stream from the pens of England’s authors.

William Coleridge planned to write an article against Malthus, and he made extensive notes in the margins of his copy of the Essay. In one place he wrote: “Are Lust and Hunger both alike Passions of physical Necessity, and the one equally with the other independent of the Reason and the Will? Shame upon our race that there lives an individual who dares to ask the Question.” In another place Coleridge wrote: “Vice and Virtue subsist in the agreement of the habits of a man with his Reason and Conscience, and these can have but one moral guide, Utility, or the virtue and Happiness of Rational Beings”. Although Coleridge never wrote his planned article, his close friend Robert Southey did so, using Coleridge’s notes almost verbatim. Some years later Coleridge remarked: “Is it not lamentable - is it not even marvelous - that the monstrous practical sophism of Malthus should now have gained complete possession of the leading men of the kingdom! Such an essential lie in morals - such a practical lie in fact it is too! I solemnly declare that I do not believe that all the heresies and sects and factions which ignorance and the weakness and wickedness of man have ever given birth to, were altogether so disgraceful to man as a Christian, a philosopher, a statesman or citizen, as this abominable tenet.”

In 1812, Percy Bysshe Shelley, who was later to become William Godwin’s son-in-law, wrote: “Many well-meaning persons... would tell me not to make people happy for fear of over-stocking the world... War, vice and misery are undoubtedly bad; they embrace all that we can conceive of temporal and eternal evil. Are we to be told that these are remedyless, because the earth would in case of their remedy, be overstocked?” A year later, Shelley called Malthus a “priest, eunuch, and tyrant”, and accused him, in a pamphlet, of proposing that “...after the poor have been stript naked by the tax-gatherer and reduced to bread and tea and fourteen hours of hard labour by their masters.. the last tie by which Nature holds them to benignant earth (whose plenty is garnered up in the strongholds of their tyrants) is to be divided... They are required to abstain from marrying under penalty of starvation... whilst the rich are permitted to add as many mouths to consume the products of the poor as they please”

Godwin himself wrote a long book (which was published in 1820) entitled Of Population, An Enquiry Concerning the Power and Increase in the Number of Mankind, being an
answer to Mr. Malthus. One can also view many of the books of Charles Dickens as protests against Malthus’ point of view. For example, *Oliver Twist* gives us a picture of a workhouse “administered in such a way that the position of least well-off independent workers should not be worse than the position of those supported by parish assistance.”

Among the 19th century authors defending Malthus was Harriet Martineau, who wrote: “The desire of his heart and the aim of his work were that domestic virtue and happiness should be placed within the reach of all... He found that a portion of the people were underfed, and that one consequence of this was a fearful mortality among infants; and another consequence the growth of a recklessness among the destitute which caused infanticide, corruption of morals, and at best, marriage between pauper boys and girls; while multitudes of respectable men and women, who paid rates instead of consuming them, were unmarried at forty or never married at all. Prudence as to time of marriage and for making due provision for it was, one would think, a harmless recommendation enough, under the circumstances.”

The Irish Potato Famine of 1845

Meanwhile, in Ireland, a dramatic series of events had occurred, confirming the ideas of Malthus. Anti-Catholic laws prevented the Irish cottagers from improving their social position; and instead they produced large families, fed almost exclusively on a diet of milk and potatoes. The potato and milk diet allowed a higher density of population to be supported in Ireland than would have been the case if the Irish diet had consisted primarily of wheat. As a result, the population of Ireland grew rapidly: In 1695 it had been approximately one million, but by 1821 it had reached 6,801,827. By 1845, the population of Ireland was more than eight million; and in that year the potato harvest failed because of blight. All who were able to do so fled from the country, many emigrating to the United States; but two million people died of starvation. As the result of this shock, Irish marriage habits changed, and late marriage became the norm, just as Malthus would have wished. After the Potato Famine of 1845, Ireland maintained a stable population of roughly four million.

Malthus continued a life of quiet scholarship, unperturbed by the heated public debate which he had caused. At the age of 38, he married a second cousin. The marriage produced only three children, which at that time was considered to be a very small number. Thus he practiced the pattern of late marriage which he advocated. Although he was appointed rector of a church in Lincolnshire, he never preached there, hiring a curate to do this in his place. Instead of preaching, Malthus accepted an appointment as Professor of History and Political Economy at the East India Company’s College at Haileybury. This appointment made him the first professor of economics in England, and probably also the first in the world. Among the important books which he wrote while he held this post was *Principles of Political Economy, Considered with a View to their Practical Application*. Malthus also published numerous revised and expanded editions of his *Essay on the Principle of Population*. The third edition was published in 1806, the fourth in 1807, the fifth in 1817, and the sixth in 1826.
6.2 The demographic transition

The developed industrial nations of the modern world have gone through a process known as the “demographic transition” - a shift from an equilibrium where population growth is held in check by the grim Malthusian forces of disease, starvation and war, to one where it is held in check by birth control and late marriage.

The transition begins with a fall in the death rate, caused by various factors, among which the most important is the application of scientific knowledge to the prevention of disease. Malthus gives the following list of some of the causes of high death rates: “...unwholesome occupations, severe labour and exposure to the seasons, extreme poverty, bad nursing of children, great towns, excesses of all kinds, the whole train of common diseases and epidemics, wars, plague and famine.” The demographic transition begins when some of the causes of high death rates are removed.

Cultural patterns require some time to adjust to the lowered death rate, and so the birth rate continues to be high. Families continue to have six or seven children, just as they did when most of the children died before having children of their own. Therefore, at the start of the demographic transition, the population increases sharply. After a certain amount of time, however, cultural patterns usually adjust to the lowered death rate, and a new equilibrium is established, where both the birth rate and the death rate are low.

In Europe, this period of adjustment required about two hundred years. In 1750, the death rate began to fall sharply: By 1800, it had been cut in half, from 35 deaths per thousand people in 1750 to 18 in 1800; and it continued to fall. Meanwhile, the birth rate did not fall, but even increased to 40 births per thousand per year in 1800. Thus the number of children born every year was more than twice the number needed to compensate for the deaths!

By 1800, the population was increasing by more than two percent every year. In 1750, the population of Europe was 150 million; by 1800, it was roughly 220 million; by 1950 it had exceeded 540 million, and in 1970 it was 646 million.

Meanwhile the achievements of medical science and the reduction of the effects of famine and warfare had been affecting the rest of the world: In 1750, the non-European population of the world was only 585 million. By 1850 it had reached 877 million. During the century between 1850 and 1950, the population of Asia, Africa and Latin America more than doubled, reaching 1.8 billion in 1950. In the twenty years between 1950 and 1970, the population of Asia, Africa and Latin America increased still more sharply, and in 1970, this segment of the world’s population reached 2.6 billion, bringing the world total to 3.6 billion. The fastest increase was in Latin America, where population almost doubled during the twenty years between 1950 and 1970.

The latest figures show that population has stabilized or in some cases is even decreasing in Europe, Russia, Canada, Japan, Cuba and New Zealand. In Argentina, the United States, China, Myanmar, Thailand and Australia, the rates of population increase are moderate - 0.6%-1.0%; but even this moderate rate of increase will have a heavy ecological impact, particularly in the United States, with its high rates of consumption.

The population of the remainder of the world is increasing at breakneck speed - 2%-4%
per year - and it cannot continue to expand at this rate for very much longer without producing widespread famines, since modern intensive agriculture cannot be sustained beyond the end of the fossil fuel era. The threat of catastrophic future famines makes it vital that all countries that have not completed the demographic transition should do so as rapidly as possible.

6.3 Urbanization

The global rate of population growth has slowed from 2.0 percent per year in 1972 to 1.7 percent per year in 1987; and one can hope that it will continue to fall. However, it is still very high in most developing countries. For example, in Kenya, the population growth rate is 4.0 percent per year, which means that the population of Kenya will double in seventeen years.

During the 60 years between 1920 and 1980 the urban population of the developing countries increased by a factor of 10, from 100 million to almost a billion. In 1950, the population of Sao Paulo in Brazil was 2.7 million. By 1980, it had grown to 12.6 million; and it is expected to reach 24.0 million by the year 2000. Mexico City too has grown explosively to an unmanageable size. In 1950, the population of Mexico City was 3.05 million; in 1982 it was 16.0 million; and the population in 2000 was 17.8 million.

A similar explosive growth of cities can be seen in Africa and in Asia. In 1968, Lusaka, the capital of Zambia, and Lagos, the capital of Nigeria, were both growing at the rate of 14 percent per year, doubling in size every 5 years. In 1950, Nairobi, the capital of Kenya, had a population of 0.14 million. In a 1999 census, it was estimated to be between 3 and 4 million, having increased by a factor of 25.
In 1972, the population of Calcutta was 7.5 million. By the turn of the century in 2000, it had almost doubled in size. This rapid growth produced an increase in the poverty and pollution from which Calcutta already suffered in the 1970’s. The Hooghly estuary near Calcutta is choked with untreated industrial waste and sewage, and a large percentage of Calcutta’s citizens suffer from respiratory diseases related to air pollution.

Governments in the third world, struggling to provide clean water, sanitation, roads, schools, medical help and jobs for all their citizens, are defeated by rapidly growing urban populations. Often the makeshift shantytowns inhabited by new arrivals have no piped water; or when water systems exist, the pressures may be so low that sewage seeps into the system.

Many homeless children, left to fend for themselves, sleep and forage in the streets of third world cities. These conditions have tended to become worse with time rather than better. Whatever gains governments can make are immediately canceled by growing populations.

6.4 Achieving economic equality

Today’s world is characterized by intolerable economic inequalities, both between nations and within nations. A group of countries including (among others) Japan, Germany, France, the United Kingdom and the United States, has only 13% of the world’s population, but receives 45% of the global PPP income. By contrast, a second group, including 2.1 Billion people (45% of the world’s population) receives only 9% of the global PPP income.

\(^1\)Purchasing Power Parity
Another indicator of inequality is the fact that the 50 million richest people in the world receive as much as the 2,700 million poorest.

18 million of our fellow humans die each year from poverty-related causes. Each year, 11 million children die before reaching their fifth birthday. 1.1 billion people live on less than $1 per day; 2.7 billion live on less than $2.

At the United Nations Conference on Population and Development, held in Cairo in September, 1994, a theme which emerged very clearly was that one of the most important keys to controlling the global population explosion is giving women better education and equal rights. These goals are desirable for their own sake, and for the sake of the uniquely life-oriented point of view which women can give us; but in addition, education and improved status for women have shown themselves to be closely connected with lowered birth rates. When women lack education and independent careers outside the home, they can be forced into the role of baby-producing machines by men who do not share in the drudgery of cooking, washing and cleaning; but when women have educational, legal, economic, social and political equality with men, experience has shown that they choose to limit their families to a moderate size.

As glaciers melt in the Himalayas, depriving India and China of summer water supplies; as sea levels rise, drowning the fertile rice fields of Viet Nam and Bangladesh; as drought threatens the productivity of grain-producing regions of North America; and as the end of the fossil fuel era impacts modern high-yield agriculture, there is a threat of wide-spread famine. There is a danger that the 1.5 billion people who are undernourished today will not survive an even more food-scarce future.

People threatened with famine will become refugees, desperately seeking entry into
Figure 6.5: Sir Partha Dasgupta of Cambridge University has pointed out that all the changes needed for population stabilization are desirable in themselves. These include education for women, higher status for women, state provision of old-age help for the poor, universal health care, and making safe drinking water available near to dwellings.
countries where food shortages are less acute. Wars, such as those currently waged in the Middle East, will add to the problem.

What can we do to avoid this crisis, or at least to reduce its severity? We must urgently address the problem of climate change; and we must shift money from military expenditure to the support of birth control programs and agricultural research. We must also replace the institution of war by a system of effective global governance and enforcible international laws.

6.5 Achieving a steady-state economic system

Endless economic growth on a finite planet is a logical impossibility. Just as population growth is limited by ecological constraints, so too is the growth of resource-using and pollution-producing industrial production. Culture, of course, can and should continue to grow.

A number of economists have studied this problem, and in particular, outstanding contributions have been made by Frederick Soddy, Nickolas Georgiescu-Roegan and Herman Daly. These authors have taken into account the role which entropy plays in economics.

6.6 Climate change as genocide

Climate change does not affect all parts of the world equally. The harshest effects of the extreme weather that we are already experiencing are disproportionately felt by the poorest people of the world.

In March, 2017, the Security Council was informed [2] that 20 million people in four countries, Nigeria, Somalia, South Sudan and Yemen, were in danger of dying unless provided with immediate help. The cost of the necessary aid was estimated to be $4.4 billion. The developed world’s response has been a shrug of indifference. By the midsummer, 2017 only a tenth of the amount needed had been raised.

Conflicts and famine are interlinked. The struggle for food produces conflicts; and famine is often used as an instrument of war. Food aid, when available, is often deliberately blocked or destroyed by warring factions. Boko Haram in Nigeria, al-Shabaab in Somalia, assorted militias and the government in South Sudan, and Saudi-backed forces in Yemen all interfered with the delivery of aid supplies.

In the future, the effects of rising temperatures and reduced rainfall will disproportionately affect poor farmers of Africa, the Middle East, South Asia, and Latin America. If the more affluent parts of the world continue to produce greenhouse gasses in a business-as-usual scenario, and if they continue to ignore calls for help from starving people, these actions will amount to genocide.

6.7. The United Nations High Commission on Refugees

In an article on *Climate Change and Disasters* the United Nations High Commission on Refugees makes the following statement:

“The Earth’s climate is changing at a rate that has exceeded most scientific forecasts. Some families and communities have already started to suffer from disasters and the consequences of climate change, forced to leave their homes in search of a new beginning.

“For UNHCR, the consequences of climate change are enormous. Scarce natural resources such as drinking water are likely to become even more limited. Many crops and some livestock are unlikely to survive in certain locations if conditions become too hot and dry, or too cold and wet. Food security, already a concern, will become even more challenging.

“People try to adapt to this situation, but for many this will mean a conscious move to another place to survive. Such moves, or the effects of climate change on natural resources, may spark conflict with other communities, as an increasing number of people compete for a decreasing amount of resources.

“Since 2009, an estimated one person every second has been displaced by a disaster, with an average of 22.5 million people displaced by climate- or weather-related events since 2008 (IDMC 2015). Disasters and slow onsets, such as droughts in Somalia in 2011 and 2012, floods in Pakistan between 2010 and 2012, and the earthquake in Nepal in 2015, can leave huge numbers of people traumatized without shelter, clean water and basic supplies.”

Figure 6.6: A starving child in Somalia.
6.8 Populations displaced by sea level rise

In a recent article, discussed the long-term effects of sea level rise and the massive refugee crisis that it might create. By 2060, about 1.4 billion people could be climate change refugees, according to the paper, and that number could reach 2 billion by 2100.

The lead author, Prof. Emeritus Charles Geisler of Cornell University says: “The colliding forces of human fertility, submerging coastal zones, residential retreat, and impediments to inland resettlement is a huge problem. We offer preliminary estimates of the lands unlikely to support new waves of climate refugees due to the residues of war, exhausted natural resources, declining net primary productivity, desertification, urban sprawl, land concentration, ‘paving the planet’ with roads and greenhouse gas storage zones offsetting permafrost melt.”

We should notice that Prof. Geisler’s estimate of 2 billion climate refugees by 2100 includes all causes, not merely sea level rise. However, the number of refugees from sea level rise alone will be very large, since all the world’s coastal cities, and many river deltas will be at risk.

6.9 Populations displaced by drought and famine

Climate change could produce a refugee crisis that is “unprecedented in human history”, Barack Obama has warned as he stressed global warming was the most pressing issue of the age.

Speaking at an international food conference in Milan, the former US President said rising temperatures were already making it more difficult to grow crops and rising food prices were “leading to political instability”.

If world leaders put aside “parochial interests” and took action to reduce greenhouse gas emissions by enough to restrict the rise to one or two degrees Celsius, then humanity would probably be able to cope.

Failing to do this, Mr Obama warned, increased the risk of “catastrophic” effects in the future, “not only real threats to food security, but also increases in conflict as a consequence of scarcity and greater refugee and migration patterns”.

“If you think about monsoon patterns in the Indian subcontinent, maybe half a billion people rely on traditional rain patterns in those areas,”

6.10 Populations displaced by rising temperatures

A new study published in Nature: Climate Change has warned that up to 75% of the world’s population could face deadly heat waves by 2100 unless greenhouse gas emissions are rapidly controlled. The following is an excerpt from the article:

3Geisler C. et al., Impediments to inland resettlement under conditions of accelerated sea level rise, Land Use Policy, Vol 55, July 2017, Pages 322-330
4Mora, C. et al., Global risk of deadly heat, Nature: Climate Change, 19 June 2017
6.11. POPULATIONS DISPLACED BY WAR

6.11. POPULATIONS DISPLACED BY WAR

A recent article in The Guardian\(^6\) discusses the relationship between climate change and war. Here are some excerpts from the article:

“Climate change is set to cause a refugee crisis of ‘unimaginable scale’, according to senior military figures, who warn that global warming is the greatest security threat of the 21st century and that mass migration will become the ‘new normal’.

\(^6\)Thursday, 1 December, 2016

Figure 6.7: This figure shows an alarming upward turn in the average global temperature

“Here we conducted a global analysis of documented lethal heat events to identify the climatic conditions associated with human death and then quantified the current and projected occurrence of such deadly climatic conditions worldwide. We reviewed papers published between 1980 and 2014, and found 783 cases of excess human mortality associated with heat from 164 cities in 36 countries.

“Based on the climatic conditions of those lethal heat events, we identified a global threshold beyond which daily mean surface air temperature and relative humidity become deadly. Around 30% of the world’s population is currently exposed to climatic conditions exceeding this deadly threshold for at least 20 days a year.

“By 2100, this percentage is projected to increase to 48% under a scenario with drastic reductions of greenhouse gas emissions and 74% under a scenario of growing emissions. An increasing threat to human life from excess heat now seems almost inevitable, but will be greatly aggravated if greenhouse gases are not considerably reduced.”

6.11. Populations displaced by war

A recent article in The Guardian\(^6\) discusses the relationship between climate change and war. Here are some excerpts from the article:

“Climate change is set to cause a refugee crisis of ‘unimaginable scale’, according to senior military figures, who warn that global warming is the greatest security threat of the 21st century and that mass migration will become the ‘new normal’.
“The generals said the impacts of climate change were already factors in the conflicts driving a current crisis of migration into Europe, having been linked to the Arab Spring, the war in Syria and the Boko Haram terrorist insurgency.

“Military leaders have long warned that global warming could multiply and accelerate security threats around the world by provoking conflicts and migration. They are now warning that immediate action is required.

“Climate change is the greatest security threat of the 21st century,’ said Maj Gen Muniruzzaman.

“Muniruzzaman, chairman of the Global Military Advisory Council on climate change and a former military adviser to the president of Bangladesh. He said one meter of sea level rise will flood 20% of his nation. ‘We’re going to see refugee problems on an unimaginable scale, potentially above 30 million people.’

“Previously, Bangladesh’s finance minister, Abul Maal Abdul Muhith, called on Britain and other wealthy countries to accept millions of displaced people.

“Brig Gen Stephen Cheney, a member of the US Department of State’s foreign affairs policy board and CEO of the American Security Project, said: ‘Climate change could lead to a humanitarian crisis of epic proportions. We’re already seeing migration of large numbers of people around the world because of food scarcity, water insecurity and extreme weather, and this is set to become the new normal’.

6.12 Political reactions to migration

Brexit

Across the developed world, the reaction to threatened migration of refugees from climate change has been less than generous, to say the least. The recent decision of Britain to leave the European Union was motivated largely by the fear of British workers that EU laws would force their country to accept large numbers of refugees.

Swings to the right in Europe

In Germany, Angela Merkel’s generous policies towards refugees have cost her votes, while an openly racist party, the Alternative for Germany (AfD) party, has gained in strength. Frauke Petry, 40, the party’s leader, has said border guards might need to turn guns on anyone crossing a frontier illegally. The party’s policy platform says “Islam does not belong in Germany” and calls for a ban on the construction of mosques.

In September, 2017, eight people from the neo-Nazi Freital Group were put on trial in Dresden for bomb attacks on homes for asylum applicants. Hundreds of similar assaults occur in Germany every year, but they had never before been tried as terrorism in a federal court.

In the German election, which took place on Sunday, October 1, 2017, Angela Merkel won a fourth term as Chancellor, but her party won only 33% of the votes, a percentage
much reduced from the 41% won in the election of 2013. Angela Merkel was paying a high price for her refugee-friendly policies.

Meanwhile the far right anti-immigration AfD party made a historic breakthrough, winning 13.5% of the vote, thus becoming the first overtly nationalist party to sit in the Bundestag in 60 years. The Greens have already complained that “Nazis have returned to parliament”. In fact, members of the AfD party have begun to say that Germans should stop being ashamed of their country’s Nazi past.

In France, the National Front is a nationalist party that uses populist rhetoric to promote its anti-immigration and anti-European Union positions. The party favors protectionist economic policies and would clamp down on government benefits for immigrants.

Similarly, in the Netherlands, the anti-European Union, anti-Islam Party for Freedom has called for closing all Islamic schools and recording the ethnicity of all Dutch citizens. In early November, the party was leading in polls ahead of next year’s parliamentary elections.

Other far-right anti-immigrant parties in Europe include Golden Dawn (Greece), Jobbic (Hungary), Sweden Democrats (Sweden), Freedom Party (Austria), and People’s Party - Our Slovakia (Slovakia). All of these parties have gained in strength because of the widespread fear of immigration.

Populism in the United States

The election of Donald Trump, who ran for President in 2016 on an openly racist and anti-immigrant platform, can also be seen as the result of fear of immigration, especially on the part of industrial workers.

6.13 A more humane response to the refugee crisis

In the long-term future, climate change will make the refugee crisis much more severe. Heat and drought will make large regions of the world uninhabitable, and will threaten many populations with famine. The severity of the refugee crisis will depend on how quickly we reduce greenhouse gas emissions.

While making many parts of the world uninhabitable, long-term climate change will make other regions more suitable for human habitation and agriculture. For example, farming will become more possible in Siberia, Greenland, the Canadian Arctic, Alaska and Patagonia. A humane response to the refugee crisis could include the generous opening of these regions to refugees.

The global population of humans is currently increasing by almost a billion people every decade. Global population must be stabilized, and in the long run, gradually reduced. Money currently wasted (or worse than wasted) on armaments could be used instead to promote universal primary health care, and with it, universal access to the knowledge and materials needed for family planning.
Finally, reduced consumption of meat, particularly beef, would shorten the food chain thus make more food available for famine relief.

Suggestions for further reading

6.13. A MORE HUMANE RESPONSE TO THE REFUGEE CRISIS

42. J. Amos, *Climate Food Crisis to Deepen*, BBC News (5 September, 2005).

6.13. **A MORE HUMANE RESPONSE TO THE REFUGEE CRISIS**

6.13. A MORE HUMANE RESPONSE TO THE REFUGEE CRISIS

6.13. A MORE HUMANE RESPONSE TO THE REFUGEE CRISIS

164. J. Amos, Climate Food Crisis to Deepen, BBC News (5 September, 2005).

Chapter 7

INFORMATION TECHNOLOGY

7.1 Pascal and Leibniz

If civilization survives, historians in the distant future will undoubtedly regard the invention of computers as one of the most important steps in human cultural evolution - as important as the invention of writing or the invention of printing. The possibilities of artificial intelligence have barely begun to be explored, but already the impact of computers on society is enormous.

The first programmable universal computers were completed in the mid-1940’s; but they had their roots in the much earlier ideas of Blaise Pascal (1623-1662), Gottfried Wilhelm Leibniz (1646-1716), Joseph Marie Jacquard (1752-1834) and Charles Babbage (1791-1871).

In 1642, the distinguished French mathematician and philosopher Blaise Pascal completed a working model of a machine for adding and subtracting. According to tradition, the idea for his “calculating box” came to Pascal when, as a young man of 17, he sat thinking of ways to help his father (who was a tax collector). In describing his machine, Pascal wrote: “I submit to the public a small machine of my own invention, by means of which you alone may, without any effort, perform all the operations of arithmetic, and may be relieved of the work which has often times fatigued your spirit when you have worked with the counters or with the pen.”

Pascal’s machine worked by means of toothed wheels. It was much improved by Leibniz, who constructed a mechanical calculator which, besides adding and subtracting, could also multiply and divide. His first machine was completed in 1671; and Leibniz’ description of it, written in Latin, is preserved in the Royal Library at Hanover: “There are two parts of the machine, one designed for addition (and subtraction), and the other designed for multiplication (and division); and they should fit together. The adding (and subtracting) machine coincides completely with the calculating box of Pascal. Something, however, must be added for the sake of multiplication...”

“The wheels which represent the multiplicand are all of the same size, equal to that of the wheels of addition, and are also provided with ten teeth which, however, are movable
Figure 7.1: Blaise Pascal (1623-1662) was a French mathematician, physicist, writer, inventor and theologian. Pascal, a child prodigy, was educated by his father, who was a tax-collector. He invented his calculating box to make his father’s work less tedious.
so that at one time there should protrude 5, at another 6 teeth, etc., according to whether the multiplicand is to be represented five times or six times, etc.”

“For example, the multiplicand 365 consists of three digits, 3, 6, and 5. Hence the same number of wheels is to be used. On these wheels, the multiplicand will be set if from the right wheel there protrude 5 teeth, from the middle wheel 6, and from the left wheel 3.”

7.2 Jacquard and Babbage

By 1810, calculating machines based on Leibniz’ design were being manufactured commercially; and mechanical calculators of a similar (if much improved) design could be found in laboratories and offices until the 1960’s. The idea of a programmable universal computer is due to the English mathematician, Charles Babbage, who was the Lucasian Professor of Mathematics at Cambridge University. (In the 17th century, Isaac Newton held this post, and in the 20th century, P.A.M. Dirac and Stephen Hawking also held it.)

In 1812, Babbage conceived the idea of constructing a machine which could automat-
ically produce tables of functions, provided that the functions could be approximated by polynomials. He constructed a small machine, which was able to calculate tables of quadratic functions to eight decimal places, and in 1832 he demonstrated this machine to the Royal Society and to representatives of the British government.

The demonstration was so successful that Babbage secured financial support for the construction of a large machine which would tabulate sixth-order polynomials to twenty decimal places. The large machine was never completed, and twenty years later, after having spent seventeen thousand pounds on the project, the British government withdrew its support. The reason why Babbage’s large machine was never finished can be understood from the following account by Lord Moulton of a visit to the mathematician’s laboratory:

“One of the sad memories of my life is a visit to the celebrated mathematician and inventor, Mr. Babbage. He was far advanced in age, but his mind was still as vigorous as ever. He took me through his workrooms.”

“In the first room I saw the parts of the original Calculating Machine, which had been shown in an incomplete state many years before, and had even been put to some use. I asked him about its present form. ‘I have not finished it, because in working at it, I came on the idea of my Analytical Machine, which would do all that it was capable of doing, and much more. Indeed, the idea was so much simpler that it would have taken more work to complete the Calculating Machine than to design and construct the other in its entirety; so I turned my attention to the Analytical Machine.’”

“After a few minutes talk, we went into the next workroom, where he showed me the working of the elements of the Analytical Machine. I asked if I could see it. ‘I have never completed it,’ he said, ‘because I hit upon the idea of doing the same thing by a different and far more effective method, and this rendered it useless to proceed on the old lines.”

“Then we went into a third room. There lay scattered bits of mechanism, but I saw no trace of any working machine. Very cautiously I approached the subject, and received the dreaded answer: ‘It is not constructed yet, but I am working at it, and will take less time
Figure 7.4: Joseph Marie Jacquard (1752-1834) invented a loom which could be programed to produce any design by means of punched cards. News of his invention inspired Babbage to invent a universal programmable computing machine.

to construct it altogether than it would have taken to complete the Analytical Machine from the stage in which I left it.’ I took leave of the old man with a heavy heart.”

Babbage’s first calculating machine was a special-purpose mechanical computer, designed to tabulate polynomial functions; and he abandoned this design because he had hit on the idea of a universal programmable computer. Several years earlier, the French inventor Joseph Marie Jacquard had constructed an automatic loom in which large wooden “punched cards” were used to control the warp threads. Inspired by Jacquard’s invention, Babbage planned to use punched cards to program his universal computer. (Jacquard’s looms could be programmed to weave extremely complex patterns: A portrait of the inventor, woven on one of his looms in Lyon, hung in Babbage’s drawing room.)

One of Babbage’s frequent visitors was Augusta Ada Countess of Lovelace (1815-1852), the daughter of Lord and Lady Byron. She was a mathematician of considerable ability; and it is through her lucid descriptions that we know how Babbage’s never-completed Analytical Machine was to have worked.

\[\text{1 The programming language ADA is named after her.}\]
Figure 7.5: Jacquard’s loom.
Lord Byron’s daughter, Augusta Ada, Countess of Lovelace (1815-1852) was an accomplished mathematician and a frequent visitor to Babbage’s workshop. It is through her lucid description of his ideas that we know how Babbage’s universal calculating machine was to have worked. The programming language ADA is named after her.
7.3 Harvard’s sequence-controlled calculator

The next step towards modern computers was taken by Herman Hollerith, a statistician working for the United States Bureau of the Census. He invented electromechanical machines for reading and sorting data punched onto cards. Hollerith’s machines were used to analyze the data from the 1890 United States Census. Because the Census Bureau was a very limited market, Hollerith branched out and began to manufacture similar machines for use in business and administration. His company was later bought out by Thomas J. Watson, who changed its name to International Business Machines.

In 1937, Howard Aiken, of Harvard University, became interested in combining Babbage’s ideas with some of the techniques which had developed from Hollerith’s punched card machines. He approached the International Business Machine Corporation, the largest manufacturer of punched card equipment, with a proposal for the construction of a large, automatic, programmable calculating machine.

Aiken’s machine, the Automatic Sequence Controlled Calculator (ASCC), was completed in 1944 and presented to Harvard University. Based on geared wheels, in the Pascal-Leibniz-Babbage tradition, ASCC had more than three quarters of a million parts and used 500 miles of wire. ASCC was unbelievably slow by modern standards - it took three-tenths of a second to perform an addition - but it was one of the first programmable general-purpose digital computers ever completed. It remained in continuous use, day and night, for fifteen years.

![Image of the Automatic Sequence-Controlled Calculator ASCC](image_url)

Figure 7.7: The Automatic Sequence-Controlled Calculator ASCC can still be seen by visitors at Harvard’s science building and cafeteria.
7.4 The first electronic computers

In the ASCC, binary numbers were represented by relays, which could be either on or off. The on position represented 1, while the off position represented 0, these being the only two digits required to represent numbers in the binary (base 2) system. Electromechanical calculators similar to ASCC were developed independently by Konrad Zuse in Germany and by George R. Stibitz at the Bell Telephone Laboratory.

Electronic digital computers

In 1937, the English mathematician A.M. Turing published an important article in the Proceedings of the London Mathematical Society in which envisioned a type of calculating machine consisting of a long row of cells (the “tape”), a reading and writing head, and a set of instructions specifying the way in which the head should move the tape and modify the state and “color” of the cells on the tape. According to a hypothesis which came to be known as the “Church-Turing hypothesis”, the type of computer proposed by Turing was capable of performing every possible type of calculation. In other words, the Turing machine could function as a universal computer.

In 1943, a group of English engineers, inspired by the ideas of Alan Turing and those of the mathematician M.H.A. Newman, completed the electronic digital computer Colossus. Colossus was the first large-scale electronic computer. It was used to break the German Enigma code; and it thus affected the course of World War II.

In 1946, ENIAC (Electronic Numerical Integrator and Calculator) became operational. This general-purpose computer, designed by J.P. Eckert and J.W. Mauchley of the University of Pennsylvania, contained 18,000 vacuum tubes, one or another of which was often out of order. However, during the periods when all its vacuum tubes were working, an electronic computer like Colossus or ENIAC could shoot ahead of an electromechanical machine (such as ASCC) like a hare outdistancing a tortoise.

During the summer of 1946, a course on “The Theory and Techniques of Electronic Digital Computers” was given at the University of Pennsylvania. The ideas put forward in this course had been worked out by a group of mathematicians and engineers headed by J.P. Eckert, J.W. Mauchley and John von Neumann, and these ideas very much influenced all subsequent computer design.

Cybernetics

The word “Cybernetics”, was coined by the American mathematician Norbert Wiener (1894-1964) and his colleagues, who defined it as “the entire field of control and communication theory, whether in the machine or in the animal”. Wiener derived the word from the Greek term for “steersman”.

Norbert Wiener began life as a child prodigy: He entered Tufts University at the age of 11 and received his Ph.D. from Harvard at 19. He later became a professor of mathematics at the Massachusetts Institute of Technology. In 1940, with war on the horizon,
Figure 7.8: Alan Turing (1912-1954). He is considered to be the father of theoretical computer science. During World War II, Turing's work allowed the allies to crack the German's code. This appreciably shortened the length of the war in Europe, and saved many lives.

Figure 7.9: John von Neumann (1903-1957, right) with J. Robert Oppenheimer. In the background is an electronic digital computer.
Wiener sent a memorandum to Vannevar Bush, another MIT professor who had done pioneering work with analogue computers, and had afterwards become the chairman of the U.S. National Defense Research Committee. Wiener’s memorandum urged the American government to support the design and construction of electronic digital computers, which would make use of binary numbers, vacuum tubes, and rapid memories. In such machines, the memorandum emphasized, no human intervention should be required except when data was to be read into or out of the machine.

Like Leo Szilard, John von Neumann, Claude Shannon and Erwin Schrödinger, Norbert Wiener was aware of the relation between information and entropy. In his 1948 book Cybernetics he wrote: “...we had to develop a statistical theory of the amount of information, in which the unit amount of information was that transmitted by a single decision between equally probable alternatives. This idea occurred at about the same time to several writers, among them the statistician R.A. Fisher, Dr. Shannon of Bell Telephone Laboratories, and the author. Fisher’s motive in studying this subject is to be found in classical statistical theory; that of Shannon in the problem of coding information; and that of the author in the problem of noise and message in electrical filters... The notion of the amount of information attaches itself very naturally to a classical notion in statistical mechanics: that of entropy. Just as the amount of information in a system is a measure of its degree of organization, so the entropy of a system is a measure of its degree of disorganization; and the one is simply the negative of the other.”

During World War II, Norbert Wiener developed automatic systems for control of anti-aircraft guns. His systems made use of feedback loops closely analogous to those with which animals coordinate their movements. In the early 1940’s, he was invited to attend a
series of monthly dinner parties organized by Arturo Rosenbluth, a professor of physiology at Harvard University. The purpose of these dinners was to promote discussions and collaborations between scientists belonging to different disciplines. The discussions which took place at these dinners made both Wiener and Rosenbluth aware of the relatedness of a set of problems that included homeostasis and feedback in biology, communication and control mechanisms in neurophysiology, social communication among animals (or humans), and control and communication involving machines.

Wiener and Rosenbluth therefore tried to bring together workers in the relevant fields to try to develop common terminology and methods. Among the many people whom they contacted were the anthropologists Gregory Bateson and Margaret Mead, Howard Aiken (the designer of the Automatic Sequence Controlled Calculator), and the mathematician John von Neumann. The Josiah Macy Jr. Foundation sponsored a series of ten yearly...
meetings, which continued until 1949 and which established cybernetics as a new research discipline. It united areas of mathematics, engineering, biology, and sociology which had previously been considered unrelated. Among the most important participants (in addition to Wiener, Rosenbluth, Bateson, Mead, and von Neumann) were Heinz von Foerster, Kurt Lewin, Warren McCulloch and Walter Pitts. The Macy conferences were small and informal, with an emphasis on discussion as opposed to the presentation of formal papers. A stenographic record of the last five conferences has been published, edited by von Foerster. Transcripts of the discussions give a vivid picture of the enthusiastic and creative atmosphere of the meetings. The participants at the Macy Conferences perceived Cybernetics as a much-needed bridge between the natural sciences and the humanities. Hence their enthusiasm. Weiner’s feedback loops and von Neumann’s theory of games were used by anthropologists Mead and Bateson to explain many aspects of human behavior.

7.5 Biosemiotics

The Oxford Dictionary of Biochemistry and Molecular Biology (Oxford University Press, 1997) defines Biosemiotics as “the study of signs, of communication, and of information in living organisms”. The biologists Claus Emmeche and K. Kull offer another definition of Biosemiotics: “biology that interprets living systems as sign systems”.

The American philosopher Charles Sanders Peirce (1839-1914) is considered to be one of the founders of Semiotics (and hence also of Biosemiotics). Peirce studied philosophy and chemistry at Harvard, where his father was a professor of mathematics and astronomy. He wrote extensively on philosophical subjects, and developed a theory of signs and meaning which anticipated many of the principles of modern Semiotics. Peirce built his theory on a triad: (1) the sign, which represents (2) something to (3) somebody. For example, the sign might be a broken stick, which represents a trail to a hunter, it might be the arched back of a cat, which represents an aggressive attitude to another cat, it might be the waggle-dance of a honey bee, which represents the coordinates of a source of food to her hive-mates, or it might be a molecule of trans-10-cis-hexadecadienol, which represents irresistible sexual temptation to a male moth of the species Bombyx mori. The sign might be a sequence of nucleotide bases which represents an amino acid to the ribosome-transfer-RNA system, or it might be a cell-surface antigen which represents self or non-self to the immune system. In information technology, the sign might be the presence or absence of a pulse of voltage, which represents a binary digit to a computer. Semiotics draws our attention to the sign and to its function, and places much less emphasis on the physical object which forms the sign. This characteristic of the semiotic viewpoint has been expressed by the Danish biologist Jesper Hoffmeyer in the following words: “The sign, rather than the molecule, is the basic unit for studying life.”

A second important founder of Biosemiotics was Jakob von Uexküll (1864-1944). He was born in Estonia, and studied zoology at the University of Tartu. After graduation, he worked at the Institute of Physiology at the University of Heidelberg, and later at the Zoological Station in Naples. In 1907, he was given an honorary doctorate by Heidelberg
Figure 7.12: Charles Sanders Pearce (1839-1914).

Figure 7.13: Jakob Johann Baron von Uexküll (1964-1944). Together with Pearce and Bateson, he is one of the principle founders of Biosemiotics.
7.6. SOME PERSONAL MEMORIES OF EARLY COMPUTERS

for his studies of the physiology of muscles. Among his discoveries in this field was the first recognized instance of negative feedback in an organism. Von Uexküll’s later work was concerned with the way in which animals experience the world around them. To describe the animal’s subjective perception of its environment he introduced the word Umwelt; and in 1926 he founded the Institut für Umweltforschung at the University of Heidelberg. Von Uexküll visualized an animal - for example a mouse - as being surrounded by a world of its own - the world conveyed by its own special senses organs, and processed by its own interpretative systems. Obviously, the Umwelt will differ greatly depending on the organism. For example, bees are able to see polarized light and ultraviolet light; electric eels are able to sense their environment through their electric organs; many insects are extraordinarily sensitive to pheromones; and a dog’s Umwelt far richer in smells than that of most other animals. The Umwelt of a jellyfish is very simple, but nevertheless it exists.\footnote{It is interesting to ask to what extent the concept of Umwelt can be equated to that of consciousness. To the extent that these two concepts can be equated, von Uexküll’s Umweltforschung offers us the opportunity to explore the phylogenetic evolution of the phenomenon of consciousness.}

Von Uexküll’s Umwelt concept can even extend to one-celled organisms, which receive chemical and tactile signals from their environment, and which are often sensitive to light. The ideas and research of Jakob von Uexküll inspired the later work of the Nobel Laureate ethologist Konrad Lorenz, and thus von Uexküll can be thought of as one of the founders of ethology as well as of Biosemiotics. Indeed, ethology and Biosemiotics are closely related.

Biosemiotics also values the ideas of the American anthropologist Gregory Bateson (1904-1980), who was mentioned in Chapter 7 in connection with cybernetics and with the Macy Conferences. He was married to another celebrated anthropologist, Margaret Mead, and together they applied Norbert Wiener’s insights concerning feedback mechanisms to sociology, psychology and anthropology. Bateson was the originator of a famous epigrammatic definition of information: “...a difference which makes a difference”. This definition occurs in Chapter 3 of Bateson’s book, Mind and Nature: A Necessary Unity, Bantam, (1980), and its context is as follows: “To produce news of a difference, i.e. information”, Bateson wrote, “there must be two entities... such that news of their difference can be represented as a difference inside some information-processing entity, such as a brain or, perhaps, a computer. There is a profound and unanswerable question about the nature of these two entities that between them generate the difference which becomes information by making a difference. Clearly each alone is - for the mind and perception - a non-entity, a non-being... the sound of one hand clapping. The stuff of sensation, then, is a pair of values of some variable, presented over time to a sense organ, whose response depends on the ratio between the members of the pair.”

7.6 Some personal memories of early computers

I hope that readers will forgive me if I tell them of my own personal memories of early computers:

When I arrived at Imperial College (then part of the University of London) in 1962,
I worked with a crystallographic group that using the Mercury computer at University College to do the calculations needed to arrive at molecular structures. This gave me the chance to use Mercury to do quantum chemical calculations. I used to go over to University College with the crystallographers at night, because time on the computer was so expensive that we could only afford to use it at night. I would make a bed for myself out of three chairs in a row and would try to sleep. At 3 AM or 4 AM they would wake me up and would say “Now it’s your turn”.

Mercury was as big as a house, but could do far less than a modern laptop. It had 50,000 or so vacuum tubes which required cooling. The cooling system sometimes broke down, and one or another of the vacuum tubes sometimes failed, so one had to be grateful for the periods when Mercury was working. Our programs were written on punched tape in a language called CHLF3. (The letters stood for Cambridge, London, Harwell and Farnsborough, the four places that had Mercurys). After we had read the paper tape into the computer, the program was converted into a magnetic form on a rapidly rotating drum, and then checked against the original input. If it did not check, we had a so-called “drum parity”, which meant that we had to stop the computer and restart it by hand, using a bewildering array of manual controls.

After finishing the work on Mercury at 6 AM or so, I would walk home, passing through the almost-deserted streets of Soho, and seeing pale-faced teenagers who had been up all night, high on amphetamines. They were sitting on the pavement near an underground station, waiting for it to open.

After we had used Mercury for two years or so, IBM gave Imperial College one of their early computers. Using this was much better. Programs for the IBM machine were written on punched cards. We just went over to the machine with our punched cards and stood in line to have them read into the computer. Then a few minutes later we were handed a printout of the output.

The IBM was much better than the machines that were available in eastern Europe, and for this reason I was contacted by Janos Ladik and his group at the Hungarian Academy of Science, who proposed a collaboration. We worked together for several years, calculating the electronic structure of a number of polypeptides and polynucleotides.

In 1965, Janos Ladik invited me to attend a meeting of quantum theorists and computer scientists from both East and West, held at a town on the Hungarian Puszta, the great Hungarian plain east of Budapest. At the meeting, Enrico Clementi spoke about computer programs that he had developed for performing ab-initio\footnote{ab-initio is a Latin expression meaning “from the beginning”. Such programs are completely free of input parameters based on experiments.} calculation of the electronic structure of molecules. Clementi was an important IBM scientist, and he had his own laboratory with a large computer which he could use as he liked. The programs that he described to us took hundreds of hours to complete an electronic structure calculation on a single molecule.

In the question period after Clementi’s lecture, someone from the audience said: “It’s all right for you, Clementi. You can use hundreds of hours on a single calculation if you
Figure 7.14: Enrico Clementi (born 1931) explained to us that microminiaturization would soon make computers hundreds of times faster, smaller and less expensive. He was completely right.

want to, because you are sitting at IBM with your own dedicated computer. But what about the rest of us? What good are these programs to us?"

Clementi answered: “In a few years, computers will be hundreds of times faster, and they will also be cheaper.” The audience asked: “And how will this happen?” Clementi answered: “Through microminiaturization.” He was completely right. That was exactly what happened.

7.7 The invention of transistors

Microelectronics

The problem of unreliable vacuum tubes was solved in 1948 by John Bardeen, William Shockley and Walter Brattain of the Bell Telephone Laboratories. Application of quantum theory to solids had lead to an understanding of the electrical properties of crystals. Like atoms, crystals were found to have allowed and forbidden energy levels.

The allowed energy levels for an electron in a crystal were known to form bands, i.e., some energy ranges with many allowed states (allowed bands), and other energy ranges with none (forbidden bands). The lowest allowed bands were occupied by electrons, while higher bands were empty. The highest filled band was called the “valence band”, and the lowest empty band was called the “conduction band”.

According to quantum theory, whenever the valence band of a crystal is only partly filled, the crystal is a conductor of electricity; but if the valence band is completely filled with electrons, the crystal is an electrical insulator. (A completely filled band is analogous to a room so packed with people that none of them can move.)
In addition to conductors and insulators, quantum theory predicted the existence of “semiconductors” - crystals where the valence band is completely filled with electrons, but where the energy gap between the conduction band and the valence band is very small. For example, crystals of the elements silicon and germanium are semiconductors. For such a crystal, thermal energy is sometimes enough to lift an electron from the valence band to the conduction band.

Bardeen, Shockley and Brattain found ways to control the conductivity of germanium crystals by injecting electrons into the conduction band, or alternatively by removing electrons from the valence band. They could do this by “doping” the crystals with appropriate impurities, or by injecting electrons with a special electrode. The semiconducting crystals whose conductivity was controlled in this way could be used as electronic valves, in place of vacuum tubes.

By the 1960’s, replacement of vacuum tubes by transistors in electronic computers had led not only to an enormous increase in reliability and a great reduction in cost, but also to an enormous increase in speed. It was found that the limiting factor in computer speed was the time needed for an electrical signal to propagate from one part of the central processing unit to another. Since electrical impulses propagate with the speed of light, this time is extremely small; but nevertheless, it is the limiting factor in the speed of electronic computers.

7.8 The Traitorous Eight

According to the Wikipedia article on Shockley,

“In 1956 Shockley moved from New Jersey to Mountain View, California to start Shockley Semiconductor Laboratory to live closer to his ailing mother in Palo Alto, California. The company, a division of Beckman Instruments, Inc., was the first establishment working on silicon semiconductor devices in what came to be known as Silicon Valley.

“His way [of leading the group] could generally be summed up as domineering and increasingly paranoid. In one well-known incident, he claimed that a secretary’s cut thumb was the result of a malicious act and he demanded lie detector tests to find the culprit, when in reality, the secretary had simply grabbed at a door handle that happened to have an exposed tack on it for the purpose of hanging paper notes on. After he received the Nobel Prize in 1956 his demeanor changed, as evidenced in his increasingly autocratic, erratic and hard-to-please management style. In late 1957, eight of Shockley’s researchers, who would come to be known as the ‘traitorous eight, resigned after Shockley decided not to continue research into silicon-based semiconductors. They went on to form Fairchild Semiconductor, a loss from which Shockley Semiconductor never recovered. Over the course of the next 20 years, more than 65 new enterprises would end up having employee connections back to Fairchild.”
Figure 7.15: William Shockley (1910-1989) shared the 1956 Nobel Prize in Physics with John Bardeen and Walter Brattain.

Figure 7.16: The Traitorous Eight: From left to right, Gordon Moore, C. Sheldon Roberts, Eugene Kleiner, Robert Noyce, Victor Grinich, Julius Blank, Jean Hoerni and Jay Last.
7.9 Integrated circuits

In order to reduce the propagation time, computer designers tried to make the central processing units very small; and the result was the development of integrated circuits and microelectronics. (Another motive for miniaturization of electronics came from the requirements of space exploration.)

Integrated circuits were developed in which single circuit elements were not manufactured separately. Instead, the whole circuit was made at one time. An integrated circuit is a sandwich-like structure, with conducting, resisting and insulating layers interspersed with layers of germanium or silicon, “doped” with appropriate impurities. At the start of the manufacturing process, an engineer makes a large drawing of each layer. For example, the drawing of a conducting layer would contain pathways which fill the role played by wires in a conventional circuit, while the remainder of the layer would consist of areas destined to be etched away by acid.

The next step is to reduce the size of the drawing and to multiply it photographically. The pattern of the layer is thus repeated many times, like the design on a piece of wallpaper. The multiplied and reduced drawing is then focused through a reversed microscope onto the surface to be etched.

Successive layers are built up by evaporating or depositing thin films of the appropriate substances onto the surface of a silicon or germanium wafer. If the layer being made is to be conducting, the surface would consist of an extremely thin layer of copper, covered with a photosensitive layer called a “photoresist”. On those portions of the surface receiving light from the pattern, the photoresist becomes insoluble, while on those areas not receiving light, the photoresist can be washed away.

The surface is then etched with acid, which removes the copper from those areas not protected by photoresist. Each successive layer of a wafer is made in this way, and finally the wafer is cut into tiny “chips”, each of which corresponds to one unit of the wallpaper-like pattern.

Although the area of a chip may be much smaller than a square centimeter, the chip can contain an extremely complex circuit. A typical programmable minicomputer or “microprocessor”, manufactured during the 1970’s, could have 30,000 circuit elements, all of which were contained on a single chip. By 1986, more than a million transistors were being placed on a single chip.

As a result of miniaturization, the speed of computers rose steadily. In 1960, the fastest computers could perform a hundred thousand elementary operations in a second. By 1970, the fastest computers took less than a second to perform a million such operations. In 1987, a computer called GF11 was designed to perform 11 billion floating-point operations (flops) per second.

GF11 (Gigaflop 11) is a scientific parallel-processing machine constructed by IBM. Approximately ten floating-point operations are needed for each machine instruction. Thus GF11 runs at the rate of approximately a thousand million instructions per second (1,100 MIPS). The high speed achieved by parallel-processing machines results from dividing a job into many sub-jobs on which a large number of processing units can work simultaneously.
Computer memories have also undergone a remarkable development. In 1987, the magnetic disc memories being produced could store 20 million bits of information per square inch; and even higher densities could be achieved by optical storage devices. (A “bit” is the unit of information. For example, the number 25, written in the binary system, is 11001. To specify this 5-digit binary number requires 5 bits of information. To specify an n-digit binary number requires n bits of information. Eight bits make a “byte”.)

In the 1970’s and 1980’s, computer networks were set up linking machines in various parts of the world. It became possible (for example) for a scientist in Europe to perform a calculation interactively on a computer in the United States just as though the distant machine were in the same room; and two or more computers could be linked for performing large calculations. It also became possible to exchange programs, data, letters and manuscripts very rapidly through the computer networks.

7.10 Moore’s law

In 1965, only four years after the first integrated circuits had been produced, Dr. Gordon E. Moore, one of the founders of Intel, made a famous prediction which has come to be known as “Moore’s Law”. He predicted that the number of transistors per integrated circuit would double every two years, and that this trend would continue through 1975. In fact, the general trend predicted by Moore has continued for a much longer time. Although the number of transistors per unit area has not continued to double every two years, the logic density (bits per unit area) has done so, and thus a modified version of Moore’s law still holds today. How much longer the trend can continue remains to be seen. Physical limits to miniaturization of transistors of the present type will soon be reached; but there is hope that further miniaturization can be achieved through “quantum dot” technology, molecular switches, and autoassembly.

A typical programmable minicomputer or “microprocessor”, manufactured in the 1970’s, could have 30,000 circuit elements, all of which were contained on a single chip. By 1989, more than a million transistors were being placed on a single chip; and by 2000, the number reached 42,000,000.

As a result of miniaturization and parallelization, the speed of computers rose exponentially. In 1960, the fastest computers could perform a hundred thousand elementary operations in a second. By 1970, the fastest computers took less than a second to perform a million such operations. In 1987, a massively parallel computer, with 566 parallel processors, called GFll was designed to perform 11 billion floating-point operations per second (flops). By 2002 the fastest computer performed 40 at tera\(\text{flops}\), making use of 5120 parallel CPU’s.

Computer disk storage has also undergone a remarkable development. In 1987, the magnetic disk storage being produced could store 20 million bits of information per square inch; and even higher densities could be achieved by optical storage devices. Storage density has until followed a law similar to Moore’s law.

In the 1970’s and 1980’s, computer networks were set up linking machines in various
Figure 7.17: Gordon E. Moore (born 1929), a founder of Intel and the author of Moore’s Law. In 1965 he predicted that the number of components in integrated circuits would double every year for the next 10 years”. In 1975 he predicted the this doubling would continue, but revised the doubling rate to “every two years. Astonishingly, Moore’s Law has held much longer than he, or anyone else, anticipated.
7.10. MOORE'S LAW

Figure 7.18: Amazingly, Moore’s Law has held much longer than he, or anyone else, anticipated. Perhaps quantum dot technologies can extend its validity even longer.

Figure 7.19: A logarithmic plot of the increase in PC hard-drive capacity in gigabytes. An extrapolation of the rate of increase predicts that the individual capacity of a commercially available PC will reach 10,000 gigabytes by 2015, i.e. 10,000,000,000,000 bytes. (After Hankwang and Rentar, Wikimedia Commons)
parts of the world. It became possible (for example) for a scientist in Europe to perform a
calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for performing
large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

The exchange of large quantities of information through computer networks was made
easier by the introduction of fiber optics cables. By 1986, 250,000 miles of such cables had
been installed in the United States. If a ray of light, propagating in a medium with a large
refractive index, strikes the surface of the medium at a grazing angle, then the ray undergoes
total internal reflection. This phenomenon is utilized in fiber optics: A light signal can
propagate through a long, hairlike glass fiber, following the bends of the fiber without
losing intensity because of total internal reflection. However, before fiber optics could be
used for information transmission over long distances, a technological breakthrough in glass
manufacture was needed, since the clearest glass available in 1940 was opaque in lengths
more than 10 m. Through studies of the microscopic properties of glasses, the problem of
absorption was overcome. By 1987, devices were being manufactured commercially that
were capable of transmitting information through fiber-optic cables at the rate of 1.7 billion
bits per second.

7.11 Self-reinforcing information accumulation

Humans have been living on the earth for roughly two million years (more or less, depending
on where one draws the line between our human and prehuman ancestors, Table 6.1). During
almost all of this time, our ancestors lived by hunting and food-gathering. They
were not at all numerous, and did not stand out conspicuously from other animals. Then,
suddenly, during the brief space of ten thousand years, our species exploded in numbers
from a few million to seven billion, populating all parts of the earth, and even setting foot
on the moon. This population explosion, which is still going on, has been the result of
dramatic cultural changes. Genetically we are almost identical with our hunter-gatherer
ancestors, who lived ten thousand years ago, but cultural evolution has changed our way
of life beyond recognition.

Beginning with the development of speech, human cultural evolution began to accelerate. It started to move faster with the agricultural revolution, and faster still with the invention of writing and printing. Finally, modern science has accelerated the rate of social
and cultural change to a completely unprecedented speed.

The growth of modern science is accelerating because knowledge feeds on itself. A new
idea or a new development may lead to several other innovations, which can in turn start
an avalanche of change. For example, the quantum theory of atomic structure led to the inven-
tion of transistors, which made high-speed digital computers possible. Computers have
not only produced further developments in quantum theory; they have also revolutionized
many other fields.

The self-reinforcing accumulation of knowledge - the information explosion - which
characterizes modern human society is reflected not only in an explosively-growing global population, but also in the number of scientific articles published, which doubles roughly every ten years. Another example is Moore’s law - the doubling of the information density of integrated circuits every two years. Yet another example is the explosive growth of Internet traffic shown in Table 17.1.

The Internet itself is the culmination of a trend towards increasing societal information exchange - the formation of a collective human consciousness. This collective consciousness preserves the observations of millions of eyes, the experiments of millions of hands, the thoughts of millions of brains; and it does not die when the individual dies.

7.12 Automation

During the last three decades, the cost of computing has decreased exponentially by between twenty and thirty percent per year. Meanwhile, the computer industry has grown exponentially by twenty percent per year (faster than any other industry). The astonishing speed of this development has been matched by the speed with which computers have become part of the fabric of science, engineering, industry, commerce, communications, transport, publishing, education and daily life in the industrialized parts of the world.

The speed, power and accuracy of computers has revolutionized many branches of science. For example, before the era of computers, the determination of a simple molecular structure by the analysis of X-ray diffraction data often took years of laborious calculation; and complicated structures were completely out of reach. In 1949, however, Dorothy Crowfoot Hodgkin used an electronic computer to work out the structure of penicillin from X-ray data. This was the first application of a computer to a biochemical problem; and it was followed by the analysis of progressively larger and more complex structures.

Proteins, DNA, and finally even the detailed structures of viruses were studied through the application of computers in crystallography. The enormous amount of data needed for such studies was gathered automatically by computer-controlled diffractions meters; and the final results were stored in magnetic-tape data banks, available to users through computer networks.

The application of quantum theory to chemical problems is another field of science which owes its development to computers. When Erwin Schrödinger wrote down his wave equation in 1926, it became possible, in principle, to calculate most of the physical and chemical properties of matter. However, the solutions to the Schrödinger equation for many-particle systems can only be found approximately; and before the advent of computers, even approximate solutions could not be found, except for the simplest systems.

When high-speed electronic digital computers became widely available in the 1960’s, it suddenly became possible to obtain solutions to the Schrödinger equation for systems of chemical and even biochemical interest. Quantum chemistry (pioneered by such men as J.C. Slater, R.S. Mulliken, D.R. Hartree, V. Fock, J.H. Van Vleck, L. Pauling, E.B. Wilson, P.O. Löwdin, E. Clementi, C.J. Ballhausen and others) developed into a rapidly-growing field, as did solid state physics. Through the use of computers, it became possible to
design new materials with desired chemical, mechanical, electrical or magnetic properties. Applying computers to the analysis of reactive scattering experiments, D. Herschbach, J. Polanyi and Y. Lee were able to achieve an understanding of the dynamics of chemical reactions.

The successes of quantum chemistry led Albert Szent-Györgyi, A. and B. Pullman, H. Scheraga and others to pioneer the fields of quantum biochemistry and molecular dynamics. Computer programs for drug design were developed, as well as molecular-dynamics programs which allowed the conformations of proteins to be calculated from a knowledge of their amino acid sequences. Studies in quantum biochemistry have yielded insights into the mechanisms of enzyme action, photosynthesis, active transport of ions across membranes, and other biochemical processes.

In medicine, computers began to be used for monitoring the vital signs of critically ill patients, for organizing the information flow within hospitals, for storing patients’ records, for literature searches, and even for differential diagnosis of diseases.

The University of Pennsylvania has developed a diagnostic program called INTERNIST-1, with a knowledge of 577 diseases and their interrelations, as well as 4,100 signs, symptoms and patient characteristics. This program was shown to perform almost as well as an academic physician in diagnosing difficult cases. QMR (Quick Medical Reference), a microcomputer adaptation of INTERNIST-1, incorporates the diagnostic functions of the earlier program, and also offers an electronic textbook mode.

Beginning in the 1960’s, computers played an increasingly important role in engineering and industry. For example, in the 1960’s, Rolls Royce Ltd. began to use computers not only to design the optimal shape of turbine blades for aircraft engines, but also to control the precision milling machines which made the blades. In this type of computer-assisted design and manufacture, no drawings were required. Furthermore, it became possible for an industry requiring a part from a subcontractor to send the machine-control instructions for its fabrication through the computer network to the subcontractor, instead of sending drawings of the part.

In addition to computer-controlled machine tools, robots were also introduced. They were often used for hazardous or monotonous jobs, such as spray-painting automobiles; and they could be programmed by going through the job once manually in the programming mode. By 1987, the population of robots in the United States was between 5,000 and 7,000, while in Japan, the Industrial Robot Association reported a robot population of 80,000.

Chemical industries began to use sophisticated computer programs to control and to optimize the operations of their plants. In such control systems, sensors reported current temperatures, pressures, flow rates, etc. to the computer, which then employed a mathematical model of the plant to calculate the adjustments needed to achieve optimum operating conditions.

Not only industry, but also commerce, felt the effects of computerization during the postwar period. Commerce is an information-intensive activity; and in fact some of the crucial steps in the development of information-handling technology developed because of the demands of commerce: The first writing evolved from records of commercial transactions kept on clay tablets in the Middle East; and automatic business machines, using
punched cards, paved the way for the development of the first programmable computers. Computerization has affected wholesaling, warehousing, retailing, banking, stockmarket transactions, transportation of goods - in fact, all aspects of commerce. In wholesaling, electronic data is exchanged between companies by means of computer networks, allowing order-processing to be handled automatically; and similarly, electronic data on prices is transmitted to buyers.

The key to automatic order-processing in wholesaling was standardization. In the United States, the Food Marketing Institute, the Grocery Manufacturers of America, and several other trade organizations, established the Uniform Communications System (UCS) for the grocery industry. This system specifies a standard format for data on products, prices and orders.

Automatic warehouse systems were designed as early as 1958. In such systems, the goods to be stored are placed on pallets (portable platforms), which are stacked automatically in aisles of storage cubicles. A computer records the position of each item for later automatic retrieval.

In retailing, just as in wholesaling, standardization proved to be the key requirement for automation. Items sold in supermarkets in most industrialized countries are now labeled with a standard system of machine-readable thick and thin bars known as the Universal Product Code (UPC). The left-hand digits of the code specify the manufacturer or packer of the item, while the right-hand set of digits specify the nature of the item. A final digit is included as a check, to make sure that the others were read correctly. This last digit (called a modulo check digit) is the smallest number which yields a multiple of ten when added to the sum of the previous digits.

When a customer goes through a check-out line, the clerk passes the purchased items over a laser beam and photocell, thus reading the UPC code into a small embedded computer or microprocessor at the checkout counter, which adds the items to the customer’s bill. The microprocessor also sends the information to a central computer and inventory database. When stocks of an item become low, the central computer generates a replacement order. The financial book-keeping for the retailing operation is also carried out automatically by the central computer.

In many places, a customer passing through the checkout counter of a supermarket is able to pay for his or her purchases by means of a plastic card with a magnetic, machine-readable identification number. The amount of the purchase is then transmitted through a computer network and deducted automatically from the customer’s bank account. If the customer pays by check, the supermarket clerk may use a special terminal to determine whether a check written by the customer has ever “bounced”.

Most checks are identified by a set of numbers written in the Magnetic-Ink Character Recognition (MICR) system. In 1958, standards for the MICR system were established, and by 1963, 85 percent of all checks written in the United States were identified by MICR numbers. By 1968, almost all banks had adopted this system; and thus the administration of checking accounts was automated, as well as the complicated process by which a check, deposited anywhere in the world, returns to the payers bank.

Container ships were introduced in the late 1950’s, and since that time, container sys-
tems have increased cargo-handling speeds in ports by at least an order of magnitude. Computer networks contributed greatly to the growth of the container system of transportation by keeping track of the position, ownership and contents of the containers.

In transportation, just as in wholesaling and retailing, standardization proved to be a necessary requirement for automation. Containers of a standard size and shape could be loaded and unloaded at ports by specialized tractors and cranes which required only a very small staff of operators. Standard formats for computerized manifests, control documents, and documents for billing and payment, were instituted by the Transportation Data Coordinating Committee, a non-profit organization supported by dues from shipping firms.

In the industrialized parts of the world, almost every type of work has been made more efficient by computerization and automation. Even artists, musicians, architects and authors find themselves making increasing use of computers: Advanced computing systems, using specialized graphics chips, speed the work of architects and film animators. The author’s traditional typewriter has been replaced by a word-processor, the composer’s piano by a music synthesizer.

In the Industrial Revolution of the 18th and 19th centuries, muscles were replaced by machines. Computerization represents a Second Industrial Revolution: Machines have begun to perform not only tasks which once required human muscles, but also tasks which formerly required human intelligence.

In industrial societies, the mechanization of agriculture has very much reduced the fraction of the population living on farms. For example, in the United States, between 1820 and 1980, the fraction of workers engaged in agriculture fell from 72 percent to 3.1 percent. There are signs that computerization and automation will similarly reduce the number of workers needed in industry and commerce.

Computerization is so recent that, at present, we can only see the beginnings of its impact; but when the Second Industrial Revolution is complete, how will it affect society? When our children finish their education, will they face technological unemployment?

The initial stages of the First Industrial Revolution produced much suffering, because labor was regarded as a commodity to be bought and sold according to the laws of supply and demand, with almost no consideration for the needs of the workers. Will we repeat this mistake? Or will society learn from its earlier experience, and use the technology of automation to achieve widely-shared human happiness?

The Nobel-laureate economist, Wassily W. Leontief, has made the following comment on the problem of technological unemployment:

“Adam and Eve enjoyed, before they were expelled from Paradise, a high standard of living without working. After their expulsion, they and their successors were condemned to eke out a miserable existence, working from dawn to dusk. The history of technological progress over the last 200 years is essentially the story of the human species working its way slowly and steadily back into Paradise. What would happen, however, if we suddenly found ourselves in it? With all goods and services provided without work, no one would be gainfully employed. Being unemployed means receiving no wages. As a result, until appropriate new income policies were formulated to fit the changed technological conditions,
everyone would starve in Paradise.”

To say the same thing in a slightly different way: consider what will happen when a factory which now employs a thousand workers introduces microprocessor-controlled industrial robots and reduces its work force to only fifty. What will the nine hundred and fifty redundant workers do? They will not be able to find jobs elsewhere in industry, commerce or agriculture, because all over the economic landscape, the scene will be the same.

There will still be much socially useful work to be done - for example, taking care of elderly people, beautifying the cities, starting youth centers, planting forests, cleaning up pollution, building schools in developing countries, and so on. These socially beneficial goals are not commercially “profitable”. They are rather the sort of projects which governments sometimes support if they have the funds for it. However, the money needed to usefully employ the nine hundred and fifty workers will not be in the hands of the government. It will be in the hands of the factory owner who has just automated his production line.

In order to make the economic system function again, either the factory owner will have to be persuaded to support socially beneficial but commercially unprofitable projects, or else an appreciable fraction of his profits will have to be transferred to the government, which will then be able to constructively re-employ the redundant workers.

The future problems of automation and technological unemployment may force us to rethink some of our economic ideas. It is possible that helping young people to make a smooth transition from education to secure jobs will become one of the important responsibilities of governments, even in countries whose economies are based on free enterprise. If such a change does take place in the future, while at the same time socialistic countries are adopting a few of the better features of free enterprise, then one can hope that the world will become less sharply divided by contrasting economic systems.

7.13 Neural networks

Physiologists have begun to make use of insights derived from computer design in their efforts to understand the mechanism of the brain; and computer designers are beginning to construct computers modeled after neural networks. We may soon see the development of computers capable of learning complex ideas, generalization, value judgements, artistic creativity, and much else that was once thought to be uniquely characteristic of the human mind. Efforts to design such computers will undoubtedly give us a better understanding of the way in which the brain performs its astonishing functions.

Much of our understanding of the nervous systems of higher animals is due to the Spanish microscopist, Ramón y Cajal, and to the English physiologists, Alan Hodgkin and Andrew Huxley. Cajal’s work, which has been confirmed and elaborated by modern electron microscopy, showed that the central nervous system is a network of nerve cells (neurons) and threadlike fibers growing from them. Each neuron has many input fibers (dendrites), and one output fiber (the axon), which may have several branches.
S It is possible the computers of the future will have pattern-recognition and learning abilities derived from architecture inspired by our understanding of the synapse, by Young's model, or by other biological models. However, pattern recognition and learning can also be achieved by programming, using computers of conventional architecture. Programs already exist which allow computers to understand both handwriting and human speech; and a recent chess-playing program was able to learn by studying a large number of championship games. Having optimized its parameters by means of this learning experience, the chess-playing program was able to win against grand masters!

Like nuclear physics and genesplicing, artificial intelligence presents a challenge: Will society use its new powers wisely and humanely? The computer technology of the future can liberate us from dull and repetitive work, and allow us to use our energies creatively; or it can produce unemployment and misery, depending on how we organize our society. Which will we choose?

Suggestions for further reading

7.13. NEURAL NETWORKS

212. G.A. Miller, Statistical behavioristics and sequences of responses, Psychol. Rev. 56, 6 (1949).
221. A. Bavelas, A mathematical model for group structures, Appl. Anthropol. 7 (3), 16 (1948).
256. L. Bruno, *Fiber Optimism: Nortel, Lucent and Cisco are battling to win the high-stakes fiber-optics game*, Red Herring, June (2000).
Chapter 8

THE FUTURE OF WORK

We have seen how the development of printing in Europe produced a brilliant, chainlike series of scientific discoveries. During the 17th century, the rate of scientific progress gathered momentum, and in the 18th and 19th centuries, the practical applications of scientific knowledge revolutionized the methods of production in agriculture and industry.

During the Industrial Revolution, feudal society, with its patterns of village life and its traditional social obligations, was suddenly replaced by a money-dominated society whose rules were purely economic, and in which labor was regarded as a commodity. The changes produced by the industrial revolution at first resulted in social chaos - enormous wealth in some classes of society, and great suffering in other classes; but later, after the appropriate social and political adjustments had been made, the improved methods of production benefited all parts of society in a more even way.

8.1 Some adverse effects globalization

Today, economic globalization aims at increased trade throughout the world. At first sight, this might seem to be a benefit. However, laws preventing the exploitation of labor are not universal. The same unspeakable conditions experienced by workers in factories and mines during the early phases of the Industrial Revolution in Europe can be found today among factory workers in Indonesia or children weaving oriental carpets in Pakistan; and it is estimated that in India alone there are 80,000,000 child laborers.

In many developing countries today, industrialization involves slave-like working conditions. Meanwhile, in the industrialized countries, workers may lose their jobs because they cannot compete with underpaid labor in the Third World. Large multinational corporations are tending to move their operations to regions where salaries and living standards are very low. For free trade to be truly beneficial to all the peoples of the world, universal laws must be established to regulate business and industry globally, and to ensure that multinationals act in a way that is both socially and ecologically responsible.

Adam Smith’s followers advocated complete freedom from governmental restraint, but the history of the Industrial Revolution demonstrates the need for regulatory social leg-
islation. The historical perspective makes it clear that laws establishing minimum wage levels and laws prohibiting child labor are needed to avoid horrors such as those described by John Fielden in “The Curse of the Factory System”. Today, birth control is also necessary on a global scale, just as it once was needed in England, to raise workers above the starvation level. Finally, unions must be permitted everywhere in the world. If trade is globalized, the hard-won reforms achieved by Charles Knowlton, Annie Besant the Fabians and others must also be globalized.

The story of globalization has until now been a story of escape from regulatory legislation. For example, many Danish farmers have moved their operations to Poland or to the Baltic nations in order to escape from Denmark’s strict environmental regulations. Another example is escape from taxation: One might think that taxation of foreign resource-extracting firms would provide developing countries with large incomes. However, there is at present no international law governing multinational tax arrangements. These are usually agreed to on a bilateral basis, and the industrialized countries have stronger bargaining powers in arranging the bilateral agreements. As a result, such agreements are usually very unfair, and multinationals escape all but the mildest taxation.

We can also consider the “non-discrimination” principle adopted by GATT (the General Agreement on Tariffs and Trade). This principle states that participating countries “cannot discriminate between like products on the basis of the method of production”. This single principle allows multinational commerce to escape from all the humanitarian and environmental reforms that have been achieved since the start of the Industrial Revolution. No matter if the method of production involves destruction of a tropical rain forest, no matter if forced labor was used, we are not allowed to discriminate “on the basis of the
method of production”.

The present situation is that agriculture, trade and industry have become global, but the world still lacks adequate institutions at the global level to watch over what is happening and to insure respect for human needs and respect for the natural environment.

Today’s global economic interdependence, instantaneous worldwide communication, and the need for peaceful resolution of international conflicts all call for strong governmental institutions at the global level, but the United Nations today lacks many things that would be necessary if it is to perform such a role: It lacks a legislature with the power to make laws binding on individuals and corporations. It lacks mechanisms for enforcing such laws. And it lacks a large and dependable source of income.

It would be logical to improve the United Nations by giving it the things just mentioned, and by giving it at the same time the task of regulating multinational corporations to ensure that they act in a socially and ecologically responsible manner. It would also be logical to entitle the UN to a fee for acting as a referee in relationships between multinationals and the developing countries. These reforms must come someday because of the logic of our present situation. I hope that they will come soon.

8.2 Say’s Law

Suburbia

The private automobile is the flagship of industrialism. In 2002, there were more than half a billion automobiles in the world. Of these, 140 million were in the United States (roughly one for every two people).

Reliance on private automobiles for transportation has affected the geography of cities, producing vast highway systems, urban sprawl and suburban life. For example, the Los Angeles metropolitan area spreads over 4,850 square miles (12,400 km²). Because of the availability of inexpensive motor fuel, public transportation is almost non-existent in Los Angeles. It is not uncommon for a citizen of the city to drive several hundred kilometers during a normal day. Many other cities in the world have a similar dependence on private automobiles.

A recent Canadian documentary film, The End of Suburbia, explores the history and probable future of cities built around the availability of inexpensive gasoline. The subtitle of the film is Oil Depletion and the Collapse of the American Dream.

Keeping up appearances

Of course, if we live in suburbia, we have to keep up with the neighbors. This is hard to do, because the neighbors keep getting new things - bigger automobiles, motorboats, swimming pools, and so on. Not only must we keep up with our actual neighbors, we must also compete with the glamorous lives that we see in films and television.
According to Say’s Law, and according to advertisers and economists, human desires have no upper limit; there is no limit to growth. Television advertising and billboards constantly tell us that to be happy, or even respectable, we need to buy more. Thus mainstream industrial culture thunders ahead, worshiping power, material goods, wealth, growth and progress. There is, however, a counterculture, which we will look at in the next chapter.

8.3 Veblen; economics as anthropology

The phrase “conspicuous consumption” was invented by the Norwegian-American economist Thorstein Veblen (1857-1929) in order to describe the way in which our society uses economic waste as a symbol of social status. In *The Theory of the Leisure Class*, first published in 1899, Veblen pointed out that it is wrong to believe that human economic behavior is rational, or that it can be understood in terms of classical economic theory. To understand it, Veblen maintained, one might preferably make use of insights gained from anthropology, psychology, sociology, and history.

Thorstein Veblen was born into a large Norwegian immigrant family living on a farm in Wisconsin. His first language was Norwegian, and in fact he did not learn English well until he was in his teens. He was a strange boy, precociously addicted to reading, but negligent about doing his chores on the farm. His family recognized that he was unusually intelligent and decided to send him to Carlton College, where he obtained a B.A. in 1880. Later he did graduate work at Johns Hopkins University and finally obtained a Ph.D. from Yale in 1884.

Despite the Ph.D., he failed to obtain an academic position. His iconoclastic views and non-conformist attitudes undoubtedly contributed to this joblessness. Returning to the family farm, Thorstein Veblen continued his voracious reading and his neglect of farm duties for six years. As one of his brothers wrote, “He was lucky enough to come out of a race and family who made family loyalty a religion... He was the only loafer in a highly respectable community... He read and loafed, and the next day he loafed and read.”

An interesting fact about this strange man is that, for some reason, women found him very attractive. In 1888, Thorstein Veblen married Ellen Rolfe, the niece of the president of Carlton College. His wife was to leave him many times, partly because of his many infidelities, and partly because of his aloofness and detachment. He was like a visitor from another planet.

In part, the marriage to Ellen was motivated by Veblen’s search for a job. He hoped to obtain work as an economist for the Atchison, Topeka and Santa Fe Railway, of which her uncle was president. However, the railway was in financial difficulties, and it was taken over by bankers, after which the position disappeared.

Finally a family council was held on the Veblen farm, and it was decided that Thorstein should once again attempt to enter the academic world. In 1891, wearing corduroy trousers and a coonskin hat, he walked into the office of the conservative economist J.L. Laughlan and introduced himself. Although taken aback by Veblen’s appearance, Laughlan began
Figure 8.2: Thorstein Veblen (1857-1929).
to talk with him, and he soon recognized Veblen’s genius. A year later, when he moved to
the University of Chicago, Laughlan brought Veblen with him at a salary of $520 per year.

At the University of Chicago, Veblen soon established a reputation both for eccentricity
and for enormous erudition. His socks were held up by safety pins, but he was reputed
to be fluent in twenty-six languages. He gained attention also by publishing a series of
brilliant essays.

In 1899, Veblen “fluttered the dovecotes of the East” by publishing a book entitled The
Theory of the Leisure Class. It was part economics, part anthropology, and part social
satire. Nothing of the kind had ever been seen in the field of economics. Until that mo-
ment it had been universally assumed that human economic behavior is rational. Veblen’s
detached and surgically sharp intelligence exposed it as being very largely irrational.

According to Thorstein Veblen, ancient tribal instincts and attitudes motivate us today,
just as they motivated our primitive ancestors. Veblen speaks of a predatory phase of
primitive society where the strongest fighters were able to subjugate others. This primitive
class structure was based on violence, and, according to Veblen, the attitudes associated
with it persist today.

For example, Veblen noted that male members of the leisure class liked to go about with
walking sticks. Why? Because, answers Veblen, it is “an advertisement that the bearer’s
hands are employed otherwise than in useful effort.” Also, a walking stick is a weapon:
“The handling of so tangible and primitive a means of offense is very comforting to anyone
who is gifted with even a moderate share of ferocity”.

Even in modern society, Veblen says, we have an admiration for those who succeed in
obtaining power and money through predatory means, and this admiration makes honest
and useful work seem degraded. “During the predatory culture”, Veblen wrote, “labor
comes to be associated in men’s habits of thought with weakness and subjugation to a
master. It is therefore a mark of inferiority, and therefore comes to be accounted to be
unworthy of man in his best estate. By virtue of this tradition, labor is felt to be debasing,
and this tradition has never died out. On the contrary, with the advance of social differ-
entiation it has acquired the axiomatic force of ancient and unquestioned prescription.”

“In order to gain and hold the esteem of men it is not sufficient merely to possess wealth
or power. The wealth or power must be put in evidence, for esteem is awarded only on
evidence. It is felt by all persons of refined taste that a spiritual contamination is insepara-
ble from certain offices that are conventionally required of servants. Vulgar surroundings,
mean (that is to say, inexpensive) habitations, and vulgarly productive occupations are
unhesitatingly condemned and avoided. They are incompatible with life on a satisfactory
spiritual plane - with ‘high thinking’.

“...The performance of labor has been accepted as a conventional evidence of inferior
force, therefore it comes by itself, by a mental shortcut, to be regarded as intrinsically
base.”

“The normal and characteristic occupations of the [leisure] class are... government,
war, sports, and devout observances... At this as at any other cultural stage, government
and war are, at least in part, carried out for the pecuniary gain of those who engage in
them, but it is gain obtained by the honorable method of seizure and conversion."

Veblen also remarks that "It is true of dress even in a higher degree than of most items of consumption, that people will undergo a very considerable degree of privation in the comforts or the necessities of life in order to afford what is considered a decent amount of wasteful consumption; so that it is by no means an uncommon occurrence, in an inclement climate, for people to go ill clad in order to appear well dressed."

The sensation caused by the publication of Veblen’s book, and the fact that his phrase, "conspicuous consumption", has become part of our language, indicate that his theory did not completely miss its mark. In fact, modern advertisers seem to be following Veblen’s advice: Realizing that much of the output of our economy will be used for the purpose of establishing the social status of consumers, advertising agencies hire psychologists to appeal to the consumer’s longing for a higher social position.

When possessions are used for the purpose of social competition, demand has no natural upper limit; it is then limited only by the size of the human ego, which, as we know, is boundless. This would be all to the good if unlimited economic growth were desirable. But today, when further growth implies future collapse, industrial society urgently needs to find new values to replace our worship of power, our restless chase after excitement, and our admiration of excessive consumption.

8.4 Gandhi as an economist

If humans are to achieve a stable society in the distant future, it will be necessary for them to become modest in their economic behavior and peaceful in their politics. For both modesty and peace, Gandhi is useful as a source of ideas.

Mohandas Karamchand Gandhi was born in 1869 in Porbandar, India. His family belonged to the Hindu caste of shopkeepers. (In Gujarati “Gandhi” means “grocer”.) However, the family had risen in status, and Gandhi’s father, grandfather, and uncle had all served as prime ministers of small principalities in western India.

In 1888, Gandhi sailed for England, where he spent three years studying law at the Inner Temple in London. Before he left India, his mother had made him take a solemn oath not to touch women, wine, or meat. He thus came into contact with the English vegetarians, who included Sir Edward Arnold (translator of the Bhagavad Gita), the Theosophists Madame Blavatski and Annie Besant, and the Fabians. Contact with this idealistic group of social critics and experimenters helped to cure Gandhi of his painful shyness, and it also developed his taste for social reform and experimentation.

Gandhi’s exceptionally sweet and honest character won him many friends in England, and he encountered no racial prejudice at all. However, when he traveled to Pretoria in South Africa a few years later, he experienced racism in its worst form. Although he was meticulously well dressed in an English frock coat, and in possession of a first-class ticket, Gandhi was given the choice between traveling third class or being thrown off the train. (He chose the second alternative.) Later in the journey he was beaten by a coach driver because he insisted on his right to sit as a passenger rather than taking a humiliating
position on the footboard of the coach.

The legal case which had brought Gandhi to South Africa was a dispute between a wealthy Indian merchant, Dada Abdullah Seth, and his relative, Seth Tyeb (who had refused to pay a debt of 40,000 pounds, in those days a huge sum). Gandhi succeeded in reconciling these two relatives, and he persuaded them to settle their differences out of court. Later he wrote about this experience:

“Both were happy with this result, and both rose in public estimation. My joy was boundless. I had learnt the true practice of law. I had learnt to find out the better side of human nature and to enter men’s hearts. I realized that the true function of a lawyer was to unite parties riven asunder. The lesson was so indelibly burnt into me that a large part of my time during my twenty years of practice as a lawyer was occupied in bringing about compromises of hundreds of cases. I lost nothing thereby - not even money, certainly not my soul.”

Gandhi was about to return to India after the settlement of the case, but at a farewell party given by Abdullah Seth, he learned of a bill before the legislature which would deprive Indians in South Africa of their right to vote. He decided to stay and fight against the bill.

Gandhi spent the next twenty years in South Africa, becoming the leader of a struggle for the civil rights of the Indian community. In this struggle he tried “...to find the better side of human nature and to enter men’s hearts.” Gandhi’s stay in England had given him a glimpse of English liberalism and English faith in just laws. He felt confident that if the general public in England could be made aware of gross injustices in any part of the British Empire, reform would follow. He therefore organized non-violent protests in which the protesters sacrificed themselves so as to show as vividly as possible the injustice of an existing law. For example, when the government ruled that Hindu, Muslim and Parsi marriages had no legal standing, Gandhi and his followers voluntarily went to prison for ignoring the ruling.

Gandhi used two words to describe this form of protest: “satyagraha” (the force of truth) and “ahimsa” (non-violence). Of these he later wrote: “I have nothing new to teach the world. Truth and non-violence are as old as the hills. All that I have done is to try experiments in both on as vast a scale as I could. In so doing, I sometimes erred and learnt by my errors. Life and its problems have thus become to me so many experiments in the practice of truth and non-violence.”

In his autobiography, Gandhi says: “Three moderns have left a deep impression on my life and captivated me: Raychandbhai (the Indian philosopher and poet) by his living contact; Tolstoy by his book ‘The Kingdom of God is Within You’; and Ruskin by his book ‘Unto This Last’.”

Ruskin’s book, “Unto This Last”, which Gandhi read in 1904, is a criticism of modern industrial society. Ruskin believed that friendships and warm interpersonal relationships are a form of wealth that economists have failed to consider. He felt that warm human contacts are most easily achieved in small agricultural communities, and that therefore the modern tendency towards centralization and industrialization may be a step backward in terms of human happiness. While still in South Africa, Gandhi founded two religious Utopian communities based on the ideas of Tolstoy and Ruskin. Phoenix Farm (1904)
8.4. **GANDHI AS AN ECONOMIST**

![Gandhi and his wife Kasturbhai in 1902.](image)

and Tolstoy Farm (1910). At this time he also took an oath of chastity (“bramacharya”), partly because his wife was unwell and he wished to protect her from further pregnancies, and partly in order to devote himself more completely to the struggle for civil rights.

Because of his growing fame as the leader of the Indian civil rights movement in South Africa, Gandhi was persuaded to return to India in 1914 and to take up the cause of Indian home rule. In order to reacquaint himself with conditions in India, he traveled tirelessly, now always going third class as a matter of principle.

During the next few years, Gandhi worked to reshape the Congress Party into an organization which represented not only India’s Anglicized upper middle class but also the millions of uneducated villagers who were suffering under an almost intolerable burden of poverty and disease. In order to identify himself with the poorest of India’s people, Gandhi began to wear only a white loincloth made of rough homespun cotton. He traveled to the remotest villages, recruiting new members for the Congress Party, preaching non-violence and “firmness in the truth”, and becoming known for his voluntary poverty and humility. The villagers who flocked to see him began to call him “Mahatma” (Great Soul).

Disturbed by the spectacle of unemployment and poverty in the villages, Gandhi urged the people of India to stop buying imported goods, especially cloth, and to make their own. He advocated the reintroduction of the spinning wheel into village life, and he often spent some hours spinning himself. The spinning wheel became a symbol of the Indian independence movement, and was later incorporated into the Indian flag.

The movement for boycotting British goods was called the “Swadeshi movement”. The word Swadeshi derives from two Sanskrit roots: *Swa*, meaning self, and *Desh*, meaning country. Gandhi described Swadeshi as “a call to the consumer to be aware of the violence he is causing by supporting those industries that result in poverty, harm to the workers and to humans or other creatures.”
Gandhi tried to reconstruct the crafts and self-reliance of village life that he felt had been destroyed by the colonial system. “I would say that if the village perishes India will perish too”, he wrote, “India will be no more India. Her own mission in the world will get lost. The revival of the village is only possible when it is no more exploited. Industrialization on a mass scale will necessarily lead to passive or active exploitation of the villagers as problems of competition and marketing come in. Therefore we have to concentrate on the village being self-contained, manufacturing mainly for use. Provided this character of the village industry is maintained, there would be no objection to villagers using even the modern machines that they can make and can afford to use. Only they should not be used as a means of exploitation by others.”

“You cannot build nonviolence on a factory civilization, but it can be built on self-contained villages... Rural economy as I have conceived it, eschews exploitation altogether, and exploitation is the essence of violence... We have to make a choice between India of the villages that are as ancient as herself and India of the cities which are a creation of foreign domination...”

“Machinery has its place; it has come to stay. But it must not be allowed to displace necessary human labour. An improved plow is a good thing. But if by some chances, one man could plow up, by some mechanical invention of his, the whole of the land of India, and control all the agricultural produce, and if the millions had no other occupation, they would starve, and being idle, they would become dunces, as many have already become. There is hourly danger of many being reduced to that unenviable state.”

In these passages we see Gandhi not merely as a pioneer of nonviolence; we see him also as an economist. Faced with misery and unemployment produced by machines, Gandhi
tells us that social goals must take precedence over blind market mechanisms. If machines are causing unemployment, we can, if we wish, and use labor-intensive methods instead. With Gandhi, the free market is not sacred - we can do as we wish, and maximize human happiness, rather than maximizing production and profits.

Gandhi also organized many demonstrations whose purpose was to show the British public that although the British raj gave India many benefits, the toll exacted was too high, not only in terms of money, but also in terms of India’s self-respect and self-sufficiency. All of Gandhi’s demonstrations were designed to underline this fact. For example, in 1930 Gandhi organized a civil-disobedience campaign against the salt laws. The salt laws gave the Imperial government a monopoly and prevented Indians from making their own salt by evaporating sea water. The majority of Indians were poor farmers who worked long hours in extreme heat, and salt was as much a necessity to them as bread. The tax on salt was essentially a tax on the sweat of the farmers.

Before launching his campaign, Gandhi sent a polite letter to the Viceroy, Lord Irwin, explaining his reasons for believing that the salt laws were unjust, and announcing his intention of disregarding them unless they were repealed. Then, on March 12 1930, Gandhi and many of his followers, accompanied by several press correspondents, started on a march to the sea to carry out their intention of turning themselves into criminals by making salt. Every day, Gandhi led the procession about 12 miles, stopping at villages in the evenings to hold prayer meetings. Many of the villagers joined the march, while others cast flower petals in Gandhi’s path or sprinkled water on his path to settle the dust.

On April 5 the marchers arrived at the sea, where they spent the night in prayer on the beach. In the morning they began to make salt by wading into the sea, filling pans with water, and letting it evaporate in the sun. Not much salt was made in this way, but Gandhi’s action had a strong symbolic power. A wave of non-violent civil disobedience demonstrations swept over India, so extensive and widespread that the Imperial government, in danger of losing control of the country, decided to arrest as many of the demonstrators as possible. By midsummer, Gandhi and a hundred thousand of his followers were in prison, but nevertheless the civil disobedience demonstrations continued.

In January, 1931, Gandhi was released from prison and invited to the Viceroy’s palace to talk with Lord Irwin. They reached a compromise agreement: Gandhi was to call off the demonstrations and would attend a Round Table Conference in London to discuss Indian home rule, while Lord Irwin agreed to release the prisoners and would change the salt laws so that Indians living near to the coast could make their own salt.

The salt march was typical of Gandhi’s non-violent methods. Throughout the demonstrations he tried to maintain a friendly attitude towards his opponents, avoiding escalation of the conflict. Thus at the end of the demonstrations, the atmosphere was one in which a fair compromise solution could be reached. Whenever he was in prison, Gandhi regarded his jailers as his hosts. Once, when he was imprisoned in South Africa, he used the time to make a pair of sandals, which he sent to General Smuts, the leader of the South African government. Thus Gandhi put into practice the Christian principle, “Love your enemies; do good to them that hate you.”

Gandhi’s importance lies in the fact that he was a major political leader who sincerely
tried to put into practice the ethical principles of religion. In his autobiography Gandhi says: "I can say without the slightest hesitation, and yet with all humility, that those who say that religion has nothing to do with politics do not know what religion means."

Gandhi believed that human nature is essentially good, and that it is our task to find and encourage whatever is good in the character of others. During the period when he practiced as a lawyer, Gandhi’s aim was “to unite parties riven asunder,” and this was also his aim as a politician. In order for reconciliation to be possible in politics, it is necessary to avoid escalation of conflicts. Therefore Gandhi used non-violent methods, relying only on the force of truth. “It is my firm conviction,” he wrote, “that nothing can be built on violence.”

To the insidious argument that “the end justifies the means,” Gandhi answered firmly: “They say ‘means are after all means’. I would say ‘means are after all everything’. As the means, so the end. Indeed the Creator has given us control (and that very limited) over means, none over end. ... The means may be likened to a seed, and the end to a tree; and there is the same inviolable connection between the means and the end as there is between the seed and the tree. Means and end are convertible terms in my philosophy of life.” In other words, a dirty method produces a dirty result; killing produces more killing; hate leads to more hate. But there are positive feedback loops as well as negative ones. A kind act produces a kind response; a generous gesture is returned; hospitality results in reflected hospitality. Hindus and Buddhists call this principle “the law of karma”.

Gandhi believed that the use of violent means must inevitably contaminate the end achieved. Because Gandhi’s methods were based on love, understanding, forgiveness and reconciliation, the non-violent revolution which he led left very little enmity in its wake. When India finally achieved its independence from England, the two countries parted company without excessive bitterness. India retained many of the good ideas which the English had brought - for example the tradition of parliamentary democracy - and the two countries continued to have close cultural and economic ties.

Mahatma Gandhi was assassinated by a Hindu extremist on January 30, 1948. After his death, someone collected and photographed all his worldly goods. These consisted of a pair of glasses, a pair of sandals and a white homespun loincloth. Here, as in the Swadeshi movement, we see Gandhi as a pioneer of economics. He deliberately reduced his possessions to an absolute minimum in order to demonstrate that there is no connection between personal merit and material goods. Like Veblen, Mahatma Gandhi told us that we must stop using material goods as a means of social competition. We must start to judge people not by what they have, but by what they are.

8.5 Thoreau

In the distant future (and perhaps even in the not-so-distant future) industrial civilization will need to abandon its relentless pursuit of unnecessary material goods and economic growth. Modern society will need to re-establish a balanced and harmonious relationship with nature. In pre-industrial societies harmony with nature is usually a part of the cultural
tradition. In our own time, the same principle has become central to the ecological counterculture while the main-stream culture thunders blindly ahead, addicted to wealth, power and growth.

In the 19th century the American writer, Henry David Thoreau (1817-1862), pioneered the concept of a simple life, in harmony with nature. Today, his classic book, Walden, has become a symbol for the principles of ecology, simplicity, and respect for nature.

Thoreau was born in Concord Massachusetts, and he attended Harvard from 1833 to 1837. After graduation, he returned home, worked in his family’s pencil factory, did odd jobs, and for three years taught in a progressive school founded by himself and his older brother, John. When John died of lockjaw in 1842, Henry David was so saddened that he felt unable to continue the school alone.

Thoreau refused to pay his poll tax because of his opposition to the Mexican War and to the institution of slavery. Because of his refusal to pay the tax (which was in fact a very small amount) he spent a night in prison. To Thoreau’s irritation, his family paid the poll tax for him and he was released. He then wrote down his ideas on the subject in an essay entitled The Duty of Civil Disobedience, where he maintains that each person has a duty to follow his own individual conscience even when it conflicts with the orders of his government. "Under a government that which imprisons any unjustly", Thoreau wrote, "the true place for a just man is in prison." Civil Disobedience influenced Tolstoy, Gandhi and Martin Luther King, and it anticipated the Nuremberg Principles.

Thoreau became the friend and companion of the transcendentalist writer Ralph Waldo Emerson (1803-1882), who introduced him to a circle of writers and thinkers that included Ellery Channing, Margaret Fuller and Nathaniel Hawthorne.

Nathaniel Hawthorne described Thoreau in the following words: "Mr. Thorow [sic] is a keen and delicate observer of nature - a genuine observer, which, I suspect, is almost as rare a character as even an original poet; and Nature, in return for his love, seems to adopt him as her especial child, and shows him secrets which few others are allowed to witness. He is familiar with beast, fish, fowl, and reptile, and has strange stories to tell of adventures, and friendly passages with these lower brethren of mortality. Herb and flower, likewise, wherever they grow, whether in garden, or wild wood, are his familiar friends. He is also on intimate terms with the clouds and can tell the portents of storms. It is a characteristic trait, that he has a great regard for the memory of the Indian tribes, whose wild life would have suited him so well; and strange to say, he seldom walks over a plowed field without picking up an arrow-point, a spear-head, or other relic of the red men - as if their spirits willed him to be the inheritor of their simple wealth."

At Emerson's suggestion, Thoreau opened a journal, in which he recorded his observations concerning nature and his other thoughts. Ultimately the journal contained more than 2 million words. Thoreau drew on his journal when writing his books and essays, and in recent years, many previously unpublished parts of his journal have been printed.

From 1845 until 1847, Thoreau lived in a tiny cabin that he built with his own hands. The cabin was in a second-growth forest beside Walden Pond in Concord, on land that belonged to Emerson. Thoreau regarded his life there as an experiment in simple living. He described his life in the forest and his reasons for being there in his book Walden, which
was published in 1854. The book is arranged according to seasons, so that the two-year sojourn appears compressed into a single year.

“Most of the luxuries”, Thoreau wrote, “and many of the so-called comforts of life, are not only not indispensable, but positive hindrances to the elevation of mankind. With respect to luxuries, the wisest have ever lived a more simple and meager life than the poor. The ancient philosophers, Chinese, Hindoo, Persian, and Greek, were a class than which none has been poorer in outward riches, none so rich in inward.”

Elsewhere in *Walden*, Thoreau remarks, “It is never too late to give up your prejudices”, and he also says, “Why should we be in such desperate haste to succeed, and in such desperate enterprises? If a man does not keep pace with his companions, perhaps it is because he hears a different drummer.” Other favorite quotations from Thoreau include “Rather than love, than money, than fame, give me truth”, “Beware of all enterprises that
require new clothes”, “Most men lead lives of quiet desperation” and “Men have become tools of their tools.”

Towards the end of his life, when he was very ill, someone asked Thoreau whether he had made his peace with God. “We never quarreled”, he answered.

Thoreau’s closeness to nature can be seen from the following passage, written by his friend Frederick Willis, who visited him at Walden Pond in 1847, together with the Alcott family: “He was talking to Mr. Alcott of the wild flowers in Walden woods when, suddenly stopping, he said: ‘Keep very still and I will show you my family.’ Stepping quickly outside the cabin door, he gave a low and curious whistle; immediately a woodchuck came running towards him from a nearby burrow. With varying note, yet still low and strange, a pair of gray squirrels were summoned and approached him fearlessly. With still another note several birds, including two crows flew towards him, one of the crows nestling upon his shoulder. I remember that it was the crow resting close to his head that made the most vivid impression on me, knowing how fearful of man this bird is. He fed them all from his hand, taking food from his pocket, and petted them gently before our delighted gaze; and then dismissed them by different whistling, always strange and low and short, each wild thing departing instantly at hearing his special signal.”

In an essay published by the Atlantic Monthly in 1853, Thoreau described a pine tree in Maine with the words: “It is as immortal as I am, and perchance will go to as high a heaven, there to tower above me still.” However, the editor (James Russell Lowell) considered the sentence to be blasphemous, and removed it from Thoreau’s essay before publication.

In one of his essays, Thoreau wrote: “If a man walk in the woods for love of them half of each day, he is in danger of being regarded as a loafer; but if he spends his whole day as a speculator, shearing off those woods and making the earth bald before her time, he is esteemed an industrious and enterprising citizen.”

8.6 The counter-culture

In Chapter 2, we mentioned Say’s Law (“Supply creates its own demand”). Jean-Baptiste Say’s basis for this proposition was the assumption that a consumer’s desire for goods is infinite. He combined this assumption with the observation that the wages paid for the production of goods will provide money enough to buy back the goods, even if the amount involved increases without limit. Comforted by Say’s “law”, and by the observation that people in industrial societies do indeed consume far more than they actually need, economists continue to pursue economic growth as though it were the Holy Grail. We do indeed devote much of our efforts to “making the earth bald before her time”.

As things are today, the advertising industry, which is part of the mainstream culture, whips demand towards ever higher levels by exploiting our tendency to use material goods for the purpose of social competition. Meanwhile, a small but significant counter-culture has realized that unlimited economic growth will lead to ecological disaster unless we stop in time.

In the 1960’s, a counter-culture developed in the United States, partly as a reaction
against the Vietnam War and partly as a reaction against consumerism. It seemed to young people that they were being offered a possession-centered way of life that they did not want, and that they were being asked to participate in a war that they thought was immoral.

In 1964, a free speech movement began on the campus of the University of California in Berkeley. Students demanded that the university administration should lift a ban that it had imposed on on-campus political activities. Student movements elsewhere in the United States and in Europe echoed the Berkeley protests throughout the late 1960’s and early 1970’s.

Mario Savo, one of the leaders of the Berkeley free speech movement, compared the Establishment to an enormous anti-human machine: “There is a time when the operation of the machine becomes so odious, makes you so sick at heart, that you can’t take part; you can’t even passively take part, and you’ve got to put your bodies upon the gears and upon the wheels, upon the levers, upon all the apparatus, and you’ve got to make it stop. And you’ve got to indicate to the people who run it, to the people who own it, that unless you’re free, the machine will be prevented from working at all.”

The Greening of America, by Charles Reich, describes the youth-centered counter-culture: “Industrialism produced a new man...”, Reich wrote, “one adapted to the demands of the machine. In contrast, today’s emerging consciousness seeks a new knowledge of what it means to be human, in order that the machine, having been built, may now be turned to human ends; in order that man once more can become a creative force, renewing and creating his own life and thus giving life back to society.”

8.7 The Brundtland Report

In 1972, the United Nations Conference on the Human Environment took place in Stockholm. In a 1983 follow-up to the Stockholm conference, the General Assembly of the UN adopted a resolution (A/38/161) establishing the World Commission on Environment and Development. It is usually known as the Brundtland Commission after the name of its Chair, Dr. Gro Harlem Brundtland, who was at the time the Prime Minister of Norway. The report of the Brundtland Commission, entitled *Our Common Future*, was submitted to the United Nations in 1987.

In the words of Dr. Brundtland, the goal of the report was “to help define shared perceptions of long-term environmental issues and the appropriate efforts needed to deal successfully with the problems of protecting and enhancing the environment, a long-term agenda for action during the coming decades...”

One of the key concepts of the Brundtland Report was “sustainable development”. The Report offered the following definition: “Sustainable development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs.”

The Brundtland Commission’s key concepts for sustainability were as follows:
8.8. The Earth Summit at Rio

The Brundtland Commission’s report examines the question of whether the earth can support a population of 10 billion people without the collapse of the ecological systems on which all life depends. The report states that the data “suggest that meeting the food requirements of an ultimate world population of around 10 billion would require some changes in food habits, as well as greatly improving the efficiency of traditional agriculture.”

8.8 The Earth Summit at Rio

The Brundtland Report served as a preparation for the United Nations Conference on Environment and Development, which took place from the 3rd to the 14th of June, 1992 in Rio de Janeiro. The conference, informally called the “Earth Summit”, was unprecedented in its size and significance. 172 governments participated, including 108 heads of state or government. 17,000 people attended the Earth Summit, including 2,400 representatives of NGO’s. An estimated 10,000 journalists covered the conference.

The Earth Summit at Rio ought to have been a turning point in the relationship between humans and the global environment. However, despite the size and importance of the conference, and despite the hopes of most of the participants, the Earth Summit
did not result in the changes in laws and lifestyles that will be needed to establish long-term sustainability.

Two basic problems are leading to the destruction of the global environment - excessive population growth in the developing South, and excessive economic growth and overconsumption in the industrial North. Political and religious pressures prevented overpopulation from being named at Rio as one of the root causes of environmental degradation. Political pressures also prevented the necessary changes in laws and lifestyles from being made in the North.

Nevertheless, considerable progress was made at Rio. The resulting documents included Agenda 21 (an environmental agenda for the 21st century), the Rio Declaration on Environment and Development, the Statement on Forest Principles, the United Nations Framework Convention on Climate Change and the United Nations Convention on Biological Diversity. Later the Earth Charter was developed by some of the leaders who met in Rio.

Agenda 21

The first few chapters of Agenda 21 are as follows:

1. Preamble
2. International cooperation to accelerate sustainable development in developing countries and related domestic policies
3. Combating poverty
4. Changing consumption patterns
5. Demographic dynamics and sustainability
6. Protecting and promoting human health conditions
7. Promoting sustainable human settlement development
8. Integrating environment and development in decision-making
9. Protecting the atmosphere
10. Integrated approach to the planning and management of land resources
11. Combating deforestation
12. Managing fragile ecosystems; sustainable mountain development
13. Conservation of biological diversity
14. Environmentally sound management of biotechnology
15. Protection of the oceans

The good intentions of the authors shine from this list! It was a major victory to have Agenda 21 adopted as the official policy of the United Nations. Close examination reveals many political compromises in the wording the conclusions, but the idealism of the document is not entirely lost.

Agenda 21, touches (very lightly!) on the root causes of environmental degradation. In Section 4.6, one finds the extremely weak statement: “Some economists are questioning traditional concepts of economic growth and underlining the importance of pursuing
8.9. THE TRANSITION FROM GROWTH TO A STEADY STATE - MINIMIZING THE TRAUMA

Economic objectives that take into account the full value of natural resource capital. More needs to be known about the role of consumption in relation to economic growth and population dynamics in order to formulate coherent international and national policies.”

However, in Section 5.3, a clearer statement of the basic problem appears: “The growth of world population and production, combined with unsustainable consumption patterns, places increasingly severe stress on the life-supporting systems of our planet.”

8.9 The transition from growth to a steady state - minimizing the trauma

According to Adam Smith, the free market is the dynamo of economic growth. The true entrepreneur does not indulge in luxuries for himself and his family, but reinvests his profits, with the result that his business or factory grows larger, producing still more profits, which he again reinvests, and so on. This is indeed the formula for exponential economic growth.

Economists (with a few notable exceptions) have long behaved as though growth were synonymous with economic health. If the gross national product of a country increases steadily by 4% per year, most economists express approval and say that the economy is healthy. If the economy could be made to grow still faster (they maintain), it would be still more healthy. If the growth rate should fall, economic illness would be diagnosed. However, the basic idea of Malthus is applicable to exponential increase of any kind. It is obvious that on a finite Earth, neither population growth nor economic growth can continue indefinitely.

A “healthy” economic growth rate of 4% per year corresponds to an increase by a factor of 50 in a century, by a factor of 2500 in two centuries, and by a factor of 125,000 in three centuries. No one can maintain that this type of growth is sustainable except by refusing to look more than a short distance into the future.

But why do most economists cling so stubbornly and blindly to the concept of growth? Why do they refuse to look more than a few years into the future? We can perhaps understand this strange self-imposed myopia by remembering some of David Ricardo’s ideas: One of his most important contributions to economic theory was his analysis of rents. Ricardo considered the effects of economic expansion; and he concluded that as population increased, marginally fertile land would be forced into cultivation. The price of grain would be determined by the cost of growing it on inferior land; and the owners of better land would be able to pocket a progressively larger profit as worse and worse land was forced into use by the demands of a growing population. Ricardo’s analysis of rents for agricultural land has various generalizations; for example, a growing population also puts pressure on land used for building cities, and profits can be gained by holding such land, or through the ownership of houses in growing cities. In general, in a growing economy, investments are likely to be rewarded. In a stationary or contracting economy, the stock market may crash.

Considerations like those just discussed make it easy to understand why economists are
biased in favor of growth. However, we are now entering a period where biological and physical constraints will soon put an end to economic growth.

Instead of burning our tropical forests, it might be wise for us to burn our books on growth-oriented economics! An entirely new form of economics is needed today - not the empty-world economics of Adam Smith, but what might be called “full-world economics”, or “steady-state economics”.

The present use of resources by the industrialized countries is extremely wasteful. A growing national economy must, at some point, exceed the real needs of the citizens. It has been the habit of the developed countries to create artificial needs by means of advertising, in order to allow economies to grow beyond the point where all real needs have been met; but this extra growth is wasteful, and in the future it will be important not to waste the earth’s diminishing supply of non-renewable resources.

Thus, the times in which we live present a challenge: We need a revolution in economic thought. We must develop a new form of economics, taking into account the realities of the world’s present situation - an economics based on real needs and on a sustainable equilibrium with the environment, not on the thoughtless assumption that growth can continue forever.

Adam Smith was perfectly correct in saying that the free market is the dynamo of economic growth; but exponential growth of human population and economic activity have brought us, in a surprisingly short time, from the empty-world situation in which he lived to a full-world situation. In today’s world, we are pressing against the absolute limits of the earth’s carrying capacity, and further growth carries with it the danger of future collapse. Full-world economics, the economics of the future, will no longer be able to rely on growth to give profits to stockbrokers or to solve problems of unemployment or to alleviate poverty. In the long run, growth of any kind is not sustainable; and we are now nearing its sustainable limits.

Like a speeding bus headed for a brick wall, the earth’s rapidly-growing population of humans and its rapidly-growing economic activity are headed for a collision with a very solid barrier - the carrying capacity of the global environment. As in the case of the bus and the wall, the correct response to the situation is to apply the brakes in time - but fear prevents us from doing this. What will happen if we slow down very suddenly? Will not many of the passengers be injured? Undoubtedly. But what will happen if we hit the wall at full speed? Perhaps it would be wise, after all, to apply the brakes!

The memory of the great depression of 1929 makes us fear the consequences of an economic slowdown, especially since unemployment is already a serious problem in many parts of the world. Although the history of the 1929 depression is frightening, it may nevertheless be useful to look at the measures which were used then to bring the global economy back to its feet. A similar level of governmental responsibility may help us to avoid some of the more painful consequences of the necessary transition from the economics of growth to steady-state economics.

In the United States, President Franklin D. Roosevelt was faced with the difficult problems of the depression during his first few years in office. Roosevelt introduced a number of special governmental programs, such as the WPA, the Civilian Construction Corps and the
8.9. THE TRANSITION FROM GROWTH TO A STEADY STATE - MINIMIZING THE TRAUMA

Figure 8.7: Franklin D. Roosevelt (1882-1945) with his dog Fala and Ruthie Bie at Hilltop in 1941. Roosevelt served as President of the United States from 1933 to 1945, and was starting his 4th term when he died. Although crippled by polio, he managed to convey an image of dynamism and confidence.

Tennessee Valley Authority, which were designed to create new jobs on projects directed towards socially useful goals - building highways, airfields, auditoriums, harbors, housing projects, schools and dams. The English economist John Maynard Keynes, (1883-1946), provided an analysis of the factors that had caused the 1929 depression, and a theoretical justification of Roosevelt’s policies.

The transition to a sustainable global society will require a similar level of governmental responsibility, although the measures needed are not the same as those which Roosevelt used to end the great depression. Despite the burst of faith in the free market which has followed the end of the Cold War, it seems unlikely that market mechanisms alone will be sufficient to solve problems of unemployment in the long-range future, or to achieve conservation of land, natural resources and environment.
8.10 Keynesian economics

In December, 1933, Keynes wrote to Franklin D. Roosevelt: “Dear Mr. President, You have made yourself the Trustee for those in every country who seek to mend the evils of our condition by reasoned experiment within the framework of the existing social system. If you fail, rational change will be gravely prejudiced throughout the world, leaving orthodoxy and revolution to fight it out. But if you succeed, new and bolder methods will be tried everywhere, and we may date the first chapter of a new economic era from your accession to office...”

“...Thus as the prime mover in the first stage of the technique of recovery I lay overwhelming emphasis on the increase of national purchasing power resulting from governmental expenditure which is financed by Loans and not by taxing present incomes. Nothing else counts in comparison with this. In a boom inflation can be caused by allowing unlimited credit to support the excited enthusiasm of business speculators. But in a slump governmental Loan expenditure is the only sure means of securing quickly a rising output at rising prices. That is why war has always caused intense industrial activity. In the past orthodox finance has regarded war as the only legitimate excuse for creating employment by governmental expenditure. You, Mr. President, having cast off such fetters, are free to engage in the interests of peace and prosperity the technique which hitherto has only been allowed to serve the purposes of war and destruction.”

John Maynard Keynes (1883-1946), the author of this letter to Roosevelt, was the son of the Cambridge University economist and logician, Neville Keynes. After graduating from Eton and studying economics at King’s College, Cambridge, Keynes spent a few years as a civil servant in the India Office. In 1909, he returned to Cambridge as a Fellow of King’s College. He became a member of the “Bloomsbury Group”, a collection of intellectual friends that included Virginia and Leonard Woolf, E.M. Forster, Clive and Vanessa Bell, Duncan Grant, Lytton Strachy, Roger Fry, and Bertrand Russell. In 1911, Keynes became the editor of the Economic Journal, a position that he retained almost until the end of his life.

In 1918, Keynes married the Russian ballerina Lydia Lopokova. They met at a party given by the Sitwells. Lydia was struggling to learn English, and one of her more interesting remarks was, “I dislike being in the country in August because my legs get so bitten by barristers”. To everyone’s surprise, Lydia proved to be the perfect wife for Keynes, encouraging his wide range of cultural interests. He and Lydia did much to develop the Cambridge Arts Theatre. Lydia maintained her interest in the ballet, although she no longer danced professionally. Visitors to the couple’s house occasionally heard formidable thumpings from an upper room, and they realized that Lydia was practicing.

During World War I, Keynes worked in the British Treasury, helping to find ways to finance the war. In 1919, he was sent to the peace conference at Versailles as a representative of the Treasury. Keynes recognized the disastrous economic consequences that would follow from the Treaty of Versailles, and returning to Cambridge, he wrote The Economic Consequences of the Peace (1919). “It is an extraordinary fact”, Keynes wrote, “that the fundamental problems of a Europe starving and disintegrating before their eyes, was the
Figure 8.8: John Maynard Keynes (right) with Harry Dexter White at the Bretton Woods Conference. Keynes was an extremely tall man - 6 feet and 6 inches tall, i.e. 198 cm. Heart problems caused his early death.
one question in which it was impossible to arouse the interest of the [Council of] Four."

The book became a best seller and was very influential in shaping public opinion, both in England and in the United States. In his book, Keynes predicted that the reparations imposed against Germany at Versailles would cause economic ruin. He advocated instead a loan system to rebuild postwar Europe. The plan advocated by Keynes was similar to the Marshall Plan that followed World War II. Had it been put into effect in 1919, it might have prevented the Second World War.

In 1936, Keynes published his magnum opus, *General Theory of Employment, Interest and Money*. In this book, he provided a theoretical explanation for the fact that the great depression showed no tendency to right itself, as well as arguments for governmental interventions to counter business cycles and to produce full employment. Once again, Keynes
had written a best-seller. His *General Theory* proved to be one of the most influential books on economics ever written.

Keynes rebelled against the ideas of the classical economists, who believed that if let entirely alone, the world economy would correct itself. The classical economists recommended that, to end the depression, labor unions should be made illegal, minimum wages and long-term wage contracts abolished, and government spending curtailed (to restore business confidence). Then, they maintained, wages would fall, businessmen would hire more workers, and full employment and production would be restored. One reason for the popularity of the *General Theory* was that everyone knew the recommendations of the classical economists were bad policies. Now Keynes showed why these bad policies were also bad economics.

Keynes pointed out that a fall in wages would produce a fall in purchasing power, and hence a fall in aggregate demand. Producers would then be less able to sell their products. Thus Keynes believed that falling wages would deepen the depression, rather than ending it.

Part of Keynes’ skepticism towards classical economics had to do with his criticisms of the short-term version of Say’s Law, on which classical economics was based. In Chapter 2, we mentioned that Jean-Baptiste Say (1767-1832) believed a general glut to be impossible, since wages for the production of goods could be used by society to buy back its aggregate production. “A glut”, Say wrote, “can take place only when there are too many means of production applied to one kind of product, and not enough to another.”

Say considered the influence of the money supply on this process to be negligible, and he believed that the problem could be analyzed from the standpoint of barter. Say believed that no one would keep money for long. Having obtained money in a transaction, he believed, people would immediately spend it again. Thus Say did not worry about the problem of excessive saving that bothered both Malthus and Hobson.

“It is not the abundance of money”, Say wrote, “but the abundance of other products in general that facilitates sales... Money performs no more than the role of a conduit in this double exchange. When the exchanges have been completed, it will be found that one has paid for products with products.”

“It is worthwhile to remark”, Say continued, “that a product is no sooner created than it, from that instant, affords a market for other products to the full extent of its value. When the producer has put the finishing hand to his product, he is most anxious to sell it immediately, lest its value should diminish in his hands. Nor is he less anxious to dispose of the money he may get for it; for the value of money is also perishable. But the only way to get rid of money is in the purchase some product or other. Thus the mere circumstance of creation of one product immediately opens a vent for other products.”

Keynes disagreed with these conclusions in several respects. First of all, he did not believe, like Say, that the money supply played a negligible role in determining economic activity. Secondly he did not agree that the producer who has received money for his goods is necessarily “anxious to dispose of the money”. As a recession deepens, the value of money in terms of goods increases, and therefore it is rational to keep money, hoping to get more goods for it at a later time. Whether it is more rational to keep money or to
spend it immediately depends on the phase of the business cycle, Keynes pointed out.

In James Mill’s version, Say’s Law states that “supply creates its own demand”. Keynes reversed this, and maintained in a depression, the fault may be on the demand side, i.e., “demand creates supply”, rather than the reverse. It is true that during the great depression, many people were in need; but need does not constitute demand in the economic sense unless it is combined with purchasing power.

Keynes (like Malthus and Hobson) believed that excessive saving could be a serious problem, capable of causing a “general glut” or depression. By excessive saving, he meant saving beyond planned investment, a condition that could be caused by falling consumer demand, overinvestment in previous years, or lack of business confidence. The classical economists believed that excessive saving would be corrected by falling interest rates. Keynes did not believe that interest rates would respond quickly enough to perform this corrective function. Instead, Keynes believed, excessive savings would be in the end corrected by the fall in aggregate income which characterizes a recession or depression. The economy would reach a new equilibrium at low levels of employment, income, investment and production. This new, undesirable equilibrium would not be self-correcting. (By calling his theory a General Theory, Keynes meant that he treated not only the full-employment equilibrium, but also other types of equilibria.)

Keynes believed that active government fiscal and monetary policy could be effective in combating cycles of inflation and depression. Fiscal policy is defined as policy regarding government expenditure, while monetary policy means governmental policy with respect to the money supply. Keynes advocated a counter-cyclical use of these two tools, i.e. he believed that government spending and expansionist monetary policy should be used to combat recessions and depressions, while the opposite policies should be used to cool an economy whenever it became overheated.

Keynes visited Roosevelt in Washington in 1934. Roosevelt liked him, but found his theories overly mathematical. Nevertheless Keynes ideas influenced Roosevelt’s policies, especially in 1937, when a new dip in the economy occurred. Over the years, Keynes’ advocacy of counter-cyclical governmental intervention has become widely accepted, especially by social-democratic governments in Europe.

The New Deal measures inaugurated by Roosevelt were only partially effective in producing full employment. The reason that they were only partially successful was that although they were designed to help business get restarted, they were viewed with hostility by the business community. This hostility prevented Roosevelt from using fiscal policy on a large enough scale to produce full employment. Also, because businessmen felt uneasy with the new political climate, business investment remained sluggish.

One of the conclusions of Keynes’ General Theory was that investment by expanding businesses is essential to keep an economy from contracting. This conclusion is worrying, because in the future, exponential expansion of business activity will gradually become less and less possible. Thus we can visualize a future need for governmental intervention to prevent a depression.

During World War II, Keynes advice on how to finance the war effort was sought by the British government. He did as much as he could, but his activity was limited by increasing
8.11. THE TRANSITION TO A SUSTAINABLE ECONOMY

heart problems. At the end of the war, Keynes represented England at the Breton Woods Conference, which established the World Bank and the International Monetary Fund. He received many honors - for example, he became Lord Keynes. However, his health remained unstable, and in 1946 he died of a heart attack. His life and work had produced a permanent change from the *laissez faire* economics of Adam Smith to an era of recognized governmental responsibility.

8.11 The transition to a sustainable economy

The Worldwatch Institute, Washington D.C., lists the following steps as necessary for the transition to sustainability[1]

1. Stabilizing population
2. Shifting to renewable energy
3. Increasing energy efficiency
4. Recycling resources
5. Reforestation
6. Soil Conservation

All of these steps are labor-intensive; and thus, wholehearted governmental commitment to the transition to sustainability can help to solve the problem of unemployment.

8.12 The World Bank Report

In 2019, the World Bank plans to publish a report entitled *The Future of Work*. A working draft of the report is already available. Here are a few of the figures from the the working

We must now urge our governments to use their powers to promote sustainability and to reduce the trauma of the transition to a steady-state economy. For example, an increase in the taxes on fossil fuels could make a number of renewable energy technologies economically competitive; and higher taxes on motor fuels would be especially useful in promoting the necessary transition from private automobiles to bicycles and public transportation. Tax changes could also be helpful in motivating smaller families.

Governments already recognize their responsibility for education. In the future, they must also recognize their responsibility for helping young people to make a smooth transition from education to secure jobs. If jobs are scarce, work must be shared, in a spirit of solidarity, among those seeking employment; hours of work (and if necessary, living standards) must be reduced to insure a fair distribution of jobs. Market forces alone cannot achieve this. The powers of government are needed.

Economic activity is usually divided into two categories, 1) production of goods and 2) provision of services. It is the rate of production of goods that will be limited by the carrying capacity of the global environment. Services that have no environmental impact will not be constrained in this way. Thus a smooth transition to a sustainable economy will involve a shift of a large fraction the work force from the production of goods to the provision of services.

In his recent popular book *The Rise of the Creative Class*, the economist Richard Florida points out that in a number of prosperous cities - for example Stockholm - a large fraction of the population is already engaged in what might be called creative work - a type of work that uses few resources, and produces few waste products - work which develops knowledge and culture rather than producing material goods. For example, producing computer software requires few resources and results in few waste products. Thus it is an activity with a very small ecological footprint. Similarly, education, research, music, literature and art are all activities that do not weigh heavily on the carrying capacity of the global environment. Florida sees this as a pattern for the future, and maintains that everyone is capable of creativity. He visualizes the transition to a sustainable future economy as one in which a large fraction of the work force moves from industrial jobs to information-related work. Meanwhile, as Florida acknowledges, industrial workers feel uneasy and threatened by such trends.
Figure 8.11: Count-down to a singularity: A log-log plot of events versus time before 2018 yields an approximately straight line. Source: Kurzweil, Ray. 1990. The Age of Intelligent Machines. Cambridge, MA: MIT Press.
Figure 8.12: Share of self-employed workers in the labor force, select countries. Source: OECD, 2016.
Figure 8.14: Harmonized educational test scores and per capita GDP. Source: Altinok, Angrist, and Patrinos (2018).
Figure 8.15: Time needed for technological diffusion keeps getting shorter.
Figure 8.16: The brain’s ability to learn from experience decreases with age. Source: Center on the Developing Child at Harvard University 2016.
8.12. THE WORLD BANK REPORT

Figure 8.17: Lower payoffs to work correspond with more legal restrictions on women at work. Source: Authors’ calculations based on Iqbal and authors (2016).
Figure 8.18: **Elements of a hypothetical social contract.**
8.13 Population and goods per capita

In the distant future, the finite carrying capacity of the global environment will impose limits on the amount of resource-using and waste-generating economic activity that it will be possible for the world to sustain. The consumption of goods per capita will be equal to this limited total economic activity divided by the number of people alive at that time. Thus, our descendants will have to choose whether they want to be very numerous and very poor, or less numerous and more comfortable, or very few and very rich. Perhaps the middle way will prove to be the best.

Given the fact that environmental carrying capacity will limit the sustainable level of resource-using economic activity to a fixed amount, average wealth in the distant future will be approximately inversely proportional to population over a certain range of population values.\footnote{Obviously, if the number of people is reduced to such an extent that it approaches zero, the average wealth will not approach infinity, since a certain level of population is needed to maintain a modern economy. However, if the global population becomes extremely large, the average wealth will indeed approach zero.}

8.14 Our information-based economy

The threat of technological unemployment

Technological change has made economies more efficient, but at the same time, the human workers have been displaced by machines.

In the early stages of the Industrial Revolution, artisan weavers were made jobless by weaving machines. The Luddite movement destroyed the machines as a protest. The movement began in Nottingham and culminated in a region-wide rebellion that lasted from 1811 to 1816. Mill owners took to shooting protesters and eventually the movement was suppressed with military force.

As technology advances, the percentage of the population engaged in agriculture has declined rapidly. In the industrialized countries today, only 5% of the population is engaged in agriculture. Meanwhile, in the less developed parts of the world, approximately two thirds of the population works on farms. One fears that as industrialized farming methods spread throughout the world, a massive wave of unemployed farmers will be driven from the land into already-overcrowded cities, which do not have the infrastructure to deal with the new arrivals.

Today, as human labor is replaced by automatic machines and robots, technological unemployment may also hit factory workers in the industrialized part of the world.

Our economy is increasingly based on knowledge and information
8.15 Full employment is more important than profit

The Worldwatch Institute, Washington D.C., lists the following steps as necessary for the transition to sustainability:

1. Stabilizing population
2. Shifting to renewable energy
3. Increasing energy efficiency
4. Recycling resources
5. Reforestation
6. Soil Conservation

All of these steps are labor-intensive; and thus, wholehearted governmental commitment to the transition to sustainability can help to solve the problem of unemployment.

We are approaching the moment in history where industrial growth will no longer be possible. If no changes have been made in our economic system when this happens, we will be faced with massive unemployment. Two changes are needed to prevent this:

1. Labor must be moved to tasks related to ecological sustainability. These include development of renewable energy, reforestation, soil and water conservation, replacement of private transportation by public transport, and agricultural development. Health and family planning services must also be made available to all.

2. Opportunities for employment must be shared among those in need of work, even if this means reducing the number of hours that each person works each week and simultaneously reducing the use of luxury goods, unnecessary travel, and all forms of conspicuous consumption. It will be necessary for governments to introduce laws reducing the length of the working week, thus ensuring that opportunities for employment are shared equally.

As Sigmund Freud pointed out in his book, *Civilization and Its Discontents*, work is essential to our happiness and psychological stability. Work gives us personal contacts outside our homes, a sense of self-worth because of contributing to the good of society, and structure in our daily lives.

We must also remember Mahatma Gandhi’s words: "Machinery has its place; it has come to stay. But it must not be allowed to displace necessary human labour. An improved plow is a good thing. But if by some chances, one man could plow up, by some mechanical invention of his, the whole of the land of India, and control all the agricultural produce, and if the millions had no other occupation, they would starve, and being idle, they would become dunces, as many have already become. There is hourly danger of many being reduced to that unenviable state."

Full employment is more important than profit!

Suggestions for further reading

8.15. FULL EMPLOYMENT IS MORE IMPORTANT THAN PROFIT

8.15. FULL EMPLOYMENT IS MORE IMPORTANT THAN PROFIT

Chapter 9

CULTURE IS COOPERATIVE, NOT COMPETITIVE

9.1 Human society as a superorganism

The social insects

The social insects, ants, bees, wasps and termites, exhibit nearly perfect altruism towards members of their own group. This extreme form of altruism towards near relations (kin altruism) is closely connected with the peculiar method of reproduction of the social insects. The workers are sterile or nearly sterile, while the queen is the only reproductive female. The result of this special method of reproduction is that very nearly perfect altruism is possible within a hive or nest, since genetic changes favoring antisocial behavior would be detrimental to the hive or nest as a whole. The hive or nest can, in some sense, be regarded as a superorganism, with the individuals cooperating totally in much the same way that cells cooperate within a multicellular organism. The social insects exhibit aggression towards members of their own species from other hives or nests, and can be said to engage in wars. Interestingly a similar method of reproduction, associated with extreme intra-group altruism has evolved among mammals, but is represented by only two species: the naked mole rat and Damaraland mole rat.

A completely isolated human being would find it as difficult to survive for a long period of time as would an isolated ant or bee or termite. Therefore it seems correct to regard human society as a superorganism. In the case of humans, the analog of the social insects’ nest is the enormous and complex material structure of civilization. It is, in fact, what we call the human economy. It consists of functioning factories, farms, homes, transportation links, water supplies, electrical networks, computer networks and much more.

Almost all of the activities of modern humans take place through the medium of these external “exosomatic” parts of our social superorganism. The terms “exosomatic” and “endosomatic” were coined by the American scientist Alfred Lotka (1880-1949). A lobster’s claw is endosomatic; it is part of the lobster’s body. The hammer used by a human is exosomatic, like a detachable claw. Lotka spoke of “exosomatic evolution”, including in
this term not only cultural evolution but also the building up of the material structures of civilization.

The economy associated with the human superorganism “eats” resources and free energy. It uses these inputs to produce local order, and finally excretes them as heat and waste. The process is closely analogous to food passing through the alimentary canal of an individual organism. The free energy and resources that are the inputs of our economy drive it just as food drives the processes of our body, but in both cases, waste products are finally excreted in a degraded form.

Sociobiology

The famous Harvard biologist Edward O. Wilson was born in 1929 in Birmingham, Alabama. When he was seven years old, he was blinded in one eye in a fishing accident. Passionately interested in animals, Wilson decided that with his limitations in eyesight, he ought to concentrate on insects. He eventually became the world’s greatest expert on social insects, especially ants.

Within each colony, the social insects, such as ants, bees and termites, are perfect altruists. The key to how this is possible lies in their special method of reproduction. All of the members of a colony are very nearly genetically identical, because all are the offspring of a single queen, the only female of the colony that reproduces. Thus the colony as a whole is the unit on which evolutionary forces act. The colony as a whole either survives or perishes, depending on how well it functions. The fate of the individual is indissolubly linked with the fate of the society as a whole, and individualistic antisocial mutations have no chance to propagate.

E.O. Wilson’s important book, Sociobiology, was published in 1975. In it, Wilson discusses not only the social insects, but also species, such as humans, that are less than perfectly altruistic within their own societies.

Professor Wilson is also famous for his advocacy of conservation measures to save threatened species, and he has been called “the father of biodiversity”, as well as “the father of sociobiology”.

Figure 9.1: Sociobiology on the cover of Time Magazine
Figure 9.2: E.O. Wilson (born 1929), the “father of sociobiology” and “the father of biodiversity”.

Figure 9.3: Wilson’s famous book
9.2 The evolution of cooperation

The success of humans as a species is due to our genius for cooperation. Cultural evolution, a new form of evolution, in which information is passed between generations in the form of linguistic symbols rather than genetically, has been the key to human success. Cultural evolution depends on the sharing of knowledge, and humans have developed remarkable linguistic and cooperative abilities.

At the same time, human nature also has a darker side, inherited from our ancestors who were hunter-gatherers, living in small genetically homogeneous tribes, competing for territory, on the grasslands of Africa. The pattern of intra-tribal altruism and inter-tribal aggression, which humans have inherited from their remote ancestors, has been explained by the theories of population genetics and group selection put forward in the 1930’s by R.A. Fischer and J.B.S Haldane, and discussed more recently by W.D. Hamilton and E.O. Wilson. In this picture, the tribe itself, rather than the individual, is the unit on which evolutionary forces acted.

This section will try to show that symbiosis and cooperation have been responsible for all of the great upward steps in evolution, including the development of the first prokaryotic cells, the first eukaryotes, the first multi-cellular organisms, and the first cooperative groups of multicellular organisms. The views of T.H. Huxley, who stressed competition as an evolutionary force, will be contrasted with the ideas of Charles Darwin, Peter Kropotkin and Lynn Margulis and others, who fully understood the importance of symbiosis and cooperation in evolution.

The explosion of human knowledge

Cultural evolution depends on the non-genetic storage, transmission, diffusion and utilization of information. The development of human speech, the invention of writing, the development of paper and printing, and finally in modern times, mass media, computers and the Internet - all these have been crucial steps in society’s explosive accumulation of information and knowledge. Human cultural evolution proceeds at a constantly-accelerating speed, so great in fact that it threatens to shake society to pieces.

Every species changes gradually through genetic evolution; but with humans, cultural evolution has rushed ahead with such a speed that it has completely outstripped the slow rate of genetic change. Genetically we are quite similar to our neolithic ancestors, but their world has been replaced by a world of quantum theory, relativity, supercomputers, antibiotics, genetic engineering and space telescopes - unfortunately also a world of nuclear weapons and nerve gas.

Because of the slowness of genetic evolution in comparison to the rapid and constantly-accelerating rate of cultural change, our bodies and emotions (as Malthus put it, the “passions of mankind”) are not completely adapted to our new way of life. They still reflect the way of life of our hunter-gatherer ancestors.

Within rapidly-moving cultural evolution, we can observe that technical change now moves with such astonishing rapidity that neither social institutions, nor political struc-
tures, nor education, nor public opinion can keep pace. The lightning-like pace of technical progress has made many of our ideas and institutions obsolete. For example, the absolutely-sovereign nation-state and the institution of war have both become dangerous anachronisms in an era of instantaneous communication, global interdependence and all-destroying weapons.

In many respects, human cultural evolution can be regarded as an enormous success. However, at the start of the 21st century, most thoughtful observers agree that civilization is entering a period of crisis. As all curves move exponentially upward - population, production, consumption, rates of scientific discovery, and so on - one can observe signs of increasing environmental stress, while the continued existence and spread of nuclear weapons threatens civilization with destruction. Thus while the explosive growth of knowledge has brought many benefits, the problem of achieving a stable, peaceful and sustainable world remains serious, challenging and unsolved.

Tribal emotions and nationalism

In discussing conflicts, we must be very careful to distinguish between two distinct types of aggression exhibited by both humans and animals. The first is intra-group aggression, which is often seen in rank-determining struggles, for example when two wolves fight for pack leadership, or when males fight for the privilege of mating with females. Another, completely different, type of aggression is seen when a group is threatened by outsiders. Most animals, including humans, then exhibit a communal defense response - self-sacrificing and heroic combat against whatever is perceived to be an external threat. It is this second type of aggression that makes war possible.

Arthur Koestler has described inter-group aggression in an essay entitled *The Urge to Self-Destruction*, where he writes: “Even a cursory glance at history should convince one that individual crimes, committed for selfish motives, play a quite insignificant role in the human tragedy compared with the numbers massacred in unselfish love of one’s tribe, nation, dynasty, church or ideology... Wars are not fought for personal gain, but out of loyalty and devotion to king, country or cause...”

“We have seen on the screen the radiant love of the Führer on the faces of the Hitler Youth... They are transfixed with love, like monks in ecstasy on religious paintings. The sound of the nation’s anthem, the sight of its proud flag, makes you feel part of a wonderfully loving community. The fanatic is prepared to lay down his life for the object of his worship, as the lover is prepared to die for his idol. He is, alas, also prepared to kill anybody who represents a supposed threat to the idol.” The emotion described here by Koestler is the same as the communal defense mechanism (“militant enthusiasm”) described below in biological terms by the Nobel Laureate ethologist Konrad Lorenz.

In *On Aggression*, Lorenz gives the following description of the emotions of a hero preparing to risk his life for the sake of the group: “In reality, militant enthusiasm is a

specialized form of communal aggression, clearly distinct from and yet functionally related to the more primitive forms of individual aggression. Every man of normally strong emotions knows, from his own experience, the subjective phenomena that go hand in hand with the response of militant enthusiasm. A shiver runs down the back and, as more exact observation shows, along the outside of both arms. One soars elated, above all the ties of everyday life, one is ready to abandon all for the call of what, in the moment of this specific emotion, seems to be a sacred duty. All obstacles in its path become unimportant; the instinctive inhibitions against hurting or killing one’s fellows lose, unfortunately, much of their power. Rational considerations, criticisms, and all reasonable arguments against the behavior dictated by militant enthusiasm are silenced by an amazing reversal of all values, making them appear not only untenable, but base and dishonorable. Men may enjoy the feeling of absolute righteousness even while they commit atrocities. Conceptual thought and moral responsibility are at their lowest ebb. As the Ukrainian proverb says: ‘When the banner is unfurled, all reason is in the trumpet’.

“The subjective experiences just described are correlated with the following objectively demonstrable phenomena. The tone of the striated musculature is raised, the carriage is stiffened, the arms are raised from the sides and slightly rotated inward, so that the elbows point outward. The head is proudly raised, the chin stuck out, and the facial muscles mime the ‘hero face’ familiar from the films. On the back and along the outer surface of the arms, the hair stands on end. This is the objectively observed aspect of the shiver!”

“Anybody who has ever seen the corresponding behavior of the male chimpanzee defending his band or family with self-sacrificing courage will doubt the purely spiritual character of human enthusiasm. The chimp, too, sticks out his chin, stiffens his body, and raises his elbows; his hair stands on end, producing a terrifying magnification of his body contours as seen from the front. The inward rotation of the arms obviously has the purpose of turning the longest-haired side outward to enhance the effect. The whole combination of body attitude and hair-raising constitutes a bluff. This is also seen when a cat humps its back, and is calculated to make the animal appear bigger and more dangerous than it really is. Our shiver, which in German poetry is called a ‘heiliger Schauer’, a ‘holy’ shiver, turns out to be the vestige of a prehuman vegetative response for making a fur bristle which we no longer have. To the humble seeker for biological truth, there cannot be the slightest doubt that human militant enthusiasm evolved out of a communal defense response of our prehuman ancestor.”

Lorenz goes on to say, “An impartial visitor from another planet, looking at man as he is today - in his hand the atom bomb, the product of his intelligence - in his heart the aggression drive, inherited from his anthropoid ancestors, which the same intelligence cannot control - such a visitor would not give mankind much chance of survival.”

Members of tribe-like groups are bound together by strong bonds of altruism and loyalty. Echos of these bonds can be seen in present-day family groups, in team sports, in the fellowship of religious congregations, and in the bonds that link soldiers to their army comrades and to their nation.

Warfare involves not only a high degree of aggression, but also an extremely high degree of altruism. Soldiers kill, but they also sacrifice their own lives. Thus patriotism and duty
are as essential to war as the willingness to kill.

Tribalism involves passionate attachment to one’s own group, self-sacrifice for the sake of the group, willingness both to die and to kill if necessary to defend the group from its enemies, and belief that in case of a conflict, one’s own group is always in the right. Unfortunately these emotions make war possible; and today a Third World War might lead to the destruction of civilization.

The mystery of self-sacrifice in war

At first sight, the willingness of humans to die defending their social groups seems hard to explain from the standpoint of Darwinian natural selection. After the heroic death of such a human, he or she will be unable to produce more children, or to care for those already born. Therefore one might at first suppose that natural selection would work strongly to eliminate the trait of self-sacrifice from human nature. However, the theory of population genetics and group selection can explain both the willingness of humans to sacrifice themselves for their own group, and also the terrible aggression that they sometimes exhibit towards competing groups. It can explain both intra-group altruism and inter-group aggression.

Fisher, Haldane and Hamilton

The idea of group selection in evolution was proposed in the 1930’s by J.B.S. Haldane and R.A. Fischer, and more recently it has been discussed by W.D. Hamilton and E.O. Wilson.

If we examine altruism and aggression in humans, we notice that members of our species exhibit great altruism towards their own children. Kindness towards close relatives is also characteristic of human behavior, and the closer the biological relationship is between two humans, the greater is the altruism they tend to show towards each other. This profile of altruism is easy to explain on the basis of Darwinian natural selection since two closely related individuals share many genes and, if they cooperate, the genes will be more effectively propagated.

To explain from an evolutionary point of view the communal defense mechanism - the willingness of humans to kill and be killed in defense of their communities - we have only to imagine that our ancestors lived in small tribes and that marriage was likely to take place within a tribe rather than across tribal boundaries. Under these circumstances, each tribe would tend to consist of genetically similar individuals. The tribe itself, rather than the individual, would be the unit on which the evolutionary forces of natural selection would act.

According to the group selection model, a tribe whose members showed altruism towards each other would be more likely to survive than a tribe whose members cooperated less effectively. Since several tribes might be in competition for the same territory, successful aggression against a neighboring group could increase the chances for survival of one’s own tribe. Thus, on the basis of the group selection model, one would expect humans to be kind and cooperative towards members of their own group, but at the same
time to sometimes exhibit aggression towards members of other groups, especially in conflicts over territory. One would also expect intergroup conflicts to be most severe in cases where the boundaries between groups are sharpest - where marriage is forbidden across the boundaries.

Language, religion and tribal markings

In biology, a species is defined to be a group of mutually fertile organisms. Thus all humans form a single species, since mixed marriages between all known races will produce children, and subsequent generations in mixed marriages are also fertile. However, although there is never a biological barrier to marriages across ethnic and racial boundaries, there are often very severe cultural barriers.

Irenäus Eibl-Eibesfeldt, a student of Konrad Lorenz, introduced the word *pseudospeciation* to denote cases where cultural barriers between two groups of humans are so strongly marked that marriages across the boundary are difficult and infrequent. In such cases, he pointed out, the two groups function as though they were separate species, although from a biological standpoint this is nonsense. When two such groups are competing for the same land, the same water, the same resources, and the same jobs, the conflicts between them can become very bitter indeed. Each group regards the other as being “not truly human”.

In his book *The Biology of War and Peace*, Eibl-Eibesfeldt discusses the “tribal markings” used by groups of humans to underline their own identity and to clearly mark the boundary between themselves and other groups. One of the illustrations in his book shows the marks left by ritual scarification on the faces of the members of certain African tribes. These scars would be hard to counterfeit, and they help to establish and strengthen tribal identity. Seeing a photograph of the marks left by ritual scarification on the faces of African tribesmen, it is impossible not to be reminded of the dueling scars that Prussian army officers once used to distinguish their caste from outsiders.

Surveying the human scene, one can find endless examples of signs that mark the bearer as a member of a particular group - signs that can be thought of as “tribal markings”: tattoos; piercing; bones through the nose or ears; elongated necks or ears; filed teeth; Chinese binding of feet; circumcision, both male and female; unique hair styles; decorations of the tongue, nose, or naval; peculiarities of dress, kilts, tartans, school ties, veils, chadors, and headdresses; caste markings in India; use or nonuse of perfumes; codes of honor and value systems; traditions of hospitality and manners; peculiarities of diet (certain foods forbidden, others preferred); giving traditional names to children; knowledge of dances and songs; knowledge of recipes; knowledge of common stories, literature, myths, poetry or common history; festivals, ceremonies, and rituals; burial customs, treatment of the dead and ancestor worship; methods of building and decorating homes; games and sports peculiar to a culture; relationship to animals, knowledge of horses and ability to ride; nonrational systems of belief. Even a baseball hat worn backwards or the professed ability to enjoy atonal music can mark a person as a member of a special “tribe”.

By far the most important mark of ethnic identity is language, and within a particular
language, dialect and accent. If the only purpose of language were communication, it would be logical for the people of a small country like Denmark to stop speaking Danish and go over to a more universally-understood international language such as English. However, language has another function in addition to communication: It is also a mark of identity. It establishes the boundary of the group.

Next after language, the most important “tribal marking” is religion. It seems probable that in the early history of our hunter-gatherer ancestors, religion evolved as a mechanism for perpetuating tribal traditions and culture. Like language, and like the innate facial expressions studied by Darwin, religion is a universal characteristic of all human societies. All known races and cultures practice some sort of religion. Thus a tendency to be religious seems to be built into human nature.

Formation of group identity

Although humans originally lived in small, genetically homogeneous tribes, the social and political groups of the modern world are much larger, and are often multiracial and multicultural.

There are a number of large countries that are remarkable for their diversity, for example Brazil, Argentina and the United States. Nevertheless it has been possible to establish social cohesion and group identity within each of these enormous nations. India and China too, are mosaics of diverse peoples, but nevertheless, they function as coherent societies. Thus we see that group identity is a social construction, in which artificial “tribal markings” define the boundaries of the group.

As an example of the use of tribal markings to establish social cohesion over a large group of genetically dissimilar humans, one can think of the role of baseball and football in the United States. Affection for these sports and knowledge of their intricacies is able to establish social bonds that transcend racial and religious barriers.

One gains hope for the future by observing how it has been possible to produce both internal peace and social cohesion over very large areas of the globe - areas that contain extremely diverse populations. The difference between making large, ethnically diverse countries function as coherent sociopolitical units and making the entire world function as a unit is not very great.

Since group identity is a social construction, it is not an impossible goal to think of enlarging the already-large groups of the modern world to include all of humanity.

From Thomas Huxley to Lynn Margulis and symbiosis

Charles Darwin (1809-1882) was acutely aware of close and mutually beneficial relationships between organisms. For example, in his work on the fertilization of flowers, he studied the ways in which insects and plants can become exquisitely adapted to each other’s needs.

On the other hand Thomas Henry Huxley (1825-1895), although he was a strong supporter of Darwin, saw competition as the main mechanism of evolution. In his essay
Struggle for Existence and its Bearing Upon Man

Huxley wrote: “From the point of view of the moralist, the animal world is about on the same level as a gladiators’ show. The creatures are fairly well treated and set to fight; hereby the strongest, the swiftest, and the cunningest live to fight another day. The spectator has no need to turn his thumbs down, as no quarter is granted.”

Prince Peter Kropotkin (1842-1921) argued strongly against Huxley’s point of view in his book *Mutual Aid; A Factor of Evolution*. “If we ask Nature”, Kropotkin wrote, “who are the fittest: those who are continually at war with each other, or those who support one another?”, we at once see that those animals that acquire habits of mutual aid are undoubtedly the fittest. They have more chances to survive, and they attain, in their respective classes, the highest development of intelligence and bodily organization.”

Today, the insights of modern biology show that although competition plays an important role, most of the great upward steps in evolution have involved cooperation. The biologist Lynn Margulis (1938-2011) has been one of the pioneers of the modern viewpoint which recognizes symbiosis as a central mechanism in evolution.

One-celled organisms seen as examples of cooperation

The first small bacterial cells (prokaryotic cells) can be thought of as cooperative communities in which autocatalytic molecules thrived better together than they had previously done separately.

The next great upward step in evolution, the development of large and complex (eukaryotic) cells, also involved cooperation: Many of their components, for example mitochondria (small granular structures that are needed for respiration) and chloroplasts (the photosynthetic units of higher plants) are believed to have begun their existence as free-living prokaryotic cells. They now have become components of complex cells, cooperating biochemically with the other subcellular structures. Both mitochondria and chloroplasts possess their own DNA, which shows that they were once free-living bacteria-like organisms, but they have survived better in a cooperative relationship.

Cooperation between cells; multicellular organisms

Multicellular organisms evolved from cooperative communities of eukaryotic cells. Some insights into how this happened can be gained from examples which are just on the borderline between the multicellular organisms and single-celled ones. The cooperative behavior of a genus of unicellular eukaryotes called slime molds is particularly interesting because it gives us a glimpse of how multicellular organisms may have originated. The name of the slime molds is misleading, since they are not fungi, but are similar to amoebae.

Under ordinary circumstances, the individual cells wander about independently searching for food, which they draw into their interiors and digest. However, when food is scarce, they send out a chemical signal of distress. (Researchers have analyzed the molecule which expresses slime mold unhappiness, and they have found it to be cyclic adenosine monophosphate.) At this signal, the cells congregate and the mass of cells begins to crawl, leaving
Figure 9.4: Prince Peter Kropotkin (1842-1921). He was the author of *Mutual Aid: A Factor in Evolution*, and an early advocate for the evolutionary importance of cooperation.
Figure 9.5: Lynn Margulis (1938-2011). Her pioneering studies of symbiosis finally convinced biologists that cooperation is a more important mechanism in evolution than competition.
a slimy trail. At it crawls, the community of cells gradually develops into a tall stalk, surmounted by a sphere - the “fruiting body”. Inside the sphere, spores are produced by a sexual process. If a small animal, for example a mouse, passes by, the spores may adhere to its coat; and in this way they may be transported to another part of the forest where food is more plentiful.

Slime molds represent a sort of missing link between unicellular and multicellular or organisms. Normally the cells behave as individualists, wandering about independently, but when challenged by a shortage of food, the slime mold cells join together into an entity which closely resembles a multicellular organism.

The cells even seem to exhibit altruism, since those forming the stalk have little chance of survival, and yet they are willing to perform their duty, holding up the sphere at the top so that the spores will survive and carry the genes of the community into the future.

Multicellular organisms often live in a symbiotic relationship with other species. For example, in both animals and humans, bacteria are essential for the digestion of food. Fungi on the roots of plants aid their absorption of water and nutrients. Communities of bacteria and other organisms living in the soil are essential for the recycling of nutrients. Insects are essential to many plants for pollination.

Cooperation in groups of animals and human groups

The social behavior of groups of animals, flocks of birds and communities of social insects involves cooperation as well as rudimentary forms of language. Various forms of language, including chemical signals, postures and vocal signals, are important tools for orchestrating cooperative behavior.

The highly developed language of humans made possible an entirely new form of evolution. In cultural evolution (as opposed to genetic evolution), information is passed between generations not in the form of a genetic code, but in the form of linguistic symbols. With the invention of writing, and later the invention of printing, the speed of human cultural evolution greatly increased. Cooperation is central to this new form of evolution. Cultural advances can be shared by all humans.

Trading in primitive societies

Although primitive societies engaged in frequent wars, they also cooperated through trade. Peter Watson, an English historian of ideas, believes that long-distance trade took place as early as 150,000 before the present. There is evidence that extensive trade in obsidian and flint took place during the stone age. Evidence for wide ranging prehistoric obsidian and flint trading networks has been found in North America. Ancient burial sites in Southeast Asia show that there too, prehistoric trading took place across very large distances. Analysis of jade jewelry from the Philippines, Thailand, Malaisia and Viet Nam shows that the jade originated in Taiwan.

The invention of writing was prompted by the necessities of trade. In prehistoric Mesopotamia, clay tokens marked with simple symbols were used for accounting as early
as 8,000 BC. Often these tokens were kept in clay jars, and symbols on the outside of the jars indicated the contents. About 3,500 BC, the use of such tokens and markings led to the development of pictographic writing in Mesopotamia, and this was soon followed by the cuneiform script, still using soft clay as a medium. The clay tablets were later dried and baked to ensure permanency. The invention of writing led to a great acceleration of human cultural evolution. Since ideas could now be exchanged and preserved with great ease through writing, new advances in technique could be shared by an ever larger cooperating community of humans. Our species became more and more successful as its genius for cooperation developed.

Gracilization and decreasing sexual dimorphism

Early ancestors of modern humans had a relatively heavy (robust) bone structure in relation to their height. This robust bone structure seems to have been favored by frequent combat. During their evolution, modern humans became less robust and more gracile. In other words, their skeletons became lighter in relation to their height. Simultaneously the height and weight of males became less different from the height and weight of females. These trends are generally interpreted as indicating that combat became less important as present-day humans evolved.

Ethics and growth of the social unit

Early religions tended to be centered on particular tribes, and the ethics associated with them were usually tribal in nature. However, the more cosmopolitan societies that began to form after the Neolithic agricultural revolution required a more universal code of ethics. It is interesting to notice that many of the great ethical teachers of human history, for example Moses, Socrates, Plato, Aristotle, Lao Tzu, Confucius, Buddha, and Jesus, lived at the time when the change to larger social units was taking place. Tribalism was no longer appropriate. A wider ethic was needed.

Today the size of the social unit is again being enlarged, this time enlarged to include the entire world. Narrow loyalties have become inappropriate and there is an urgent need for a new ethic - a global ethic. Loyalty to one’s nation needs to be supplemented by a higher loyalty to humanity as a whole.

Interdependence in modern human society

All of the great upward steps in the evolution of life on earth have involved cooperation: Prokaryotes, the first living cells, can be thought of as cooperative communities of autocatalysts; large, complex eukaryote cells are now believed to have evolved as cooperative communities of prokaryotes; multicellular organisms are cooperative communities of eukaryotes; multicellular organisms cooperate to form societies; and different species cooperate to form ecosystems. Indeed, James Lovelock has pointed out that the earth as a whole is a complex interacting system that can be regarded as a huge organism.
The enormous success of humans as a species is due to their genius for cooperation. The success of humans is a success of cultural evolution, a new form of evolution in which information is passed between generations, not in the form of DNA sequences but in the form of speech, writing, printing and finally electronic signals. Cultural evolution is built on cooperation, and has reached great heights of success as the cooperating community has become larger and larger, ultimately including the entire world.

Without large-scale cooperation, modern science would never have evolved. It developed as a consequence of the invention of printing, which allowed painfully gained detailed knowledge to be widely shared. Science derives its great power from concentration. Attention and resources are brought to bear on a limited problem until all aspects of it are understood. It would make no sense to proceed in this way if knowledge were not permanent, and if the results of scientific research were not widely shared. But today the printed word and the electronic word spread the results of research freely to the entire world. The whole human community is the repository of shared knowledge.

The achievements of modern society are achievements of cooperation. We can fly, but no one builds an airplane alone. We can cure diseases, but only through the cooperative efforts of researchers, doctors and medicinal firms. We can photograph and understand distant galaxies, but the ability to do so is built on the efforts of many cooperating individuals.

An isolated sponge cell can survive, but an isolated human could hardly do so. Like an isolated bee, a human would quickly die without the support of the community. The comfort and well-being that we experience depends on far-away friendly hands and minds, since trade is global, and the exchange of ideas is also global.

Finally, we should be conscious of our cooperative relationships with other species. We could not live without the bacteria that help us to digest our food. We could not live without the complex communities of organisms in the soil that convert dead plant matter into fertile topsoil. We could not live without plants at the base of the food chain, but plants require pollination, and pollination frequently requires insects. An intricate cooperative network of inter-species relationships is necessary for human life, and indeed necessary for all life. Competition plays a role in evolution, but the role of cooperation is greater.

Two sides of human nature

Looking at human nature, both from the standpoint of evolution and from that of everyday experience, we see the two faces of Janus; one face shines radiantly; the other is dark and menacing. Two souls occupy the human breast, one warm and friendly, the other murderous. Humans have developed a genius for cooperation, the basis for culture and civilization; but they are also capable of genocide; they were capable of massacres during the Crusades, capable of genocidal wars against the Amerinds, capable of the Holocaust, of Hiroshima, of the killing-fields of Cambodia, of Rwanda, and of Darfur.

As an example of the two sides of human nature, we can think of Scandinavia. The Vikings were once feared throughout Europe. The Book of Common Prayer in England contains the phrase “Protect us from the fury of the Northmen!”. Today the same people
are so peaceful and law-abiding that they can be taken as an example for how we would like a future world to look. Human nature has the possibility for both kinds of behavior depending on the circumstances. This being so, there are strong reasons to enlist the help of education and religion to make the bright side of human nature win over the dark side. Today, the mass media are an important component of education, and thus the mass media have a great responsibility for encouraging the cooperative and constructive side of human nature rather than the dark and destructive side.

9.3 Culture, Education and human solidarity

Cultural and educational activities have a small ecological footprint, and therefore are more sustainable than pollution-producing, fossil-fuel-using jobs in industry. Furthermore, since culture and knowledge are shared among all nations, work in culture and education leads societies naturally towards internationalism and peace.

Economies based on a high level of consumption of material goods are unsustainable and will have to be abandoned by a future world that renounces the use of fossil fuels in order to avoid catastrophic climate change, a world where non-renewable resources such as metals will become increasingly rare and expensive. How then can full employment be maintained?

The creation of renewable energy infrastructure will provide work for a large number of people; but in addition, sustainable economies of the future will need to shift many workers from jobs in industry to jobs in the service sector. Within the service sector, jobs in culture and education are particularly valuable because they will help to avoid the disastrous wars that are currently producing enormous human suffering and millions of refugees, wars that threaten to escalate into an all-destroying global thermonuclear war.

Human nature has two sides: It has a dark side, to which nationalism and militarism appeal; but our species also has a genius for cooperation, which we can see in the growth of culture. Our modern civilization has been built up by means of a worldwide exchange of ideas and inventions. It is built on the achievements of many ancient cultures. China, Japan, India, Mesopotamia, Egypt, Greece, the Islamic world, Christian Europe, and the Jewish intellectual traditions all have contributed. Potatoes, corn, squash, vanilla, chocolate, chilli peppers, and quinine are gifts from the American Indians.

We need to reform our educational systems, particularly the teaching of history. As it is taught today, history is a chronicle of power struggles and war, told from a biased national standpoint. We are taught that our own country is always heroic and in the right. We urgently need to replace this indoctrination in chauvinism by a reformed view of history, where the slow development of human culture is described, giving credit to all who have contributed. When we teach history, it should not be about power struggles. It should be about how human culture was gradually built up over thousands of years by the patient

3 http://eruditio.worldacademy.org/article/evolution-cooperation
work of millions of hands and minds. Our common global culture, the music, science, literature and art that all of us share, should be presented as a precious heritage - far too precious to be risked in a thermonuclear war.

We have to extend our loyalty to the whole of the human race, and to work for a world not only free from nuclear weapons, but free from war. A war-free world is not utopian but very practical, and not only practical but necessary. It is something that we can achieve and must achieve. Today their are large regions, such as the European Union, where war would be inconceivable. What is needed is to extend these.

Nor is a truly sustainable economic system utopian or impossible. To achieve it, we should begin by shifting jobs to the creation of renewable energy infrastructure, and to the fields of culture and education. By so doing we will support human solidarity and avoid the twin disasters of catastrophic war and climate change.

Formation of group identity in modern nations

Our hunter-gatherer ancestors lived together in small genetically-homogeneous tribes, but modern nations are not only much larger, but also often multiracial and multiethnic.

If we think, for example of very large nations like the United States, Brazil, China or India, we are struck by the fact that it has been possible to achieve social cohesion within them, despite the size and ethnic diversity of these enormous countries.

If it is possible to produce social coherence over such large land areas and such with such multicultural populations, it must also be possible to make the entire world function as a single society, bound together by bonds of loyalty to humanity as a whole - a new kind
of loyalty that transcends the old boundaries between nations.

Nevertheless, since a tendency towards tribalism seems to be part of human nature, we should not underestimate the difficulty of making an ethnically diverse society function as a single unit. We can and must achieve a united world, where human solidarity transcends all boundaries, but this will require commitment and responsibility on the part of religions, mass media, educational systems and governments throughout the world.

The same techniques that are today used to produce patriotism and solidarity within ethnically diverse nations must be used produce a higher loyalty to all of humanity. One can continue to feel loyalty to one’s own family, ethnic group and nation, and at the same time recognize that the well-being of humanity as a whole represents a still higher goal. Loyalty to the entire human race is a higher form of patriotism.
9.4 Modern weapons

Hiroshima and Nagasaki

On August 6, 1945, a nuclear bomb was used against the predominantly civilian population of the city of Hiroshima in an already virtually defeated Japan. A few days later, a similar bomb was used against Nagasaki. The population of Hiroshima was 250,000, and of these, roughly 100,000 were killed immediately while another 100,000 were injured. Large numbers died later from radiation sickness, so that the total number of deaths reached approximately 140,000.

Many people were trapped in the wreckage of their houses and burned to death in the fires that followed the two nuclear explosions. In places near to the epicenters, people were entirely vaporized, leaving only shadows burned onto the pavement to show where they had been.

The postwar nuclear arms race

Although there was relief that the Second World War was over, many thoughtful people, including the French author Albert Camus, were horrified that bombs of this type had been used against civilian populations. Shortly after the bombings, Camus wrote: “Our technical civilization has just reached its greatest level of savagery. We will have to choose, in the more or less near future, between collective suicide and the intelligent use of our
scientific conquests.”

The USSR exploded its first nuclear bomb on August 29, 1949. The Soviet bomb had a yield equivalent to 21,000 tons of TNT, and it had been made from plutonium produced in a nuclear reactor. The United Kingdom also began to build its own nuclear weapons.

The explosion of the Soviet nuclear bomb caused feelings of panic in the United States, and President Truman authorized an all-out effort to build superbombs using thermonuclear reactions - the reactions that heat the sun and stars. On October 31, 1952, the first US thermonuclear device was exploded at Eniwetok Atoll in the Pacific Ocean. It had a yield of 10.4 megatons, that is to say it had an explosive power equivalent to ten million tons of TNT. Thus the first thermonuclear bomb was seven hundred times as powerful as the bombs that had devastated Hiroshima and Nagasaki. In March, 1954, the US tested another hydrogen bomb at the Bikini Atoll in the Pacific Ocean. It was more than 1000 times more powerful than the Hiroshima bomb. The Japanese fishing boat, Lucky Dragon, was 135 kilometers from the Bikini explosion, but radioactive fallout from the test killed one crew member and made all the others seriously ill.
In England, Prof. Joseph Rotblat, a Polish scientist who had resigned from the Manhattan Project for moral reasons when it became clear that Germany would not develop nuclear weapons, was asked to appear on a BBC program to discuss the Bikini test. He was asked to discuss the technical aspects of H-bombs, while the Archbishop of Canterbury and the philosopher Bertrand Russell were invited to discuss the moral aspects.

Rotblat had become convinced that the Bikini bomb must have involved a third stage, where fast neutrons from the hydrogen thermonuclear reaction produced fission in a casing of ordinary uranium. Such a bomb would produce enormous amounts of highly dangerous radioactive fallout, and Rotblat became extremely worried about the possibly fatal effect on all living things if large numbers of such bombs were ever used in a war. He confided his worries to Bertrand Russell, whom he had met on the BBC program.

After consultations with Albert Einstein and others, Lord Russell drafted a document warning of the grave dangers presented by fission-fusion-fission bombs. The last act of Einstein’s life was to sign this document, which became known as the Russell-Einstein Manifesto. It was later signed by Max Born, Frédéric Joliot-Curie, Leopold Infeld, Joseph Rotblat, Linus Pauling, Herman J. Muller, Hideki Yukawa, P.W. Bridgeman and C.F. Powell. With the exception of Infeld and Rotblat, all of them were Nobel Laureates. On July 9, 1955, with Rotblat in the chair, Russell read the Manifesto to a packed press conference.

The document contains the words: “Here then is the problem that we present to you, stark and dreadful and inescapable: Shall we put an end to the human race, or shall mankind renounce war?... There lies before us, if we choose, continual progress in happiness, knowledge and wisdom. Shall we, instead, choose death because we cannot forget our quarrels? We appeal as human beings to human beings: Remember your humanity, and forget the rest. If you can do so, the way lies open to a new Paradise; if you cannot, there lies before you the risk of universal death.”

In 1945, with the horrors of World War II fresh in everyone’s minds, the United Nations had been established with the purpose of eliminating war. A decade later, the Russell-Einstein Manifesto reminded the world that war must be abolished as an institution because of the constantly-increasing and potentially catastrophic power of modern weapons.

In 1955 the Soviets exploded their first thermonuclear device, followed in 1957 by the UK. In 1961 the USSR exploded a thermonuclear bomb with a yield of 58 megatons. A bomb of this size, four thousand times the size of the Hiroshima bomb, would be able to totally destroy a city even if it missed it by 50 kilometers. Fallout casualties would extend to a far greater distance.

In the late 1950’s General Gavin, Chief of Army Research and Development in the United States, was asked by the Symington Committee, “If we got into a nuclear war and our strategic air force made an assault in force against Russia with nuclear weapons exploded in a way where the prevailing winds would carry them south-east over Russia, what would be the effect in the way of death?”

General Gavin replied: “Current planning estimates run on the order of several hundred million deaths. That would be either way depending on which way the wind blew. If the wind blew to the south-east they would be mostly in the USSR, although they would
Shortly after the bombings of Hiroshima and Nagasaki, Camus wrote: “Our technical civilization has just reached its greatest level of savagery. We will have to choose, in the more or less near future, between collective suicide and the intelligent use of our scientific conquests.”
9.4. MODERN WEAPONS

Figure 9.9: A 15 megaton bomb exploded by the United States at Bikini Atoll in the Pacific. It was more than 1000 times more powerful than the bombs that destroyed Hiroshima and Nagasaki. Fallout killed a Japanese fisherman 135 kilometers from the explosion.
Figure 9.10: Albert Einstein wrote: “The unleashed power of the atom has changed everything except our ways of thinking, and we thus drift toward unparalleled catastrophes.” He also said, “I don’t know what will be used in the next world war, but the 4th will be fought with stones.”

extend into the Japanese area and perhaps down into the Philippine area. If the wind blew the other way, they would extend well back into Western Europe.

Between October 16 and October 28, 1962, the Cuban Missile Crisis occurred, an incident in which the world came extremely close to a full-scale thermonuclear war. During the crisis, President Kennedy and his advisers estimated that the chance of an all-out nuclear war with Russia was 50%. Recently-released documents indicate that the probability of war was even higher than Kennedy’s estimate. Robert McNamara, who was Secretary of Defense at the time, wrote later, “We came within a hairbreadth of nuclear war without realizing it. ... It’s no credit to us that we missed nuclear war.”

In 1964 the first Chinese nuclear weapon was tested, and this was followed in 1967 by a Chinese thermonuclear bomb with a yield of 3.3 megatons. France quickly followed suit testing a fission bomb in 1966 and a thermonuclear bomb in 1968. In all about thirty nations contemplated building nuclear weapons, and many made active efforts to do so.

Because the concept of deterrence required an attacked nation to be able to retaliate
massively even though many of its weapons might be destroyed by a preemptive strike, the production of nuclear warheads reached insane heights, driven by the collective paranoia of the Cold War. More than 50,000 nuclear warheads were deployed worldwide, a large number of them thermonuclear, and far more were manufactured. The collective explosive power of these warheads was equivalent to 20,000,000,000 tons of TNT, i.e., 4 tons for every man, woman and child on the planet, or, expressed differently, a million times the explosive power of the bomb that destroyed Hiroshima.

Flaws in the concept of nuclear deterrence

Before discussing other defects in the concept of deterrence, it must be said very clearly that the idea of “massive nuclear retaliation” is completely unacceptable from an ethical point of view. The doctrine of retaliation, performed on a massive scale against civilian populations, with complete disregard for questions of guilt or innocence, violates not only the principles of common human decency and common sense, but also the ethical principles of every major religion.

When a suspected criminal is tried for a wrongdoing, great efforts are devoted to clarifying the question of guilt or innocence. Punishment only follows if guilt can be proved beyond any reasonable doubt. Contrast this with the totally indiscriminate mass slaughter that results from a nuclear attack, the victims of which include children who could not remotely be thought of as having any degree of guilt.

It might be objected that disregard for the guilt or innocence of victims is a universal characteristic of modern war, since statistics show that, with time, a larger and larger percentage of the victims of war have been civilians, and especially children. For example, the air attacks on Coventry during World War II, or the fire bombings of Dresden and Tokyo, produced massive casualties which involved all segments of the population. The answer is that modern war has become generally unacceptable from an ethical point of view, and this unacceptability is epitomized by nuclear weapons.

The enormous and indiscriminate destruction produced by nuclear weapons formed the background for an historic 1996 decision by the International Court of Justice in the Hague. In response to questions put to it by WHO and the UN General Assembly, the Court ruled that “the threat and use of nuclear weapons would generally be contrary to the rules of international law applicable in armed conflict, and particularly the principles and rules of humanitarian law.” In addition, the World Court ruled unanimously that “there exists an obligation to pursue in good faith and bring to a conclusion negotiations leading to nuclear disarmament in all its aspects under strict international control.”

Judge Fleischhauer of Germany said in his separate opinion, “The nuclear weapon is, in many ways, the negation of the humanitarian considerations underlying the law applicable in armed conflict and the principle of neutrality. The nuclear weapon cannot distinguish between civilian and military targets. It causes immeasurable suffering. The radiation released by it is unable to respect the territorial integrity of neutral States.”

President Bedjaoui, summarizing the majority opinion, called nuclear weapons “the ultimate evil”, and said “By its nature, the nuclear weapon, this blind weapon, destabilizes
humanitarian law, the law of discrimination in the use of weapons. ... The ultimate aim of every action in the field of nuclear arms will always be nuclear disarmament, an aim which is no longer Utopian and which all have a duty to pursue more actively than ever.”

Thus the concept of nuclear deterrence is not only unacceptable from the standpoint of ethics; it is also contrary to international law. The World Court’s 1996 Advisory Opinion unquestionably also represents the opinion of the majority of the world’s peoples. Although no formal plebiscite has been taken, the votes in numerous resolutions of the UN General Assembly speak very clearly on this question. For example the New Agenda Resolution (53/77Y) was adopted by the General Assembly on 4 December 1998 by a massively affirmative vote, in which only 18 out of the 170 member states voted against the the resolution.

The New Agenda Resolution proposes numerous practical steps towards complete nuclear disarmament, and it calls on the Nuclear-Weapon States “to demonstrate an unequivocal commitment to the speedy and total elimination of their nuclear weapons and without delay to pursue in good faith and bring to a conclusion negotiations leading to the elimination of these weapons, thereby fulfilling their obligations under Article VI of the Treaty on the Non-Proliferation of Nuclear Weapons (NPT)”. Thus, in addition to being ethically unacceptable and contrary to international law, nuclear weapons also contrary to the principles of democracy.

Having said these important things, we can now turn to some of the other defects in the concept of nuclear deterrence. One important defect is that nuclear war may occur through accident or miscalculation - through technical defects or human failings. This possibility is made greater by the fact that despite the end of the Cold War, thousands of missiles carrying nuclear warheads are still kept on a “hair-trigger” state of alert with a quasi-automatic reaction time measured in minutes. There is a constant danger that a nuclear war will be triggered by error in evaluating the signal on a radar screen. For example, the BBC reported recently that a group of scientists and military leaders are worried that a small asteroid entering the earth’s atmosphere and exploding could trigger a nuclear war if mistaken for a missile strike.

A number of prominent political and military figures (many of whom have ample knowledge of the system of deterrence, having been part of it, have expressed concern about the danger of accidental nuclear war. Colin S. Grey expressed this concern as follows: “The problem, indeed the enduring problem, is that we are resting our future upon a nuclear deterrence system concerning which we cannot tolerate even a single malfunction.” General Curtis E. LeMay has written, “In my opinion a general war will grow through a series of political miscalculations and accidents rather than through any deliberate attack by either side.” Bruce G. Blair has has remarked that “It is obvious that the rushed nature of the process, from warning to decision to action, risks causing a catastrophic mistake.”... “This

4 Of the 18 countries that voted against the New Agenda Resolution, 10 were Eastern European countries hoping for acceptance into NATO, whose votes seem to have been traded for increased probability of acceptance.

5 Chairman, National Institute for Public Policy

6 Founder and former Commander in Chief of the United States Strategic Air Command

7 Brookings Institution
system is an accident waiting to happen."

“But nobody can predict that the fatal accident or unauthorized act will never happen”, Fred Ikle of the Rand Corporation has written, “Given the huge and far-flung missile forces, ready to be launched from land and sea on both sides, the scope for disaster by accident is immense. ... In a matter of seconds - through technical accident or human failure - mutual deterrence might thus collapse.”

Another serious failure of the concept of nuclear deterrence is that it does not take into account the possibility that atomic bombs may be used by terrorists. Indeed, the threat of nuclear terrorism has today become one of the most pressing dangers that the world faces, a danger that is particularly acute in the United States.

Since 1945, more than 3,000 metric tons (3,000,000 kilograms) of highly enriched uranium and plutonium have been produced - enough for several hundred thousand nuclear weapons. Of this, roughly a million kilograms are in Russia, inadequately guarded, in establishments where the technicians are poorly paid and vulnerable to the temptations of bribery. There is a continuing danger that these fissile materials will fall into the hands of terrorists, or organized criminals, or irresponsible governments. Also, an extensive black market for fissile materials, nuclear weapons components, etc., has recently been revealed in connection with the confessions of Pakistan’s bomb-maker, Dr. A.Q. Khan. Furthermore, if Pakistan’s less-than-stable government should be overthrown, complete nuclear weapons could fall into the hands of terrorists.

On November 3, 2003, Mohamed ElBaradei, Director General of the International Atomic Energy Agency, made a speech to the United Nations in which he called for “limiting the processing of weapons usable material (separated plutonium and high enriched uranium) in civilian nuclear programs - as well as the production of new material through reprocessing and enrichment - by agreeing to restrict these operations to facilities exclusively under international control.” It is almost incredible, considering the dangers of nuclear proliferation and nuclear terrorism, that such restrictions were not imposed long ago. Nuclear reactors used for “peaceful” purposes unfortunately also generate fissionable isotopes of plutonium, neptunium and americium. Thus all nuclear reactors must be regarded as ambiguous in function, and all must be put under strict international control. One might ask, in fact, whether globally widespread use of nuclear energy is worth the danger that it entails.

We must remember the remark of U.N. Secretary General Kofi Annan after the 9/11/2001 attacks on the World Trade Center. He said, “This time it was not a nuclear explosion”. The meaning of his remark is clear: If the world does not take strong steps to eliminate fissionable materials and nuclear weapons, it will only be a matter of time before they will be used in terrorist attacks on major cities. Neither terrorists nor organized criminals can be deterred by the threat of nuclear retaliation, since they have no territory against which such retaliation could be directed. They blend invisibly into the general population. Nor can a “missile defense system” prevent terrorists from using nuclear weapons, since the weapons can be brought into a port in any one of the hundreds of thousands of containers that enter on ships each year, a number far too large to be checked exhaustively.

In this dangerous situation, the only logical thing for the world to do is to get rid of both
fissile materials and nuclear weapons as rapidly as possible. We must acknowledge that the idea of nuclear deterrence is a dangerous fallacy, and acknowledge that the development of military systems based on nuclear weapons has been a terrible mistake, a false step that needs to be reversed. If the most prestigious of the nuclear weapons states can sincerely acknowledge their mistakes and begin to reverse them, nuclear weapons will seem less glamorous to countries like India, Pakistan, North Korea and Iran, where they now are symbols of national pride and modernism.

Future weapons

Thermonuclear weapons are genocidal and antihuman, but even worse weapons may be developed in the future through the misuse of science. A particularly repellent idea has recently been put forward: racially selective bio-weapons. Basically the idea is this: The Human Genome Project has revealed the sequences of junk DNA (i.e., sequences that do not code for useful proteins) are racially specific. Thus the various races of humankind can be identified by looking at their junk DNA sequences. This being so, it should in principle be possible to construct a virus or toxin that will selectively attack people of a particular race.

This idea is particularly abhorrent because it simultaneously violates two important principles of human solidarity. The first principle is that, since disease is the common enemy of mankind, all humans must to work together for its eradication. The second is that all humans must regard each other as members of a single large family. This is absolutely necessary if we are to survive on our small planet.

9.5 War as a business

Eisenhower’s farewell address

Because the world spends more than a trillion dollars each year on armaments, it follows that very many people make their living from war. This is the reason why it is correct to speak of war as a social, political and economic institution, and also one of the main reasons why war persists, although everyone realizes that it is the cause of much of the suffering of humanity. We know that war is madness, but it persists. We know that it threatens the survival of our species, but it persists, entrenched in the attitudes of historians, newspaper editors and television producers, entrenched in the methods by which politicians finance their campaigns, and entrenched in the financial power of arms manufacturers - entrenched also in the ponderous and costly hardware of war, the fleets of warships, bombers, tanks, nuclear missiles and so on.

In his farewell address, US President Dwight D. Eisenhower warned his nation against the excessive power that had been acquired during World War II by the military-industrial complex: “We have been compelled to create an armaments industry of vast proportions,” Eisenhower said, “...Now this conjunction of an immense military establishment and a large
arms industry is new in American experience. The total influence - economic, political, even spiritual - is felt in every city, every state house, every office in the federal government. ... We must not fail to comprehend its grave implications. Our toil, resources and livelihood are all involved; so is the very structure of our society. ... We must stand guard against the acquisition of unwarranted influence, whether sought or unsought, by the military-industrial complex. The potential for the disastrous rise of misplaced power exists and will persist. We must never let the weight of this combination endanger our democratic processes. We should take nothing for granted.”

The devil’s dynamo

Today, the term “military-industrial complex” is much too narrow. The vast and dangerous conglomerate of powerholders described by Eisenhower now includes politics, science, technology and the mass media, all feeding on the trillion dollars of global military expenditure. A circular flow of money drives this “devil’s dynamo”. The mass media are purchased by war-related industries, voters are influenced by the media, politicians are re-elected, and more money is poured back into the war system. The devil’s dynamo needs conflicts and threats; without widely held security fears, it would wither; and hence the enemies of World War II were quickly replaced by the “menace of communism”. More recently, not long after the end of the Cold War, the enemies of that conflict were replaced by the “war on terror”.

A solution to the problem of war requires that voters should clearly see the augmented military-industrial complex for what it is - a threat to both peace and democracy. President Eisenhower’s far-seeing farewell address deserves to be remembered and studied. It should be part of the curriculum of every school.

Resource wars

The wars of the colonial era can be seen as resource wars; and many of today’s conflicts in the Middle East, Central Asia, Latin America and Africa can perhaps also be seen in this light. There is a danger that the era of resource scarcity that the world is now entering will be characterized by bitter wars for the possession of increasingly scarce oil, water and metals.

In his book, Resource Wars: The New Landscape of Global Conflict (2002), Michael T. Klare8 shows that many recent wars can be interpreted as struggles for the control of natural resources. In order that such conflicts should not become more frequent in the future, a cooperative attitude towards resources is needed. The global community must face resource scarcity with solidarity.

There are many historical instances where a cooperative attitude towards resources has strengthened peaceful relationships between nations. For example, Bolivia and Peru, the

8Michael Klare is the Five College Professor of Peace and World Security Studies, based at Hampshire College in Amherst Massachusetts, but also lecturing at Amherst, Mount Holyoke, Smith and the University of Massachusetts.
two nations that share Lake Titicaca, have created a joint institution to regulate use of water from the lake and to protect it from pollution - the Autonomous Water Authority.

Another large lake shared by several countries is the Aral Sea. The lake itself is shared by Kazakhstan and Uzbekistan, but the fresh water basin of the Aral Sea also includes Afghanistan, the Kyrgyz Republic, Tajikistan and Turkmenistan. After having been reduced to half its size by massive diversion of water, the Aral Sea is now starting to refill after the completion of the Kok-Aral Dam. The countries of the Aral Sea’s fresh water basin are cooperating to improve irrigation, water conservation and hydroelectric power generation.

A third example of water cooperation is the U.N.-sponsored Mekong Committee (1957) (replaced by the Mekong River Commission in 1995), which coordinates water resource development among the Lower Basin nations, Cambodia, Laos, Thailand, and Vietnam. Today, the Mekong River Commission aids in the management and preservation of resources in the basin, and addresses such issues as population growth, environmental preservation and regional security.

Globally there are today more than 3,800 declarations or conventions on water, of which 286 are treaties. They demonstrate that cooperation in the field of resource management can make a valuable contribution towards building a system of international law.

9.6 War as a hindrance to global equality

Indirect costs of war

The costs of war, both direct and indirect, are so enormous that they are almost beyond comprehension. Globally, the institution of war interferes seriously with the use of tax money for constructive and peaceful purposes. Today, despite the end of the Cold War, the world spends roughly a trillion (i.e., a million million) US dollars each year on armaments. This colossal flood of money could have been used instead for education, famine relief, development of infrastructure, or on urgently needed public health measures.

The World Health Organization lacks funds to carry through an anti-malarial program on as large a scale as would be desirable, but the entire program could be financed for less than our military establishments spend in a single day. Five hours of world arms spending is equivalent to the total cost of the 20-year WHO campaign that resulted in the eradication of smallpox. For every 100,000 people in the world, there are 556 soldiers, but only 85 doctors. Every soldier costs an average of $20,000 per year, while the average spent on education is only $380 per school-aged child. With a diversion of funds consumed by three weeks of military spending, the world could create a sanitary water supply for all its people, thus eliminating the cause of almost half of all human illness.

A new drug-resistant form of tuberculosis has recently become widespread in Asia and in the former Soviet Union. In order to combat this new and highly dangerous form of tuberculosis and to prevent its spread, WHO needs $500 million, an amount equivalent to 4 hours of world arms spending.
Today’s world is one in which roughly ten million children die every year from starvation or from diseases related to poverty. Besides this enormous waste of young lives through malnutrition and preventable disease, there is a huge waste of opportunities through inadequate education. The rate of illiteracy in the 25 least developed countries is 80%, and the total number of illiterates in the world is estimated to be 800 million. Meanwhile every 60 seconds the world spends $2 million on armaments.

It is plain that if the almost unbelievable sums now wasted on the institution of war were used constructively, most of the pressing problems of humanity could be solved, but today the world spends more than 20 times as much on war as it does on development. In the previous chapter we mentioned the intolerable degree of economic inequality that characterizes today’s world. Development is blocked by endemic disease and by excessive population growth. If the World Health Organization had sufficient funds to provide primary health care centers for all, universal vaccination programs, and the information and materials needed for family planning, the development-blocking problems of population growth and disease could be overcome. The money required is a tiny fraction of the vast sums now wasted on war.

Destruction of infrastructure

Most insurance policies have clauses written in fine print exempting companies from payment of damage caused by war. The reason for this is simple. The damage caused by war is so enormous that insurance companies could never come near to paying for it without going bankrupt.

We mentioned above that the world spends roughly a trillion dollars each year on preparations for war. A similarly colossal amount is needed to repair the damage to infrastructure caused by war. Sometimes this damage is unintended, but sometimes it is intentional. During World War II, one of the main aims of air attacks by both sides was to destroy the industrial infrastructure of the opponent. This made some sense in a war expected to last several years, because the aim was to prevent the enemy from producing more munitions. However, during the Gulf War of 1990, the infrastructure of Iraq was attacked, even though the war was expected to be short. Electrical generating plants and water purification facilities were deliberately destroyed with the apparent aim of obtaining leverage over Iraq after the war.

In general, because war has such a catastrophic effect on infrastructure, it can be thought of as the opposite of development. War is the greatest generator of poverty.

Environmental damage

Warfare during the 20th century has not only caused the loss of 175 million lives (primarily civilians) - it has also caused the greatest ecological catastrophes in human history. The damage takes place even in times of peace. Studies by Joni Seager, a geographer at the University of Vermont, conclude that “a military presence anywhere in the world is the single most reliable predictor of ecological damage”.
Modern warfare destroys environments to such a degree that it has been described as an “environmental holocaust.” For example, herbicides use in the Vietnam War killed an estimated 6.2 billion board-feet of hardwood trees in the forests north and west of Saigon, according to the American Association for the Advancement of Science. Herbicides such as Agent Orange also made enormous areas of previously fertile land unsuitable for agriculture for many years to come. In Vietnam and elsewhere in the world, valuable agricultural land has also been lost because land mines or the remains of cluster bombs make it too dangerous for farming.

During the Gulf War of 1990, the oil spills amounted to 150 million barrels, 650 times the amount released into the environment by the notorious Exxon Valdez disaster. During the Gulf War an enormous number of shells made of depleted uranium were fired. When the dust produced by exploded shells is inhaled it often produces cancer, and it will remain in the environment of Iraq for decades.

Radioactive fallout from nuclear tests pollutes the global environment and causes many thousands of cases of cancer, as well as birth abnormalities. Most nuclear tests have been carried out on lands belonging to indigenous peoples.

9.7 Global inequalities as a hindrance to peace

Inequalities maintained by force

Global economic inequalities are linked to the war system in many ways. We have just discussed how the enormous amounts of money wasted on war reduce the funds available for population stabilization and development, and how war destroys infrastructure and the environment. Another link can be found in the fact that powerful industrialized countries maintain unequal economic relationships with developing countries by means of military force, or through political pressures which, in the last analysis, rely on force. This was very obvious during the colonial era, when the use of force for economic reasons was exemplified by the Boar War (1899-1902), Belgian military acquisition of the Congo, the French army in North Africa, the British army in India, and by “gunboat diplomacy” throughout the world. The recent resource wars described by Michael Klare show that economic motivations lie behind much of the warfare that can be observed today.

Rich nations fear global democracy

An indirect relationship between global economic inequalities and war can be found in the fact that the enormous contrasts between rich and poor block the development of global governance. There are many reasons why effective governance at the global level is needed. In a world of rapidly increasing interdependence, a world where modern weapons have made war prohibitively dangerous, an effective system of international law and governance

\footnote{Agent Orange also produced cancer, birth abnormalities and other serious forms of illness both in the Vietnamese population and among the foreign soldiers fighting in Vietnam}
is urgently needed. But rich nations will not allow these things, because they fear that they will lose their privileged positions.

The recent development of the European Federation is extremely interesting because it might serve as a model for the development and reform of the United Nations. In the formation of the European Union and its extension to the east, there were worries about contrasts between rich and poor regions. Would the wealthy nations of Europe be excessively taxed to help their poorer neighbors? Would workers from the poorer parts of Europe migrate in excessive numbers to the richer regions? In the case of the EU, as in the reunification of Germany, serious problems were present because of economic inequality. But the necessary sacrifices and adjustments were made, and the problems were overcome. The motives for unification were strong: Europe had been a central battleground in two world wars, and the statesmen of Europe were determined that such tragedies should never be repeated. One can hope that global inequalities can similarly be overcome by a world motivated by the desire for peace, justice and stability.

9.8 Compassion can save us

Greed is driving us towards disaster, but compassion can save us

Humans are capable of great compassion and unselfishness. Mothers and fathers make many sacrifices for the sake of their families. Kind teachers help us through childhood, and show us the right path. Doctors and nurses devote themselves to the welfare of their patients.

Sadly there is another, side to human nature, a darker side. Human history is stained with the blood of wars and genocides. Today, this dark, aggressive side of human nature threatens to plunge our civilization into an all-destroying thermonuclear war.

Humans often exhibit kindness to those who are closest to themselves, to their families and friends, to their own social group or nation. By contrast, the terrible aggression seen in wars and genocides is directed towards outsiders. Human nature seems to exhibit what might be called “tribalism”: altruism towards one's own group; aggression towards outsiders. Today this tendency towards tribalism threatens both human civilization and the biosphere.

Greed, in particular the greed of corporations and billionaire oligarchs, is driving human civilization and the biosphere towards disaster.

The greed of giant fossil fuel corporations is driving us towards a tipping point after which human efforts to control climate change will be futile because feedback loops will have taken over. The greed of the military industrial complex is driving us towards a Third World War that might develop into a catastrophic thermonuclear war. The greed of our financial institutions is also driving us towards economic collapse, as we see in the case of Greece.

Until the start of the Industrial Revolution in the 18th and 19th centuries, human society maintained a more or less sustainable relationship with nature. However, with the
beginning of the industrial era, traditional ways of life, containing elements of both social and environmental ethics, were replaced by the money-centered, growth-oriented life of today, from which these vital elements are missing.

According to the followers of Adam Smith (1723-1790), self-interest (even greed) is a sufficient guide to human economic actions. The passage of time has shown that Smith was right in many respects. The free market, which he advocated, has turned out to be the optimum prescription for economic growth. However, history has also shown that there is something horribly wrong or incomplete about the idea that self-interest alone, uninfluenced by ethical and ecological considerations, and totally free from governmental intervention, can be the main motivating force of a happy and just society. There has also proved to be something terribly wrong with the concept of unlimited economic growth.

The Industrial Revolution marked the start of massive human use of fossil fuels. The stored energy from several hundred million years of plant growth began to be used at roughly a million times the rate at which it had been formed. The effect on human society was like that of a narcotic. There was a euphoric (and totally unsustainable) surge of growth of both population and industrial production. Meanwhile, the carbon released into the atmosphere from the burning of fossil fuels began to duplicate the conditions which led to the 5 geologically-observed mass extinctions, during each of which more than half
of all living species disappeared forever.

The Stern Review Discussion Paper of 2006 stated that “Melting of permafrost in the Arctic could lead to the release of huge quantities of methane. Dieback of the Amazon forest could mean that the region starts to emit rather than to absorb greenhouse gases. These feedbacks could lead to warming that is at least twice as fast as current high-emission projections, leading to temperatures higher than seen in the last 50 million years.”

The greed of giant fossil fuel corporations has recently led them to conduct large-scale advertising campaigns to convince the public that anthropogenic climate change is not real. These corporations own vast oil, coal and gas reserves that must be kept in the ground if we are to avoid catastrophic global warming. It does not seem to bother the fossil fuel giants that if the earth is made uninhabitable, future generations of both humans and animals will perish.

When the United Nations was established in 1945, the purpose of the organization was to abolish the institution of war. This goal was built into many of the articles of the UN Charter. Accordingly, throughout the world, many War Departments were renamed and became Departments of Defense. But the very name is a lie. In an age of nuclear threats and counter-threats, populations are by no means protected. Ordinary citizens are just hostages in a game for power and money. It is all about greed.

Why is war continually threatened? Why is Russia threatened? Why is war with Iran threatened? Why fan the flames of conflict with China? Is it to “protect” civilians?
Absolutely not! In a thermonuclear war, hundreds of millions of civilians would die horribly everywhere in the world, also in neutral countries. What is really being protected are the profits of arms manufacturers. As long as there are tensions; as long as there is a threat of war, military budgets are safe; and the profits of arms makers are safe. The people in several “democracies”, for example the United States, do not rule at the moment. Greed rules.

Greed and lack of ethics are built into the structure of corporations. By law, the Chief Executive Officer of a corporation must be entirely motivated by the collective greed of the stockholders. He must maximize profits. Nothing must count except the bottom line. If the CEO abandons this single-minded chase after corporate profits for ethical reasons, or for the sake of humanity or the biosphere or the future, he (or she) must, by law, be fired and replaced.

Occasionally, for the sake of their public image, corporations seem to do something for other motives than their own bottom line, but it is usually window dressing. For example, Shell claims to be supporting research on renewable energy. Perhaps there is indeed a small renewable energy laboratory somewhere in that vast corporation; but the real interest of the organization is somewhere else. Shell is sending equipment on a large scale to drill for more and more environment-destroying oil in the Arctic.

What does Christianity say about greed? Wikipedia states that “The seven deadly sins, also known as capital vices or cardinal sins, is a classification of vices (part of Christian ethics) that has been used since early Christian times to educate and instruct Christians concerning fallen humanity’s tendency to sin. In the currently recognized version, the sins are usually given as wrath, greed, sloth, pride, lust, envy and gluttony. Each is a form of Idolatry-of-Self wherein the subjective reigns over the objective.”

Saint Thomas Aquinas wrote: “Greed is a sin against God, just as all mortal sins, in as much as man condemns things eternal for the sake of temporal things”.

In the New Testament, we can find many passages condemning greed, for example:

“For the love of money is the root of all evil: which while some coveted after, they have erred from the faith, and pierced themselves through with many sorrows.” Timothy 6:10

“Lay not up for yourselves treasures upon earth, where moth and rust doth corrupt, and where thieves break through and steal.” Mathew 6:19

In his encyclical Laudato Si’, and on his recent visit to South America, Pope Francis has spoken strongly against economic activity that lacks both social and environmental ethics.

Much depends on whether we are able to break the power that corporations and extremely rich oligarchs now hold over our governments and our mass media. Pope Francis has shown by example what a world leader of courage and honesty can do. Most of us are not in such a position, but each person can do his or her best to restore democracy where it has been lost to corporate money and greed. If the mass media have sold themselves to the highest bidder, we can make our own media. If most politicians are corrupt, we can make our own political movements. As Shelly said, “We are many, they are few”.

9.9 The future of global governance

Peace within nations

The problem of achieving internal peace over a large geographical area is not insoluble. It has already been solved. There exist today many nations or regions within each of which there is internal peace, and some of these are so large that they are almost worlds in themselves. One thinks of China, India, Brazil, Australia, the Russian Federation, the United States, and the European Union. It must of course be acknowledged that the large political units just named are neither perfectly just nor perfectly peaceful. Nevertheless, they all have achieved a high degree of internal peace and political cohesion. Many of these enormous societies contain a variety of ethnic groups, a variety of religions and a variety of languages, as well as striking contrasts between wealth and poverty. If these great land areas have been forged into peaceful and cooperative societies, cannot the same methods of government be applied globally?

But what are the methods that nations use to achieve internal peace? Firstly, every true government needs to have the power to make and enforce laws that are binding on individual citizens. Secondly the power of taxation is a necessity. These are two requirements of every true government; but there is a third point that still remains to be discussed:

Within their own territories, almost all nations have more military power than any of their subunits. For example, the US Army is more powerful than the State Militia of Illinois. This unbalance of power contributes to the stability of the Federal Government of the United States. When the FBI wanted to arrest Al Capone, it did not have to bomb Chicago. Agents just went into the city and arrested the gangster. Even if Capone had been enormously popular in Illinois, the government of the state would have realized in advance that it had no chance of resisting the US Federal Government, and it still would have allowed the “Feds” to make their arrest. Similar considerations hold for almost all nations within which there is internal peace. It is true that there are some nations within which subnational groups have more power than the national government, but these are frequently characterized by civil wars.

Of the large land areas within which internal peace has been achieved, the European Union differs from the others because its member states still maintain powerful armies. The EU forms a realistic model for what can be achieved globally in the near future by reforming and strengthening the United Nations. In the distant future, however, we can imagine a time when a world federal authority will have much more power than any of its member states, and when national armies will have only the size needed to maintain local order.

Today there is a pressing need to enlarge the size of the political unit from the nation-state to the entire world. The need to do so results partly from the terrible dangers of modern weapons and partly from global economic interdependence. The progress of science has created this need, but science has also given us the means to enlarge the political unit: Our almost miraculous modern communications media, if properly used, have the power to weld all of humankind into a single supportive and cooperative society.
Federations

A federation of states is, by definition, a limited union where the federal government has the power to make laws that are binding on individuals, but where the laws are confined to interstate matters, and where all powers not expressly delegated to the federal government are retained by the individual states. In other words, in a federation each of the member states runs its own internal affairs according to its own laws and customs, but in certain agreed-on matters, where the interests of the states overlap, authority is specifically delegated to the federal government.

For example, if the nations of the world considered the control of narcotics to be a matter of mutual concern; if they agreed to set up a commission with the power to make laws preventing the growing, refinement and distribution of harmful drugs, and the power to arrest individuals for violating those laws, then we would have a world federation in the area of narcotics control.

If the community of nations decided to give the federal authority the additional power to make laws defining the rights and obligations of multinational corporations, and the power to arrest or fine individuals violating those laws, then we would have a world federation with even broader powers; but these powers would still be carefully defined and limited.

In setting up a federation, the member states can decide which powers they wish to delegate to it; and all powers not expressly delegated are retained by the individual states. We are faced with the problem of constructing a new world order which will preserve the advantages of local self-government while granting certain carefully-chosen powers to larger regional or global authorities. Which things should be decided locally or regionally and which globally?

In the future, global overpopulation and famine will become increasingly difficult and painful problems. Since various cultures take widely different attitudes towards birth control and family size, the problem of overpopulation seems to be one which should be solved locally or regionally; and no country or region should be allowed to export its population problem by sending large numbers of its citizens abroad. By contrast, global pollution as well as security and controls on the manufacture and export of armaments will require an effective authority at the global level. It should also be the responsibility of the international community to intervene to prevent gross violations of human rights.

Since the federal structure seems well suited to a world government with limited and carefully-defined powers that would preserve as much local autonomy as possible, it is worthwhile to look at the histories of a few federations. For example, we can learn much by looking at the history of the federal government of the United States.

George Mason, one of the architects of the federal constitution of the United States, believed that “such a government was necessary as could directly operate on individuals, and would punish those only whose guilt required it,” while James Madison, another drafter of the U.S. federal constitution, remarked that the more he reflected on the use of force, the more he doubted “the practicability, the justice and the efficacy of it when applied to people collectively, and not individually.” Finally, Alexander Hamilton, in his Federalist Papers, discussed the Articles of Confederation with the following words: “To coerce the
states is one of the maddest projects that was ever devised. ... Can any reasonable man be well disposed towards a government which makes war and carnage the only means of supporting itself - a government that can exist only by the sword? Every such war must involve the innocent with the guilty. The single consideration should be enough to dispose every peaceable citizen against such a government. ... What is the cure for this great evil? Nothing, but to enable the... laws to operate on individuals, in the same manner as those of states do.”

The United Nations has a charter analogous to the Articles of Confederation, which preceded the U.S. Federal Constitution. The Articles of Confederation proved to be too weak, just as the present structure of the U.N. is proving to be too weak. It acts by attempting to coerce states, a procedure which Alexander Hamilton characterized as “one of the maddest projects that was ever devised.” Whether this coercion takes the form of economic sanctions, or whether it takes the form of military intervention, the practicability, the justice and the efficacy of the U.N.’s efforts are hampered because they are applied to people collectively and not one by one. What is the cure for this great evil? “Nothing”, Hamilton tells us, “but to enable the laws to act on individuals, in the same manner as those of states do.”

Laws binding on individuals

In 1998, in Rome, representatives of 120 countries signed a statute establishing a International Criminal Court, with jurisdiction over the crime of genocide, crimes against humanity, war crimes, and the crime of aggression. Four years were to pass before the necessary ratifications were gathered, but by Thursday, April 11, 2002, 66 nations had ratified the Rome agreement - 6 more than the 60 needed to make the court permanent.

It would be impossible to overstate the importance of the International Criminal Court. At last international law acting on individuals has become a reality! The only effective and just way that international laws can act is to make individuals responsible and punishable, since (in the words of Alexander Hamilton), “To coerce states is one of the maddest projects ever devised.” In an increasingly interdependent world, international law has become a necessity. We cannot have peace and justice without it. But the coercion of states is neither just nor feasible, and therefore international laws must act on individuals.

The jurisdiction of the ICC is at present limited to a very narrow class of crimes. In fact, the ICC does not at present act on the crime of aggression, although this crime is listed in the Rome Statute, and although there are plans for its future inclusion in the ICC’s activities. The global community will have a chance to see how the court works in practice, and in the future the community will undoubtedly decide to broaden the ICC’s range of jurisdiction.

\[10\text{ because it punishes the innocent as well as the guilty}\]
The Tobin Tax

A strengthened UN would need a reliable source of income to make the organization less dependent on wealthy countries, which tend to give support only to those interventions of which they approve. A promising solution to this problem is the so-called “Tobin tax”, named after the Nobel-laureate economist James Tobin of Yale University. Tobin proposed that international currency exchanges should be taxed at a rate between 0.1 and 0.25 percent. He believed that even this extremely low rate of taxation would have the beneficial effect of damping speculative transactions, thus stabilizing the rates of exchange between currencies. When asked what should be done with the proceeds of the tax, Tobin said, almost as an afterthought, “Let the United Nations have it.”

The volume of money involved in international currency transactions is so enormous that even the tiny tax proposed by Tobin would provide the United Nations with between 100 billion and 300 billion dollars annually. By strengthening the activities of various UN agencies, such as WHO, UNESCO and FAO, the additional income would add to the prestige of the United Nations and thus make the organization more effective when it is called upon to resolve international political conflicts.

Besides the Tobin tax, other measure have been proposed to increase the income of the United Nations. For example, it has been proposed that income from resources of the sea bed be given to the UN, and that the UN be given the power to tax carbon dioxide emissions. All of the proposals for giving the United Nations an adequate income have been strongly opposed by a few nations that wish to control the UN through its purse strings. However, it is absolutely essential for the future development of the United Nations that the organization be given the power to impose taxes. No true government can exist without this power. It is just as essential as is the power to make and enforce laws that are binding on individuals.

Voting reforms

A serious weakness of the present United Nations Charter is the principle of “one nation one vote” in the General Assembly. This principle seems to establish equality between nations, but in fact it is very unfair: For example it gives a citizen of China or India less than a thousandth the voting power of a citizen of Malta or Iceland. A reform of the voting system is clearly needed.

Among the proposals for reform is the idea of having final votes cast by blocks. For example, Europe could form a block, Africa another, and so on. A second proposal is that the General Assembly might be supplemented by a People’s Assembly.

The veto right in the Security Council is clearly a fault in the present structure of the U.N.. It has been suggested that the rules should be changed so that a veto in the Security Council could be over-ruled by a two thirds majority vote of the General Assembly. Other reform proposals call for the abolition of the veto in the Security Council, or even for the abolition of the Security Council itself.
Figure 9.13: James Tobin (1918-2002) received the Nobel Memorial Prize in Economic Sciences in 1981. His proposal for taxing international currency transactions at a very small rate and giving the proceeds to the United Nations could be a method for giving the UN a reliable income that matches the importance of the organization. This proposal is (of course) opposed by powerful nations that wish to control the UN by means of its purse strings.
9.10 Global ethics

Education for world citizenship

Besides a humane, democratic and just framework of international law and governance, we urgently need a new global ethic, - an ethic where loyalty to family, community and nation will be supplemented by a strong sense of the brotherhood of all humans, regardless of race, religion or nationality. Schiller expressed this feeling in his “Ode to Joy”, a part of which is the text of Beethoven’s Ninth Symphony. Hearing Beethoven’s music and Schiller’s words, most of us experience an emotion of resonance and unity with the message: All humans are brothers and sisters - not just some - all! It is almost a national anthem of humanity. The feelings that the music and words provoke are similar to patriotism, but broader. It is this higher loyalty to humanity as a whole, this sense of a universal human family, that we need to cultivate in education, in the mass media, and in religion.

Educational reforms are urgently needed, particularly in the teaching of history. As it is taught today, history is a chronicle of power struggles and war, told from a biased national standpoint. Our own race or religion is superior; our own country is always heroic and in the right.

We urgently need to replace this indoctrination in chauvinism by a reformed view of history, where the slow development of human culture is described, giving adequate credit to all who have contributed. Our modern civilization is built on the achievements of many ancient cultures. China, Japan, India, Mesopotamia, Egypt, Greece, the Islamic world, Christian Europe, and the Jewish intellectual traditions all have contributed. Potatoes, corn, squash, vanilla, chocolate, chili peppers, pineapples, quinine, etc. are gifts from the American Indians. Human culture, gradually built up over thousands of years by the patient work of millions of hands and minds, should be presented as a precious heritage - far too precious to be risked in a thermonuclear war.

Reform is also urgently needed in the teaching of economics and business. The economics of growth must be replaced by equilibrium economics, where considerations of ecology, carrying capacity, and sustainability are given their proper weight, and where the quality of life of future generations has as much importance as present profits.

Secondly, the education of economists and businessmen needs to face the problems of global poverty - the painful contrast between the affluence and wastefulness of the industrial North and the malnutrition, disease and illiteracy endemic in the South. Students of economics and business must look for the roots of poverty not only in population growth and war, but also in the history of colonialism and neocolonialism, and in defects in global financial institutions and trade agreements. They must be encouraged to formulate proposals for the correction of North-South economic inequality.

The economic impact of war and preparation for war should be included in the training of economists. Both the direct and indirect costs of war should be studied, for example the effect of unimaginably enormous military budgets in reducing the money available to solve pressing problems posed by the resurgence of infectious disease (e.g. AIDS, and drug-resistant forms of malaria and tuberculosis); the problem of population stabilization; food
problems; loss of arable land; future energy problems; the problem of finding substitutes for vanishing nonrenewable resources, and so on.

Finally, economics curricula should include the problems of converting war-related industries to peaceful ones - the problem of beating swords into plowshares. It is often said that our economies are dependent on arms industries. If this is so, it is an unhealthy dependence, analogous to drug addiction, since arms industries do not contribute to future-oriented infrastructure. The problem of conversion is an important one. It is the economic analog of the problem of ending a narcotics addiction, and it ought to be given proper weight in the education of economists.

Law students should be made aware of the importance of international law. They should be familiar with its history, starting with Grotius and the Law of the Sea. They should know the histories of the International Court of Justice and the Nuremberg Principles. They should study the United Nations Charter (especially the articles making war illegal) and the Universal Declaration of Human Rights, as well as the Rome Treaty and the foundation of the International Criminal Court. They should be made aware of a deficiency in the present United Nations - the lack of a legislature with the power to make laws that are binding on individuals.

Students of law should be familiar with all of the details of the World Court’s historic Advisory Opinion on Nuclear Weapons, a decision that make the use or threat of use of nuclear weapons illegal. They should also study the Hague and Geneva Conventions, and the various international treaties related to nuclear, chemical and biological weapons. The relationship between the laws of the European Union and those of its member states should be given high importance. The decision by the British Parliament that the laws of the EU take precedence over British law should be a part of the curriculum.

In teaching science too, reforms are needed. Graduates in science and engineering should be conscious of their responsibilities. They must resolve never to use their education in the service of war, nor for the production of weapons, nor in any way that might be harmful to society or to the environment.

Science and engineering students ought to have some knowledge of the history and social impact of science. They could be given a course on the history of scientific ideas, and in connection with modern historical developments such as the industrial revolution, the global population explosion, the development of nuclear weapons, genetic engineering, and information technology, some discussion of social impact could be introduced. One might hope to build up in science and engineering students an understanding of the way in which their own work is related to the general welfare of humankind, and a sense of individual social and ethical responsibility. These elements are needed in science education if rapid technological progress is to be beneficial to society rather than harmful.

The role of the mass media

In the mid-1950’s, television became cheap enough so that ordinary people in the industrialized countries could afford to own sets. During the infancy of television, its power was underestimated. The great power of television is due to the fact that it grips two
senses simultaneously, both vision and hearing. The viewer becomes an almost-hypnotized captive of the broadcast. In the 1950’s, this enormous power, which can be used both for good and for ill, was not yet fully apparent. Thus insufficient attention was given to the role of television in education, in setting norms, and in establishing values. Television was not seen as an integral part of the total educational system.

Although the intergenerational transmission of values, norms, and culture is much less important in industrial societies than it is in traditional ones, modern young people of the west and north are by no means at a loss over where to find their values, fashions and role models. With every breath they inhale the values and norms of the mass media. Totally surrounded by a world of television and film images, they accept this world as their own. Unfortunately the culture of television, films and computer games is more often a culture of violence than a culture of peace.

Computer games designed for young boys often give the strongest imaginable support to our present culture of violence. For example, a game entitled “Full Spectrum Warrior” was recently reviewed in a Danish newspaper. According to the reviewer, “...An almost perfect combination of graphics, sound, band design, and gameplay makes it seem exactly like the film Black Hawk Down - with the player as the main character. This is not just a coincidence, because the game is based on an army training program. ... Full Spectrum Warrior is an extremely intense experience, and despite the advanced possibilities, the controls are simple enough so that young children can play it. ... The player is completely drawn into the screen, and remains there until the end of the mission.” The reviewer gave the game six stars (the maximum).

If entertainment is evaluated only on the basis of popularity, what might be called “the pornography of violence” gets high marks. However, there is another way of looking at entertainment. It is a part, and a very important part, of our total educational system. In modern industrial societies, this important educational function has been given by default to commercial interests. We would not want Coca Cola to run our schools, but entertainment is just as important as the school or home environment in forming values and norms, and entertainment is in the hands of commerce.

Today we are faced with the task of creating a new global ethic in which loyalty to family, religion and nation will be supplemented by a higher loyalty to humanity as a whole. In addition, our present culture of violence must be replaced by a culture of peace. To achieve these essential goals, we urgently need the cooperation of the mass media.

One is faced with a dilemma, because on the one hand artistic freedom is desirable and censorship undesirable, but on the other hand some degree of responsibility ought to be exercised by the mass media because of their enormous influence in creating norms and values.

Of course we cannot say to the entertainment industry, “From now on you must not show anything but David Attenborough and the life of Gandhi”. However, it would be enormously helpful if every film or broadcast or computer game could be evaluated not only for its popularity and artistic merit, but also in terms of the good or harm that it does in the task of building a peaceful world.

Why doesn’t the United Nations have its own global television and radio network? Such
a network could produce an unbiased version of the news. It could broadcast documentary programs on global problems. It could produce programs showing viewers the music, art and literature of other cultures than their own. It could broadcast programs on the history of ideas, in which the contributions of many societies were adequately recognized. At New Year, when people are in the mood to think of the past and the future, the Secretary General of the United Nations could broadcast a “State of the World” message, summarizing the events of the past year and looking forward to the new year, with its problems, and with his recommendations for their solution. A United Nations television and radio network would at least give viewers and listeners a choice between programs supporting militarism, and programs supporting a global culture of peace. At present they have little choice.

The role of religion

Finally, let us turn to religion, with its enormous influence on human thought and behavior. In the 6th century B.C., Prince Gautama Buddha founded a new religion in India, with a universal (non-tribal) code of ethics. Among the sayings of the Buddha are as follows:

“Hatred does not cease by hatred at any time; hatred ceases by love.”

“Let a man overcome anger by love; let him overcome evil by good.”

“All men tremble at punishment. All men love life. Remember that you are like them, and do not cause slaughter.”

Similarly, Christianity offers a strongly-stated ethic, which, if practiced, would make war impossible. In Mathew, the following passage occurs:

“Ye have heard it said: Thou shalt love thy neighbor and hate thy enemy. But I say unto you: Love your enemies, bless them that curse you, do good to them that hate you, and pray for them that spitefully use you and persecute you.”

This seemingly impractical advice - that we should love our enemies - is in fact of the greatest practicality, since acts of unilateral kindness and generosity can stop escalatory cycles of revenge and counter-revenge such as those that characterize the present conflicts in the Middle East and the recent troubles in Northern Ireland. However, Christian nations, while claiming to adhere to the ethic of love and forgiveness, have adopted a policy of “massive retaliation”. involving systems of thermonuclear missiles whose purpose is to destroy as much as possible of the country at which the retaliation is aimed. It is planned that whole populations should be killed in a “massive retaliation”, innocent children along with guilty politicians.

The startling contradiction between what Christian nations profess and what they do was obvious even before the advent of nuclear weapons, at the time when Leo Tolstoy, during his last years, was exchanging letters with a young Indian lawyer in South Africa. In one of his letters to Gandhi, Tolstoy wrote:

“...The longer I live, and especially now, when I vividly feel the nearness of death, the more I want to tell others what I feel so particularly clearly and what to my mind is of great importance - namely that which is called passive resistance, but which is in reality nothing else but the teaching of love, uncorrupted by false interpretations. That love - i.e. the striving for the union of human souls and the activity derived from that striving - is the
highest and only law of human life, and in the depth of his soul every human being knows this (as we most clearly see in children); he knows this until he is entangled in the false teachings of the world. This law was proclaimed by all - by the Indian as by the Chinese, Hebrew, Greek and Roman sages of the world. I think that this law was most clearly expressed by Christ, who plainly said that ‘in this alone is all the law and the prophets.’

“...The peoples of the Christian world have solemnly accepted this law, while at the same time they have permitted violence and built their lives on violence; and that is why the whole life of the Christian peoples is a continuous contradiction between what they profess, and the principles on which they order their lives - a contradiction between love accepted as the law of life, and violence which is recognized and praised, acknowledged even as a necessity...”

As everyone knows, Gandhi successfully applied the principle of non-violence to the civil rights struggle in South Africa, and later to the political movement which gave India its freedom and independence. Later, non-violence was successfully applied by Martin Luther King, and by Nelson Mandela. Gandhi was firm in pointing out that the ends do not justify the means, since violent methods inevitably contaminate the result achieved. The same theme can be seen in the following quotation from Martin Luther King.

“Why should we love our enemies?”, Dr. King wrote, “Returning hate for hate multiplies hate, adding deeper darkness to a night already devoid of stars. Darkness cannot drive out darkness; only light can do that. Hate cannot drive out hate. Only love can do that. ... Love is the only force capable of transforming an enemy into a friend. We never get rid of an enemy by meeting hate with hate; we get rid of an enemy by getting rid of enmity. ... It is this attitude that made it possible for Lincoln to speak a kind word about the South during the Civil War, when feeling was most bitter. Asked by a shocked bystander how he could do this, Lincoln said, ‘Madam, do I not destroy my enemies when I make them my friends?’ This is the power of redemptive love.”

In 1967, a year before his assassination, Dr. King forcefully condemned the Viet Nam war in an address at a massive peace rally in New York City. He felt that opposition to war followed naturally from his advocacy of non-violence. Regarding nuclear weapons, Dr. King wrote, “Wisdom born of experience should tell us that war is obsolete. There may have been a time when war served a negative good by preventing the spread of an evil force, but the power of modern weapons eliminates even the possibility that war may serve as a negative good. If we assume that life is worth living, and that man has a right to survival, then we must find an alternative to war. ... I am convinced that the Church cannot be silent while mankind faces the threat of nuclear annihilation. If the church is true to her mission, she must call for an end to the nuclear arms race.”
9.11 Reformed teaching of history

“We have to extend our loyalty to the whole of the human race.... A war-free world will be seen by many as Utopian. It is not Utopian. There already exist in the world large regions, for example the European Union, within which war is inconceivable. What is needed is to extend these...” , Sir Joseph Rotblat, Nobel Peace Prize Acceptance Speech, 1995.

Since modern war has become prohibitively dangerous, there is an urgent need for peace education. Why do we pay colossal sums for war, which we know is the source of so much human suffering, and which threatens to destroy human civilization? Why not instead support peace and peace education?

The growth of global consciousness

Besides a humane, democratic and just framework of international law and governance, we urgently need a new global ethic, - an ethic where loyalty to family, community and nation will be supplemented by a strong sense of the brotherhood of all humans, regardless of race, religion or nationality. Schiller expressed this feeling in his “Ode to Joy”, a part of which is the text of Beethoven’s Ninth Symphony. Hearing Beethoven’s music and Schiller’s words, most of us experience an emotion of resonance and unity with the message: All humans are brothers and sisters - not just some - all! It is almost a national anthem of humanity. The feelings that the music and words provoke are similar to patriotism, but broader. It is this sense of a universal human family that we need to cultivate in education, in the mass media, and in religion. We already appreciate music, art and literature from the entire world, and scientific achievements are shared by all, regardless of their country of origin. We need to develop this principle of universal humanism so that it will become the cornerstone of a new ethic.
Reformed teaching of history

Educational reforms are urgently needed, particularly in the teaching of history. As it is taught today, history is a chronicle of power struggles and war, told from a biased national standpoint. Our own race or religion is superior; our own country is always heroic and in the right.

We urgently need to replace this indoctrination in chauvinism by a reformed view of history, where the slow development of human culture is described, giving adequate credit to all who have contributed. Our modern civilization is built on the achievements of many ancient cultures. China, Japan, India, Mesopotamia, Egypt, Greece, the Islamic world, Christian Europe, and the Jewish intellectual traditions all have contributed. Potatoes, corn, squash, vanilla, chocolate, chili peppers, pineapples, quinine, etc. are gifts from the American Indians. Human culture, gradually built up over thousands of years by the patient work of millions of hands and minds, should be presented as a precious heritage - far too precious to be risked in a thermonuclear war.

The teaching of history should also focus on the times and places where good government and internal peace have been achieved, and the methods by which this has been accomplished. Students should be encouraged to think about what is needed if we are to apply the same methods to the world as a whole. In particular, the histories of successful federations should be studied, for example the Hanseatic League, the Universal Postal Union, the federal governments of Australia, Brazil, Germany, Switzerland, the United States, Canada, and so on. The recent history of the European Union provides another extremely important example. Not only the successes, but also the problems of federations should be studied in the light of the principle of subsidiarity. The essential features of federations should be clarified as well as the reasons why weaker forms of union have proved to be unsuccessful.

Reformed education of economists and businessmen

The education of economists and businessmen needs to face the problems of global poverty - the painful contrast between the affluence and wastefulness of the industrial North and the malnutrition, disease and illiteracy endemic in the South. Students of economics and business must look for the roots of poverty not only in population growth and war, but also in the history of colonialism and neocolonialism, and in defects in global financial institutions and trade agreements. They must be encouraged to formulate proposals for the correction of North-South economic inequality.

The economic impact of war and preparation for war should be included in the training of economists. Both direct and indirect costs should be studied. An example of an indirect

11 The principle of subsidiarity states that within a federation, decisions should be taken at the lowest level at which there are no important externalities. Thus, for example, decisions affecting air quality within Europe should be taken in Bruxelles because winds blow freely across national boundaries, but decisions affecting only the local environment should be taken locally.

12 One of the most important of these features is that federations have the power to make and enforce laws that are binding on individuals, rather than trying to coerce their member states.
cost of war is the effect of unimaginably enormous military budgets in reducing the amount of money available for solving the serious problems facing the world today.

Law for a united world

Law students should be made aware of the importance of international law. They should be familiar with its history, starting with Grotius and the Law of the Sea. They should know the histories of the International Court of Justice and the Nuremberg Principles. They should study the United Nations Charter (especially the articles making war illegal) and the Universal Declaration of Human Rights, as well as the Rome Treaty and the foundation of the International Criminal Court. They should be made aware of a deficiency in the present United Nations - the lack of a legislature with the power to make laws that are binding on individuals.

Students of law should be familiar with all of the details of the World Court’s historic Advisory Opinion on Nuclear Weapons, a decision that make the use or threat of use of nuclear weapons illegal. They should also study the Hague and Geneva Conventions, and the various international treaties related to nuclear, chemical and biological weapons. The relationship between the laws of the European Union and those of its member states should be given high importance. The decision by the British Parliament that the laws of the EU take precedence over British law should be a part of the curriculum.

Teaching global ethics

Professors of theology should emphasize three absolutely central components of religious ethics: the duty to love and forgive one’s enemies, the prohibition against killing, and the concept of universal human brotherhood. They should make their students conscious of a responsibility to give sermons that are relevant to the major political problems of the modern world, and especially to relate the three ethical principles just mentioned to the problem of war. Students of theology should be made conscious of their responsibility to soften the boundaries between ethnic groups, to contribute to interreligious understanding, and to make marriage across racial and religious boundaries more easy and frequent.

The social responsibility of scientists

In teaching science too, reforms are needed. Graduates in science and engineering should be conscious of their responsibilities. They must resolve never to use their education in the service of war, nor for the production of weapons, nor in any way that might be harmful to society or to the environment.

Science and engineering students ought to have some knowledge of the history and social impact of science. They could be given a course on the history of scientific ideas; but in connection with modern historical developments such as the industrial revolution, the global population explosion, the development of nuclear weapons, genetic engineering, and information technology, some discussion of social impact of science could be introduced.
One might hope to build up in science and engineering students an understanding of the way in which their own work is related to the general welfare of humankind, and a sense of individual social and ethical responsibility. These elements are needed in science education if rapid technological progress is to be beneficial to society rather than harmful.

The changes just mentioned in the specialized lawyers, theologians, scientists and engineers should have a counterpart in elementary education. The basic facts about peace and war should be communicated to children in simple language, and related to the everyday experiences of children. Teachers’ training colleges ought to discuss with their student-teachers the methods that can be used to make peace education a part of the curriculum at various levels, and how it can be related to familiar concepts. They should also discuss the degree to which the painful realities of war can be explained to children of various ages without creating an undesirable amount of anxiety.

Peace education can be made a part of the curriculum of elementary schools through (for example) theme days or theme weeks in which the whole school participates. This method has been used successfully in many European schools. During the theme days the children have been encouraged to produce essays, poems and drawings illustrating the difference between peace and war, and between negative peace and positive peace. Another activity has been to list words inspired by the concept “peace”, rapidly and by free association, and to do the same for the concept “war”. Drama has also been used successfully in elementary school peace education, and films have proved to be another useful teaching aid.

The problems of reducing global inequalities, of protecting human rights, and of achieving a war-free world can be introduced into grade school courses in history, geography, religion and civics. The curriculum of these courses is frequently revised, and advocates of peace education can take curriculum revisions as opportunities to introduce much-needed reforms that will make the students more international in their outlook. The argument (a true one) should be that changes in the direction of peace education will make students better prepared for a future in which peace will be a central issue and in which they will interact with people of other nations to a much greater extent than was the case in previous generations. The same can be said for curriculum revisions at the university level.

Large nations compared with global government

The problem of achieving internal peace over a large geographical area is not insoluble. It has already been solved. There exist today many nations or regions within each of which there is internal peace, and some of these are so large that they are almost worlds in themselves. One thinks of China, India, Brazil, Australia, the Russian Federation, the United States, and the European Union. Many of these enormous societies contain a variety of ethnic groups, a variety of religions and a variety of languages, as well as striking contrasts between wealth and poverty. If these great land areas have been forged

13 Negative peace is merely the absence of war. In positive peace, neighboring nations are actively engaged in common projects of mutual benefit, in cultural exchanges, in trade, in exchanges of students and so on.
into peaceful and cooperative societies, cannot the same methods of government be applied globally?

But what are the methods that nations use to achieve internal peace? Firstly, every true government needs to have the power to make and enforce laws that are binding on individual citizens. Secondly the power of taxation is a necessity. These two requirements of every true government have already been mentioned; but there is a third point that still remains to be discussed:

Within their own territories, almost all nations have more military power than any of their subunits. For example, the US Army is more powerful than the State Militia of Illinois. This unbalance of power contributes to the stability of the Federal Government of the United States. When the FBI wanted to arrest Al Capone, it did not have to bomb Chicago. Agents just went into the city and arrested the gangster. Even if Capone had been enormously popular in Illinois, the government of the state would have realized in advance that it had no chance of resisting the US Federal Government, and it still would have allowed the “Feds” to make their arrest. Similar considerations hold for almost all nations within which there is internal peace. It is true that there are some nations within which subnational groups have more power than the national government, but these are frequently characterized by civil wars.

Of the large land areas within which internal peace has been achieved, the European Union differs from the others because its member states still maintain powerful armies. The EU forms a realistic model for what can be achieved globally in the near future by reforming and strengthening the United Nations. In the distant future, however, we can imagine a time when a world federal authority will have much more power than any of its member states, and when national armies will have only the size needed to maintain local order.

Today there is a pressing need to enlarge the size of the political unit from the nation-state to the entire world. The need to do so results from the terrible dangers of modern weapons and from global economic interdependence. The progress of science has created this need, but science has also given us the means to enlarge the political unit: Our almost miraculous modern communications media, if properly used, have the power to weld all of humankind into a single supportive and cooperative society.

9.12 Culture and international cooperation

Culture, education and human solidarity

Cultural and educational activities have a small ecological footprint, and therefore are more sustainable than pollution-producing, fossil-fuel-using jobs in industry. Furthermore, since culture and knowledge are shared among all nations, work in culture and education leads societies naturally towards internationalism and peace.

Economies based on a high level of consumption of material goods are unsustainable and will have to be abandoned by a future world that renounces the use of fossil fuels in
order to avoid catastrophic climate change, a world where non-renewable resources such as metals will become increasingly rare and expensive. How then can full employment be maintained?

The creation of renewable energy infrastructure will provide work for a large number of people; but in addition, sustainable economies of the future will need to shift many workers from jobs in industry to jobs in the service sector. Within the service sector, jobs in culture and education are particularly valuable because they will help to avoid the disastrous wars that are currently producing enormous human suffering and millions of refugees, wars that threaten to escalate into an all-destroying global thermonuclear war.\footnote{http://www.fredsakademiet.dk/library/need.pdf http://eruditio.worldacademy.org/issue-5/article/urgent-need-renewable-energy}
UNESCO and peace education

Advocates of education for peace can obtain important guidance and encouragement from UNESCO - the United Nations Educational, Scientific and Cultural Organization. The Constitution of UNESCO, was written immediately after the end of the Second World War, during which education had been misused (especially in Hitler’s Germany) to indoctrinate students in such a way that they became uncritical and fanatical supporters of military dictatorships. The founders of the United Nations were anxious to correct this misuse, and to make education instead one of the foundations of a peaceful world. One can see this hope in the following paragraph from UNESCO’s Constitution:

“The purpose of the Organization is to contribute to peace and security by promoting collaboration among nations through education, science and culture in order to further universal respect for justice, for the rule of law and for the human rights and fundamental freedoms which are affirmed for the peoples of the world, without distinction of race, sex, language or religion, by the Charter of the United Nations.”

In other words, UNESCO was given the task of promoting education for peace, and of promoting peace through international cooperation in education.

In 1946 the General Conference of UNESCO adopted a nine-point resolution concerning the improvement of textbooks in such a way as to make them support international understanding, paying particular attention to history teaching and civic education. During the next decade, UNESCO produced publications and hosted seminars to promote improvements in the teaching of history, geography and modern languages, so that these subjects could be more instrumental in developing mutual understanding between nations.

http://www.unicef.org/education/files/PeaceEducation.pdf
and between cultures. A meeting of French, German, British and American teachers was organized in 1952, with the goal of removing national prejudices from textbooks. Every two years after this date bilateral and multilateral consultations of history teachers have taken place under the auspices of UNESCO.

Here are a few voices that express the aims and ideals of UNESCO over the years:

- Ellen Wilkinson (United Kingdom) (Former UK Minister of Education, Chairwoman of the conference establishing UNESCO in 1945): What can this organization do? Can we replace nationalist teaching by a conception of humanity that trains children to have a sense of mankind as well as of national citizenship? That means working for international understanding.

- Maria Montessori (Italy), pioneer of modern education and education for peace, Fourth Session of the General Conference of UNESCO, Florence 1950: If one day UNESCO resolved to involve children in the reconstruction of the world and building peace, if it chose to call on them, to discuss with them, and recognize the value of all the revelations they have for us, it would find them of immense help in infusing new life into this society which must be founded on the cooperation of all.

- Jamie Torres Bodet (Mexico), Director-General of UNESCO, 1948-1952, (The UNESCO Courier, 1951): Knowledge and understanding of the principles of the Universal Declaration of Human Rights and their practical application must begin during childhood. Efforts to make known the rights and duties they imply will never be fully effective unless schools in all countries make teaching about the declaration a regular part of their curriculum...

- Lionel Elvin (United Kingdom), Director of the Department of Education of UNESCO, 1950-1956 (UNESCO Courier, 1953): If UNESCO were only an office in Paris, its task would be impossible. It is more than that: it is an association of some sixty-five countries which have pledged themselves to do all they can, not only internationally but within their own boundaries, to advance the common aim of educating for peace. The international side comes in because we shall obviously do this faster and better and with more mutual trust if we do it together.

- Jawaharlal Nehru (India) Prime Minister, 1947-1964 (Address on a visit to UNESCO, 1962): It is then the minds and hearts of men that have to be approached for mutual understanding, knowledge and appreciation of each other and through the proper kind of education... But we have seen that education by itself does not lead to a conversion of minds towards peaceful purposes. Something more is necessary, new standards, new values and perhaps a kind of spiritual background and a feeling of commonness of mankind.

global, for as the communications revolution transforms the world into a single community, everyone must come to understand that they are affected by what happens elsewhere, and that their lives, too, have an impact. Solidarity is a survival strategy in the global village.

During the time when he was Secretary-General of UNESCO, Federico Mayor Zaragoza of Spain introduced the concept of a *Culture of Peace*. He felt, as many did, that civilization was entering a period of crisis. Federico Mayor believed this crisis to be as much spiritual as it was economic and political. It was necessary, he felt, to counteract our present power-worshiping culture of violence with a Culture of Peace, a set of ethical and aesthetic values, habits and customs, attitudes towards others, forms of behavior and ways of life that express

- Respect for life and for the dignity and human rights of individuals.
- Rejection of violence.
- Recognition of equal rights for men and women.
- Upholding the principles of democracy, freedom, justice, solidarity, tolerance and the acceptance of differences.
- Understanding between nations and countries and between ethnic, religious, cultural and social groups.

Mayor and UNESCO implemented this idea by designating the year 2000 as the International Year of the Culture of Peace. In preparation for this year, a meeting of Nobel Peace Prize Laureates launched *Manifesto 2000*, a campaign in which the following pledge of the Culture of Peace was widely circulated and signed:

> Recognizing my share of responsibility for the future of humanity, especially for today’s children and those of future generations, I pledge - in my daily life, in my family, my work, my community, my country and my region - to:

1. respect the life and dignity of every person without discrimination or prejudice;
2. practice active non-violence, rejecting violence in all its forms: physical, sexual, psychological, economical and social, in particular towards the most deprived and vulnerable such as children and adolescents;
3. share my time and material resources in a spirit of generosity to put an end to exclusion, injustice and political and economic oppression;
4. defend freedom of expression and cultural diversity, giving preference always to dialogue and listening without engaging in fanaticism, defamation and the rejection of others;
5. promote consumer behavior that is responsible and development practices that respect all forms of life and preserve the balance of nature on the planet;

6. contribute to the development of my community, with the full participation of women and respect for democratic principles, in order to create together new forms of solidarity.

In addition, Federico Mayor and UNESCO initiated a Campaign for the Children of the World, and this eventually developed into the International Decade for a Culture of Peace and Non-Violence for the Children of the World (2001-2010). In support of this work, the UN General Assembly drafted a Program of Action on a Culture of Peace (53rd Session, 2000). The Program of Action obliges it signatories to “ensure that children, from an early age, benefit from education on the values, attitudes, modes of behavior and ways of life to enable them to resolve any dispute peacefully and in a spirit of respect for human dignity and of tolerance and non-discrimination”, and to “encourage the revision of educational curricula, including textbooks...”

Just as this program was starting, the September 11 terrorist attacks gave an enormous present to the culture of violence and war, and almost silenced the voices speaking for a Culture of Peace. However, military solutions have never provided true security, even for the strongest countries. Expensive and technologically advanced weapons systems may enrich arms manufacturers and military lobbies, but they do not provide security - only an unbelievably expensive case of the jitters. By contrast, the Culture of Peace can give us hope for the future.

9.13 We stand on each other’s shoulders

Cultural evolution depends on the non-genetic storage, transmission, diffusion and utilization of information. The development of human speech, the invention of writing, the development of paper and printing, and finally, in modern times, mass media, computers and the Internet: all these have been crucial steps in society’s explosive accumulation of information and knowledge. Human cultural evolution proceeds at a constantly-accelerating speed, so great in fact that it threatens to shake society to pieces.

In many respects, our cultural evolution can be regarded as an enormous success. However, at the start of the 21st century, most thoughtful observers agree that civilization is entering a period of crisis. As all curves move exponentially upward, population, production, consumption, rates of scientific discovery, and so on, one can observe signs of increasing environmental stress, while the continued existence and spread of nuclear weapons threaten civilization with destruction. Thus, while the explosive growth of knowledge has brought many benefits, the problem of achieving a stable, peaceful and sustainable world remains serious, challenging and unsolved.

Our modern civilization has been built up by means of a worldwide exchange of ideas and inventions. It is built on the achievements of many ancient cultures. China, Japan, India, Mesopotamia, Egypt, Greece, the Islamic world, Christian Europe, and the Jewish
intellectual traditions, all have contributed. Potatoes, corn, squash, vanilla, chocolate, chili peppers, and quinine are gifts from the American Indians.

The sharing of scientific and technological knowledge is essential to modern civilization. The great power of science is derived from an enormous concentration of attention and resources on the understanding of a tiny fragment of nature. It would make no sense to proceed in this way if knowledge were not permanent, and if it were not shared by the entire world.

Science is not competitive. It is cooperative. It is a great monument built by many thousands of hands, each adding a stone to the cairn. This is true not only of scientific knowledge but also of every aspect of our culture, history, art and literature, as well as the skills that produce everyday objects upon which our lives depend. Civilization is cooperative. It is not competitive.

Our cultural heritage is not only immensely valuable; it is also so great that no individual comprehends all of it. We are all specialists, who understand only a tiny fragment of the enormous edifice. No scientist understands all of science. Perhaps Leonardo da Vinci could come close in his day, but today it is impossible. Nor do the vast majority people who use cell phones, personal computers and television sets every day understand in detail how they work. Our health is preserved by medicines, which are made by processes that most of us do not understand, and we travel to work in automobiles and buses that we would be completely unable to construct.

The fragility of modern society

As our civilization has become more and more complex, it has become increasingly vulnerable to disasters. We see this whenever there are power cuts or transportation failures due to severe storms. If electricity should fail for a very long period of time, our complex society would cease to function. The population of the world is now so large that it is completely dependent on the high efficiency of modern agriculture. We are also very dependent on the stability of our economic system.

The fragility of modern society is particularly worrying, because, with a little thought, we can predict several future threats which will stress our civilization very severely. We will need much wisdom and solidarity to get safely through the difficulties that now loom ahead of us.

We can already see the the problem of famine in vulnerable parts of the world. Climate change will make this problem more severe by bringing aridity to parts of the world that are now large producers of grain, for example the Middle West of the United States. Climate change has caused the melting of glaciers in the Himalayas and the Andes. When these glaciers are completely melted, China, India and several countries in South America will be deprived of their summer water supply. Water for irrigation will also become increasingly problematic because of falling water tables. Rising sea levels will drown many rice-growing areas in South-East Asia. Finally, modern agriculture is very dependent on fossil fuels for the production of fertilizer and for driving farm machinery. In the future, high-yield agriculture will be dealt a severe blow by the rising price of fossil fuels.
Economic collapse is another threat that we will have to face in the future. Our present fractional reserve banking system is dependent on economic growth. But perpetual growth of industry on a finite planet is a logical impossibility. Thus we are faced with a period of stress, where reform of our growth-based economic system and great changes of lifestyle will both become necessary.

How will we get through the difficult period ahead? I believe that solutions to the difficult problems of the future are possible, but only if we face the problems honestly and make the adjustments which they demand. Above all, we must maintain our human solidarity.

The great and complex edifice of human civilization is far too precious to be risked in a thermonuclear war. It has been built by all humans, working together. And by working together, we must now ensure that it is handed on intact to our children and grandchildren.
9.14 The collective human consciousness

No man is an island entire of itself; every man is a piece of the continent, a part of the main, John Donne (1572-1631)

If I have seen further it is by standing on ye shoulders of Giants, Isaac Newton (1643-1727)

One needs an exceptional stupidity even to question the urgency we are under to establish some effective World Pax, before gathering disaster overwhelms us. The problem of reshaping human affairs on a world-scale, this World problem, is drawing together an ever-increasing multitude of minds. H.G. Wells (1866-1946)

The Open Access Movement has fought valiantly to ensure that scientists do not sign their copyrights away but instead ensure their work is published on the Internet, under terms that allow anyone to access it., Aaron Schwartz (1986-2013)

Sharp qualitative discontinuities have occurred several times before during the earth’s 4-billion year evolutionary history: A dramatic change occurred when autocatalytic systems first became surrounded by a cell membrane. Another sharp transition occurred when photosynthesis evolved, and a third when the enormously more complex eukaryotic cells developed from the prokaryotes. The evolution of multicellular organisms also represents a sharp qualitative change. Undoubtedly the change from molecular information transfer to cultural information transfer is an even more dramatic shift to a higher mode of evolution than the four sudden evolutionary gear-shifts just mentioned. Human cultural evolution began only an instant ago on the time-scale of genetic evolution. Already it has completely changed the planet. We have no idea where it will lead.

The whole is greater than the sum of its parts. Human society is a superorganism, far greater than any individual in history or in the present. The human superorganism has a supermind, a collective consciousness far greater than the consciousness of individuals. Each individual contributes a stone to the cairn of civilization, but our astonishing understanding of the universe is a collective achievement.

Science derives its great power from the concentration of enormous resources on a tiny fragment of reality. It would make no sense to proceed in this way if knowledge were not permanent and if information were not shared globally. But scientists of all nations pool their knowledge at international conferences and through international publications. Scientists stand on each other’s shoulders. Their shared knowledge is far greater than the fragments that each contributes.

Other aspects of culture are also cooperative and global. For example, Japanese wood-block printers influenced the French Impressionists. The nonviolent tradition of Shelly, Thoreau, Tolstoy, Gandhi, Martin Luther King and Nelson Mandela is international. Culture is cooperative. It is not competitive. Global cultural cooperation can lead us to a sustainable and peaceful society. Our almost miraculous modern communications media, if properly used, can give us a stable, prosperous and cooperative future society.
As each human being is an integral part of the collective human consciousness, they affect the world much more deeply than is visible on the surface of their lives.

ONE LIFE, ONE HUMANITY, ONE CONSCIOUSNESS
Suggestions for further reading

Appendix A

STATISTICAL MECHANICS AND INFORMATION

A.1 The second law of thermodynamics

In this appendix, we discuss the origin and evolution of living organisms from the standpoint of thermodynamics, statistical mechanics and information theory. In particular, we discuss the work of Maxwell, Boltzmann, Gibbs, Szilard, and Shannon. Their research established the fact that free energy contains information, and that it can thus be seen as the source of the order and complexity of living systems. The reader who prefers to avoid mathematics may jump quickly over the equations in this chapter without losing the thread of the argument, provided that he or she is willing to accept this conclusion.

Our starting point is the second law of thermodynamics, which was discovered by Nicolas Leonard Sadi Carnot (1796-1832) and elaborated by Rudolf Clausius (1822-1888) and William Thomson (later Lord Kelvin, 1824-1907). Carnot came from a family of distinguished French politicians and military men, but instead of following a political career, he studied engineering. In 1824, his only scientific publication appeared - a book with the title Reflections on the Motive Power of Fire. Although it was ignored for the first few years after its publication, this single book was enough to secure Carnot a place in history as the founder of the science of thermodynamics. In his book, Carnot introduced a scientific definition of work which we still use today - “weight lifted through a height”; in other words, force times distance.

At the time when Carnot was writing, much attention was being given to improving the efficiency of steam engines. Although James Watt’s steam engines were far more efficient than previous models, they still could only convert between 5 % and 7 % of the heat energy of their fuels into useful work. Carnot tried to calculate the theoretical maximum of the efficiency of steam engines, and he was able to show that an engine operating between the

\[\text{i.e. energy from which work can be derived}\]
Figure A.1: Nicolas Léonard Sadi Carnot (1796-1832) was a French military engineer and physicist, often called “the father of thermodynamics”.
A.1. THE SECOND LAW OF THERMODYNAMICS

Figure A.2: An early steam engine. Efforts to improve the efficiency of these engines led Carnot to found the discipline of thermodynamics. Thus it is sometimes said that “science owes more to the steam engine than the steam engine owes to science”.

Temperatures T_1 and T_2 could at most attain

$$\text{maximum efficiency} = \frac{T_1 - T_2}{T_1} \quad (A.1)$$

Here T_1 is the temperature of the input steam, and T_2 is the temperature of the cooling water. Both these temperatures are absolute temperatures, i.e., temperatures proportional to the volume of a given quantity of gas at constant pressure.

Carnot died of cholera at the age of 36. Fifteen years after his death, the concept of absolute temperature was further clarified by Lord Kelvin (1824-1907), who also helped to bring Carnot’s work to the attention of the scientific community.

Building on the work of Carnot, the German theoretical physicist Rudolph Clausius was able to deduce an extremely general law. He discovered that the ratio of the heat content of a closed system to its absolute temperature always increases in any process. He called this ratio the entropy of the system. In the notation of modern thermodynamics, the change in entropy dS when a small amount of heat dq is transferred to a system is given by

$$dS = \frac{dq}{dT} \quad (A.2)$$

Let us imagine a closed system consisting of two parts, one at temperature T_1, and the other part at a lower temperature T_2. If a small amount of heat dq flows from the warmer
Figure A.3: William Thomson (Lord Kelvin, 1824-1907). His concept of an absolute zero of temperature made Carnot’s ideas more precise. He helped to bring Carnot’s work to the attention of the scientific world. Kelvin was also a pioneer of the trans-Atlantic telegraph.
A.1. THE SECOND LAW OF THERMODYNAMICS

Figure A.4: The German physicist Rudolph Clausius (1822-1888) is considered to be one of the founders of thermodynamics.

part to the cooler one, the small resulting change in entropy of the total system will be

$$dS = \frac{dq}{T_1} - \frac{dq}{T_2} > 0$$ \hspace{1cm} (A.3)

According to Clausius, since heat never flows spontaneously from a colder object to a warmer one, the entropy of a closed system always increases; that is to say, dS is always positive. As heat continues to flow from the warmer part of the system to the cooler part, the system’s energy becomes less and less available for doing work. Finally, when the two parts have reached the same temperature, no work can be obtained. When the parts differed in temperature, a heat engine could in principle be run between them, making use of the temperature difference; but when the two parts have reached the same temperature, this possibility no longer exists. The law stating that the entropy of a closed system always increases is called the second law of thermodynamics.
A.2 Maxwell’s demon

In England, the brilliant Scottish theoretical physicist, James Clerk Maxwell (1831-1879) invented a thought experiment which demonstrated that the second law of thermodynamics is statistical in nature and that there is a relationship between entropy and information. It should be mentioned that at the time when Clausius and Maxwell were living, not all scientists agreed about the nature of heat, but Maxwell, like Kelvin, believed heat to be due to the rapid motions of atoms or molecules. The more rapid the motion, the greater the temperature.

In a discussion of the ideas of Carnot and Clausius, Maxwell introduced a model system consisting of a gas-filled box divided into two parts by a wall; and in this wall, Maxwell imagined a small weightless door operated by a ”demon”. Initially, Maxwell let the temperature and pressure in both parts of the box be equal. However, he made his demon operate the door in such a way as to sort the gas particles: Whenever a rapidly-moving particle approaches from the left, Maxwell’s demon opens the door; but when a slowly moving particle approaches from the left, the demon closes it. The demon has the opposite policy for particles approaching from the right, allowing the slow particles to pass, but turning back the fast ones. At the end of Maxwell’s thought experiment, the particles are sorted, with the slow ones to the left of the barrier, and the fast ones to the right. Although initially, the temperature was uniform throughout the box, at the end a temperature difference has been established, the entropy of the total system is decreased and the second law of thermodynamics is violated.

In 1871, Maxwell expressed these ideas in the following words: “If we conceive of a being whose faculties are so sharpened that he can follow every molecule in its course, such a being, whose attributes are still finite as our own, would be able to do what is at present impossible to us. For we have seen that the molecules in a vessel full of air are moving at velocities by no means uniform... Now let us suppose that such a vessel full of air at a uniform temperature is divided into two portions, A and B, by a division in which there is a small hole, and that a being who can see individual molecules, opens and closes swifter molecules to pass from A to B, and only slower ones to pass from B to A. He will thus, without the expenditure of work, raise the temperature of B and lower that of A, in contradiction to the second law of thermodynamics.” Of course Maxwell admitted that demons and weightless doors do not exist. However, he pointed out, one could certainly imagine a small hole in the partition between the two halves of the box. The sorting could happen by chance (although the probability of its happening decreases rapidly as the number of gas particles becomes large). By this argument, Maxwell demonstrated that the second law of thermodynamics is a statistical law.

An extremely interesting aspect of Maxwell’s thought experiment is that his demon uses information to perform the sorting. The demon needs information about whether an approaching particle is fast or slow in order to know whether or not to open the door.

Finally, after the particles have been sorted, we can imagine that the partition is taken away so that the hot gas is mixed with the cold gas. During this mixing, the entropy of the system will increase, and information (about where to find fast particles and where
Figure A.5: The great Scottish physicist James Clerk Maxwell (1831-1879) correctly believed that heat is due to the rapid motion of atoms and molecules.
Figure A.6: Maxwell’s demon. Maxwell invented a thought experiment that demonstrates the connection between thermodynamics and information. A gas is divided into two compartments separated by a weightless door operated by the demon. When a fast-moving particle approaches the door from the right, the demon allows it to pass. However, if the particle is moving slowly, the demon closes the door. After some time, the left-hand compartment will become hotter than the right-hand one.

to find slow ones) will be lost. Entropy is thus seen to be a measure of disorder or lack of information. To decrease the entropy of a system, and to increase its order, Maxwell’s demon needs information. In the opposite process, the mixing process, where entropy increases and where disorder increases, information is lost.

A.3 Statistical mechanics

Besides inventing an interesting demon (and besides his monumental contributions to electromagnetic theory), Maxwell also helped to lay the foundations of statistical mechanics. In this enterprise, he was joined by the Austrian physicist Ludwig Boltzmann (1844-1906) and by an American, Josiah Willard Gibbs, whom we will discuss later. Maxwell and Boltzmann worked independently and reached similar conclusions, for which they share the credit. Like Maxwell, Boltzmann also interpreted an increase in entropy as an increase in disorder; and like Maxwell he was a firm believer in atomism at a time when this belief was by no means universal. For example, Ostwald and Mach, both important figure in German science at that time, refused to believe in the existence of atoms, in spite of the fact that Dalton’s atomic ideas had proved to be so useful in chemistry. Towards the end of his life, Boltzmann suffered from periods of severe depression, perhaps because of attacks on his scientific work by Ostwald and others. In 1906, while on vacation near Trieste, he committed suicide - ironically, just a year before the French physicist J.B. Perrin produced irrefutable evidence of the existence of atoms.

Maxwell and Boltzmann made use of the concept of “phase space”, a $6N$-dimensional space whose coordinates are the position and momentum coordinates of each of N particles. However, in discussing statistical mechanics we will use a more modern point of view, the
A.3. STATISTICAL MECHANICS

Figure A.7: Ludwig Boltzmann (1844-1906). Together with Maxwell he is given credit for founding the discipline of statistical mechanics.

point of view of quantum theory, according to which a system may be in one or another of a set of discrete states, \(i = 1, 2, 3, \ldots \) with energies \(\epsilon_i \). Let us consider a set of \(N \) identical, weakly-interacting systems; and let us denote the number of the systems which occupy a particular state by \(n_j \), as shown in equation

\[
\begin{array}{ccccccc}
\text{State number} & & 1 & 2 & 3 & \ldots & i & \ldots \\
\text{Energy} & \epsilon_1, & \epsilon_2, & \epsilon_3, & \ldots & \epsilon_i, & \ldots \\
\text{Occupation number} & n_1, & n_2, & n_3, & \ldots & n_i, & \ldots \\
\end{array}
\]

(A.4)

the energy levels and their occupation numbers. This macrostate can be constructed in many ways, and each of these ways is called a “microstate”: For example, the first of the \(N \) identical systems may be in state 1 and the second in state 2; or the reverse may be the case; and the two situations correspond to different microstates. From combinatorial analysis it is possible to show that the number of microstates corresponding to a given macrostate is given by:

\[
W = \frac{N!}{n_1!n_2!n_3!\ldots n_i!\ldots}
\]

(A.5)
Boltzmann was able to show that the entropy S_N of the N identical systems is related to the quantity W by the equation

$$S_N = k \ln W$$ (A.6)

where k is the constant which appears in the empirical law relating the pressure, volume and absolute temperature of an ideal gas;

$$PV = NkT$$ (A.7)

This constant,

$$k = 1.38062 \times 10^{-23} \text{ joule/kelvin}$$ (A.8)

is called Boltzmann’s constant in his honor. Boltzmann’s famous equation relating entropy to missing information, equation (4.6), is engraved on his tombstone. A more detailed discussion of Boltzmann’s statistical mechanics is given in Appendix 1.

A.4 Information theory; Shannon’s formula

We have seen that Maxwell’s demon needed information to sort gas particles and thus decrease entropy; and we have seen that when fast and slow particles are mixed so that entropy increases, information is lost. The relationship between entropy and lost or missing information was made quantitative by the Hungarian-American physicist Leo Szilard (1898-1964) and by the American mathematician Claude Shannon (1916-2001). In 1929, Szilard published an important article in Zeitschrift für Physik in which he analyzed Maxwell’s demon. In this famous article, Szilard emphasized the connection between entropy and missing information. He was able to show that the entropy associated with a unit of information is $k \ln 2$, where k is Boltzmann’s constant. We will discuss this relationship in more detail below.

Claude Shannon is usually considered to be the “father of information theory”. Shannon graduated from the University of Michigan in 1936, and he later obtained a Ph.D. in mathematics from the Massachusetts Institute of Technology. He worked at the Bell Telephone Laboratories, and later became a professor at MIT. In 1949, motivated by the need of AT&T to quantify the amount of information that could be transmitted over a given line, Shannon published a pioneering study of information as applied to communication and computers. Shannon first examined the question of how many binary digits are needed to express a given integer Ω. In the decimal system we express an integer by telling how many 1’s it contains, how many 10’s, how many 100’s, how many 1000’s, and so on. Thus, for example, in the decimal system,

$$105 = 1 \times 10^2 + 0 \times 10^1 + 1 \times 10^0$$ (A.9)

Any integer greater than or equal to 100 but less than 1000 can be expressed with 3 decimal digits; any number greater than or equal to 1000 but less than 10,000 requires 4, and so on.
The natural language of computers is the binary system; and therefore Shannon asked himself how many binary digits are needed to express an integer of a given size. In the binary system, a number is specified by telling how many of the various powers of 2 it contains. Thus, the decimal integer 105, expressed in the binary system, is

\[1101001 \equiv 1 \times 2^6 + 1 \times 2^5 + 0 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0\]
(A.10)

In the many early computers, numbers and commands were read in on punched paper tape, which could either have a hole in a given position, or else no hole. Shannon wished to know how long a strip of punched tape is needed to express a number of a given size - how many binary digits are needed? If the number happens to be an exact power of 2, then the answer is easy: To express the integer

\[\Omega = 2^n\]
(A.11)

one needs \(n + 1\) binary digits. The first binary digit, which is 1, gives the highest power of 2, and the subsequent digits, all of them 0, specify that the lower powers of 2 are absent. Shannon introduced the word “bit” as an abbreviation of “binary digit”. He generalized this result to integers which are not equal to exact powers of 2: Any integer greater than or equal to \(2^n - 1\), but less than \(2^n\), requires \(n\) binary digits or “bits”. In Shannon’s theory, the bit became the unit of information. He defined the quantity of information needed to express an arbitrary integer \(\Omega\) as

\[I = \log_2 \Omega \text{bits} = \frac{\ln \Omega}{\ln 2} \text{bits} = 1.442695 \ln \Omega \text{bits} \]
(A.12)

or

\[I = K \ln \Omega \quad K = 1.442695 \text{bits} \]
(A.13)

Of course the information function \(I\), as defined by equation (1.13), is in general not an integer, but if one wishes to find the exact number of binary digits required to express a given integer \(\Omega\), one can calculate \(I\) and round upward.²

Shannon went on to consider quantitatively the amount of information which is missing before we perform an experiment, the result of which we are unable to predict with certainty. (For example, the “experiment” might be flipping a coin or throwing a pair of dice.) Shannon first calculated the missing information, \(I_N\), not for a single performance of the experiment but for \(N\) independent performances. Suppose that in a single performance, the probability that a particular result \(i\) will occur is given by \(P_i\). If the experiment is performed \(N\) times, then as \(N\) becomes very large, the fraction of times that the result \(i\) occurs becomes more and more exactly equal to \(P_i\). For example, if a coin is flipped \(N\) times, then as \(N\) becomes extremely large, the fraction of “heads” among the results becomes more and more nearly equal to 1/2. However, some information is still missing because we still do not know the sequence of the results. Shannon was able to show from

² Similar considerations can also be found in the work of the statistician R.A. Fisher.
combinatorial analysis, that this missing information about the sequence of the results is
given by

\[I_N = K \ln \Omega \] \hspace{1cm} (A.14)

where

\[\Omega = \frac{N!}{n_1!n_2!n_3! \ldots n_i! \ldots} \quad n_i \equiv N \cdot P_i \] \hspace{1cm} (A.15)

or

\[I_N = K \ln \Omega = K \left[\ln(N!) - \sum_i \ln(n_i) \right] \] \hspace{1cm} (A.16)

Shannon then used Sterling’s approximation, \(\ln(n_i!) \approx n_i(\ln n_i - 1) \), to rewrite (4.16) in the form

\[I_N = -KN \sum_i P_i \ln P_i \] \hspace{1cm} (A.17)

Finally, dividing by \(N \), he obtained the missing information prior to the performance of a single experiment:

\[I = -K \sum_i P_i \ln P_i \] \hspace{1cm} (A.18)

For example, in the case of flipping a coin, Shannon’s equation, (1.18), tells us that the missing information is

\[I = -K \left[\frac{1}{2} \ln \left(\frac{1}{2} \right) + \frac{1}{2} \ln \left(\frac{1}{2} \right) \right] = 1 \text{ bit} \] \hspace{1cm} (A.19)
A.5. ENTROPY EXPRESSED AS MISSING INFORMATION

As a second example, we might think of an “experiment” where we write the letters of the English alphabet on 26 small pieces of paper. We then place them in a hat and draw out one at random. In this second example,

\[P_a = P_b = \ldots = P_z = \frac{1}{26} \] \hspace{1cm} (A.20)

and from Shannon’s equation we can calculate that before the experiment is performed, the missing information is

\[I = -K \left[\frac{1}{26} \ln \left(\frac{1}{26} \right) + \frac{1}{26} \ln \left(\frac{1}{26} \right) + \ldots \right] = 4.70 \text{ bits} \] \hspace{1cm} (A.21)

If we had instead picked a letter at random out of an English book, the letters would not occur with equal probability. From a statistical analysis of the frequency of the letters, we would know in advance that

\[P_a = 0.078, \quad P_b = 0.013, \quad \ldots \quad P_z = 0.001 \] \hspace{1cm} (A.22)

Shannon’s equation would then give us a slightly reduced value for the missing information:

\[I = -K \left[0.078 \ln 0.078 + 0.013 \ln 0.013 + \ldots \right] = 4.15 \text{ bits} \] \hspace{1cm} (A.23)

Less information is missing when we know the frequencies of the letters, and Shannon’s formula tells us exactly how much less information is missing.

When Shannon had been working on his equations for some time, he happened to visit the mathematician John von Neumann, who asked him how he was getting on with his theory of missing information. Shannon replied that the theory was in excellent shape, except that he needed a good name for “missing information”. “Why don’t you call it entropy?”, von Neumann suggested. “In the first place, a mathematical development very much like yours already exists in Boltzmann’s statistical mechanics, and in the second place, no one understands entropy very well, so in any discussion you will be in a position of advantage!” Like Leo Szilard, von Neumann was a Hungarian-American, and the two scientists were close friends. Thus von Neumann was very much aware of Szilard’s paper on Maxwell’s demon, with its analysis of the relationship between entropy and missing information. Shannon took von Neumann’s advice, and used the word “entropy” in his pioneering paper on information theory. Missing information in general cases has come to be known as “Shannon entropy”. But Shannon’s ideas can also be applied to thermodynamics.

A.5 Entropy expressed as missing information

From the standpoint of information theory, the thermodynamic entropy \(S_N \) of an ensemble of \(N \) identical weakly-interacting systems in a given macrostate can be interpreted as the missing information which we would need in order to specify the state of each system, i.e. the microstate of the ensemble. Thus, thermodynamic information is defined to be the
negative of thermodynamic entropy, i.e. the information that would be needed to specify
the microstate of an ensemble in a given macrostate. Shannon’s formula allows this missing
information to be measured quantitatively. Applying Shannon’s formula, equation (1.13),
to the missing information in Boltzmann’s problem we can identify W with Ω, S_N with
I_N, and k with K:

$$W \rightarrow \Omega \quad S_N \rightarrow I_N \quad k \rightarrow K = \frac{1}{\ln 2} \text{ bits} \quad (A.24)$$

so that

$$k \ln 2 = 1 \text{ bit} = 0.95697 \times 10^{-23} \frac{\text{joule}}{\text{kelvin}} \quad (A.25)$$

and

$$k = 1.442695 \text{ bits} \quad (A.26)$$

This implies that temperature has the dimension energy/bit:

$$1 \text{ degree Kelvin} = 0.95697 \times 10^{-23} \frac{\text{joule}}{\text{bit}} \quad (A.27)$$

From this it follows that

$$1 \frac{\text{joule}}{\text{kelvin}} = 1.04496 \times 10^{23} \text{ bits} \quad (A.28)$$

If we divide equation (4.28) by Avogadro’s number we have

$$1 \frac{\text{joule}}{\text{kelvin mol}} = \frac{1.04496 \times 10^{23} \text{ bits/molecule}}{6.02217 \times 10^{23} \text{ molecules/mol}} = 0.17352 \frac{\text{bits}}{\text{molecule}} \quad (A.29)$$

Figure 1.13 shows the experimentally-determined entropy of ammonia, NH$_3$, as a function
of the temperature, measured in kelvins. It is usual to express entropy in joule/kelvin-mol;
but it follows from equation (4.29) that entropy can also be expressed in bits/molecule, as
is shown in the figure. Since

$$1 \text{ electron volt} = 1.6023 \times 10^{-19} \text{ joule} \quad (A.30)$$

it also follows from equation (4.29) that

$$1 \frac{\text{electron volt}}{\text{kelvin}} = 1.6743 \times 10^4 \text{ bits} \quad (A.31)$$

Thus, one electron-volt of energy, converted into heat at room temperature, $T = 298.15$
kelvin, will produce an entropy change (or thermodynamic information change) of

$$1 \frac{\text{electron volt}}{298.15 \text{ kelvin}} = 56.157 \text{ bits} \quad (A.32)$$

When a system is in thermodynamic equilibrium, its entropy has reached a maximum;
but if it is not in equilibrium, its entropy has a lower value. For example, let us think of the
Figure A.9: This figure shows the entropy of ammonia as a function of temperature. It is usual to express entropy in joule/kelvin-mol, but it can also be expressed in bits/molecule, where the “bits” refer to thermodynamic information.
case which was studied by Clausius when he introduced the concept of entropy: Clausius imagined an isolated system, divided into two parts, one of which has a temperature T_1, and the other a lower temperature, T_2. When heat is transferred from the hot part to the cold part, the entropy of the system increases; and when equilibrium is finally established at some uniform intermediate temperature, the entropy has reached a maximum. The difference in entropy between the initial state of Clausius’ system and its final state is a measure of how far away from thermodynamic equilibrium it was initially. From the discussion given above, we can see that it is also possible to interpret this entropy difference as the system’s initial content of thermodynamic information.

Similarly, when a photon from the sun reaches (for example) a drop of water on the earth, the initial entropy of the system consisting of the photon plus the drop of water is smaller than at a later stage, when the photon’s energy has been absorbed and shared among the water molecules, with a resulting very slight increase in the temperature of the water. This entropy difference can be interpreted as the quantity of thermodynamic information which was initially contained in the photon-drop system, but which was lost when the photon’s free energy was degraded into heat. Equation (4.32) allows us to express this entropy difference in terms of bits. For example, if the photon energy is 2 electron-volts, and if the water drop is at a temperature of 298.15 degrees Kelvin, then $\Delta S = 112.31$ bits; and this amount of thermodynamic information is available in the initial state of the system. In our example, the information is lost; but if the photon had instead reached the leaf of a plant, part of its energy, instead of being immediately degraded, might have been stabilized in the form of high-energy chemical bonds. When a part of the photon energy is thus stabilized, not all of the thermodynamic information which it contains is lost; a part is conserved and can be converted into other forms of information.

A.6 Cybernetic information compared with thermodynamic information

Equations (1.24)-(1.32) constitute a definition of thermodynamic information.

From the discussion given above we can see that there is a close analogy between Shannon entropy and thermodynamic entropy, as well as a close analogy between cybernetic information and thermodynamic information. However, despite the close analogies, there are important differences between Shannon’s quantities and those of Boltzmann. Cybernetic information (also called semiotic information) is an abstract quantity related to messages, regardless of the physical form through which the messages are expressed, whether it is through electrical impulses, words written on paper, or sequences of amino acids. Thermodynamic information, by contrast, is a temperature-dependent and size-dependent physical quantity. Doubling the size of the system changes its thermodynamic information content; but neither doubling the size of a message written on paper, nor warming the message will change its cybernetic information content. Furthermore, many exact copies of a message do not contain more cybernetic information than the original message.
The evolutionary process consists in making many copies of a molecule or a larger system. The multiple copies then undergo random mutations; and after further copying, natural selection preserves those mutations that are favorable. It is thermodynamic information that drives the copying process, while the selected favorable mutations may be said to contain cybernetic information.

A.7 The information content of Gibbs free energy

At the beginning of this chapter, we mentioned that the American physicist Josiah Willard Gibbs (1839-1903) made many contributions to thermodynamics and statistical mechanics. In 1863, Gibbs received from Yale the first Ph.D. in engineering granted in America, and after a period of further study in France and Germany, he became a professor of mathematical physics at Yale in 1871, a position which he held as long as he lived. During the period between 1876 and 1878, he published a series of papers in the Transactions of the Connecticut Academy of Sciences. In these papers, about 400 pages in all, Gibbs applied thermodynamics to chemical reactions. (The editors of the Transactions of the Connecticut Academy of Sciences did not really understand Gibbs’ work, but, as they said later, “We knew Gibbs, and we took his papers on faith”.)

Because the journal was an obscure one, and because Gibbs’ work was so highly mathematical, it remained almost unknown to European scientists for a long period. However, in 1892 Gibbs’ papers were translated into German by Ostwald, and in 1899 they were translated into French by Le Chatelier; and then the magnitude of Gibbs’ contribution was finally recognized. One of his most important innovations was the definition of a quantity which we now call “Gibbs free energy”. This quantity allows one to determine whether or not a chemical reaction will take place spontaneously.

Chemical reactions usually take place at constant pressure and constant temperature. If a reaction produces a gas as one of its products, the gas must push against the pressure of the earth’s atmosphere to make a place for itself. In order to take into account the work done against external pressure in energy relationships, the German physiologist and physicist Hermann von Helmholtz introduced a quantity (which we now call heat content or enthalpy) defined by

\[H = U + PV \] (A.33)

where \(U \) is the internal energy of a system, \(P \) is the pressure, and \(V \) is the system’s volume.

Gibbs went one step further than Helmholtz, and defined a quantity which would also take into account the fact that when a chemical reaction takes place, heat is exchanged with the surroundings. Gibbs defined his free energy by the relation

\[G = U + PV - TS \] (A.34)

or

\[G = H - TS \] (A.35)

where \(S \) is the entropy of a system, \(H \) is its enthalpy, and \(T \) is its temperature.
Figure A.10: Josiah Willard Gibbs (1839-1903). He was the first person to apply thermodynamics to chemistry. Today the concept of Gibbs Free Energy is central to the discipline of physical chemistry.
A.7. THE INFORMATION CONTENT OF GIBBS FREE ENERGY

Gibbs’ reason for introducing the quantity G is as follows: The second law of thermodynamics states that in any spontaneous process, the entropy of the universe increases. Gibbs invented a simple model of the universe, consisting of the system (which might, for example, be a beaker within which a chemical reaction takes place) in contact with a large thermal reservoir at constant temperature. The thermal reservoir could, for example, be a water bath so large that whatever happens in the chemical reaction, the temperature of the bath will remain essentially unaltered. In Gibbs’ simplified model, the entropy change of the universe produced by the chemical reaction can be split into two components:

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} + \Delta S_{\text{bath}}$$ \hspace{1cm} (A.36)

Now suppose that the reaction is endothermic (i.e. it absorbs heat). Then the reaction beaker will absorb an amount of heat ΔH_{system} from the bath, and the entropy change of the bath will be

$$\Delta S_{\text{bath}} = -\frac{\Delta H_{\text{system}}}{T}$$ \hspace{1cm} (A.37)

Combining (1.36) and (1.37) with the condition requiring the entropy of the universe to increase, Gibbs obtained the relationship

$$\Delta S_{\text{universe}} = \Delta S_{\text{system}} - \frac{\Delta H_{\text{system}}}{T} > 0$$ \hspace{1cm} (A.38)

The same relationship also holds for exothermic reactions, where heat is transferred in the opposite direction. Combining equations (1.38) and (1.35) yields

$$\Delta G_{\text{system}} = -T \Delta S_{\text{universe}} < 0$$ \hspace{1cm} (A.39)

Thus, the Gibbs free energy for a system must decrease in any spontaneous chemical reaction or process which takes place at constant temperature and pressure. We can also see from equation (4.39) that Gibbs free energy is a measure of a system’s content of thermodynamic information. If the available free energy is converted into heat, the quantity of thermodynamic information $\Delta S_{\text{universe}} = -\Delta G_{\text{system}}/T$ is lost, and we can deduce that in the initial state of the system, this quantity of information was available. Under some circumstances the available thermodynamic information can be partially conserved. In living organisms, chemical reactions are coupled together, and Gibbs free energy, with its content of thermodynamic information, can be transferred from one compound to another, and ultimately converted into other forms of information.

Measured values of the “Gibbs free energy of formation”, ΔG_f°, are available for many molecules. To construct tables of these values, the change in Gibbs free energy is measured when the molecules are formed from their constituent elements. The most stable states of the elements at room temperature and atmospheric pressure are taken as zero points. For example, water in the gas phase has a Gibbs free energy of formation

$$\Delta G_f^\circ(H_2O) = -228.59 \text{ kJ/mol}$$ \hspace{1cm} (A.40)
This means that when the reaction
\[H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g) \] (A.41)
takes place under standard conditions, there is a change in Gibbs free energy of \(\Delta G^\circ = -228.59 \text{ kJ/mol} \). The elements hydrogen and oxygen in their most stable states at room temperature and atmospheric pressure are taken as the zero points for Gibbs free energy of formation. Since \(\Delta G^\circ \) is negative for the reaction shown in equation (4.41), the reaction is spontaneous. In general, the change in Gibbs free energy in a chemical reaction is given by
\[
\Delta G^\circ = \sum_{\text{products}} \Delta G_{f}^\circ - \sum_{\text{reactants}} \Delta G_{f}^\circ
\] (A.42)
where \(\Delta G_{f}^\circ \) denotes the Gibbs free energy of formation.

As a second example, we can consider the reaction in which glucose is burned:
\[C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(g) \quad \Delta G^\circ = -2870 \text{ kJ/mol} \] (A.43)

From equation (4.29) it follows that in this reaction,
\[
-\frac{\Delta G^\circ}{T} = 1670 \frac{\text{bits}}{\text{molecule}}
\] (A.44)

If the glucose is simply burned, this amount of information is lost; but in a living organism, the oxidation of glucose is usually coupled with other reactions in which a part of the available thermodynamic information is stored, or utilized to do work, or perhaps converted into other forms of information.

The oxidation of glucose illustrates the importance of enzymes and specific coupling mechanisms in biology. A lump of glucose can sit for years on a laboratory table, fully exposed to the air. Nothing will happen. Even though the oxidation of glucose is a spontaneous process - even though the change in Gibbs free energy produced by the reaction would be negative - even though the state of the universe after the reaction would be much more probable than the initial state, the reaction does not take place, or at least we would have to wait an enormously long time to see the glucose oxidized, because the reaction pathway is blocked by potential barriers.

Now suppose that the lump of glucose is instead eaten by a girl working in the laboratory. (She likes sweet things, and can’t resist eating a lump of sugar when she sees one.) In her body, the glucose will be oxidized almost immediately, because enzymes will lower the potential barriers along the reaction path. However, only part of the available free energy, with its content of thermodynamic information, will be degraded into heat. A large part will be coupled to the synthesis of ATP in the girl’s mitochondria. The high-energy

\[^3\text{ The superscript }\circ\text{ means “under standard conditions”, while kJ is an abbreviation for joule} \times 10^3.\]
phosphate bonds of the ATP molecules will carry the available thermodynamic information further. In the end, a large part of the free energy made available by the glucose oxidation will be used to drive molecular machinery and to build up the statistically unlikely (information-containing) structures of the girl’s body.

A.8 Electrolysis of water

When water containing a little acid is placed in a container with two electrodes and subjected to an external direct current voltage greater than 1.23 Volts, bubbles of hydrogen gas form at one electrode (the cathode), while bubbles of oxygen gas form at the other electrode (the anode). At the cathode, the half-reaction

$$2H_2O(l) \rightarrow O_2(g) + 4H^+(aq) + 4e^- \quad E^0 = -1.23 \text{ Volts}$$

takes place, while at the anode, the half-reaction

$$4H^+(aq) + 4e^- \rightarrow 2H_2(g) \quad E^0 = 0$$

occurs.

Half-reactions differ from ordinary chemical reactions in containing electrons either as reactants or as products. In electrochemical reactions, such as the electrolysis of water, these electrons are either supplied or removed by the external circuit. When the two half-reactions are added together, we obtain the total reaction:

$$2H_2O(l) \rightarrow O_2(g) + 2H_2(g) \quad E^0 = -1.23 \text{ Volts}$$

Notice that $4H^+$ and $4e^-$ cancel out when the two half-reactions are added. The total reaction does not occur spontaneously, but it can be driven by an external potential E, provided that the magnitude of E is greater than 1.23 volts.

When this experiment is performed in the laboratory, platinum is often used for the electrodes, but electrolysis of water can also be performed using electrodes made of graphite.

Electrolysis of water to produce hydrogen gas has been proposed as a method for energy storage in a future renewable energy system. For example, it might be used to store energy generated by photovoltaics in desert areas of the world. Compressed hydrogen gas could then be transported to other regions and used in fuel cells. Electrolysis of water and storage of hydrogen could also be used to solve the problem of intermittency associated with wind energy or solar energy.
Figure A.11: Electrolysis of water.

Figure A.12: A methanol fuel cell.
A.9 Half reactions

Chemical reactions in which one or more electrons are transferred are called *oxidation-reduction reactions*. Any reaction of this type can be used in a fuel cell. As an example, we can consider the oxidation-reduction reaction in which solid lithium metal reacts with fluorine gas;

\[2\text{Li}(s) + F_2(g) \rightarrow 2\text{LiF}(s) \]

This reaction can be split into two half-reactions,

\[\text{Li}(s) \rightarrow \text{Li}^+ + e^- \quad E_0 = -3.040 \text{ V} \]

and

\[F_2(g) \rightarrow 2F^+ + 2e^- \quad E_0 = 2.87 \text{ V} \]

The quantity \(E_0 \) which characterizes these half-reactions is called *standard potential* of the half-reaction, and it is measured in Volts. If the oxidation-reduction reaction is used as the basis of a fuel cell, the voltage of the cell is the difference between the two standard potentials. In the lithium fluoride example, it is

\[2.87 \text{ V} - (-3.040 \text{ V}) = 5.91 \text{ V} \]

Here are a few more half-reactions and their standard potentials:

\[
\begin{align*}
K^+ + e^- & \rightarrow K(s) \quad E_0 = -2.924 \text{ V} \\
Na^+ + e^- & \rightarrow Na(s) \quad E_0 = -2.7144 \text{ V} \\
2H_2O + 2e^- & \rightarrow H_20 + 2OH^- \quad E_0 = -0.828 \text{ V} \\
Zn^{2+} + 2e^- & \rightarrow Zn(s) \quad E_0 = -0.7621 \text{ V} \\
Fe^{2+} + 2e^- & \rightarrow Fe(s) \quad E_0 = -0.440 \text{ V} \\
Pb^{2+} + 2e^- & \rightarrow Pb(s) \quad E_0 = -0.1266 \text{ V} \\
2H^+ + 2e^- & \rightarrow H_2(g) \quad E_0 = 0.0000 \text{ V} \\
Cu^{2+} + 2e^- & \rightarrow Cu(s) \quad E_0 = +0.3394 \text{ V} \\
I_2(s) + 2e^- & \rightarrow 2I^- \quad E_0 = +0.535 \text{ V} \\
Fe^{3+} + e^- & \rightarrow Fe^{2+} \quad E_0 = +0.769 \text{ V} \\
Br_2(l) + 2e^- & \rightarrow 2Br^- \quad E_0 = +1.0775 \text{ V} \\
O_2(g) + 4H^+ + 4e^- & \rightarrow 2H_2O \quad E_0 = +1.2288 \text{ V} \\
Cl_2(g) + 2e^- & \rightarrow 2Cl^- \quad E_0 = +1.3601 \text{ V}
\end{align*}
\]

Fuel cells are closely related to storage batteries. Essentially, when we recharge a storage battery we are just running a fuel cell backwards, applying an electrical potential which is sufficient to make a chemical reaction run in a direction opposite to the way that it would run spontaneously. When the charged battery is afterwards used to drive a vehicle or to power an electronic device, the reaction runs in the spontaneous direction, but the energy of the reaction, instead of being dissipated as heat, drives electrons through an external circuit and performs useful work.
Suggestions for further reading

A.9. HALF REACTIONS

Index

Ørsted, Hans Christian, 182, 183
Ab-initio calculations, 276
Abiotic chemistry, 38
Abolition of war, 97, 244, 385
Absolute monarchy, 153, 156
Absolute temperature, 425, 440
Absolutely sovereign nation-state, 355
Abstract concepts, 74
Abstract thought, 74
Abstraction, 70
Abstraction of patterns, 69
Absurd war, 168
Abu-Ali al Hussein, 147
Accelerated development, 284
Accelerating cultural evolution, 16
Accelerating speed of cultural evolution, 354
Accumulation of commodities, 165
Acetylcholine, 65, 66
Achieving economic equality, 241
Activation energy, 63
Active site, 63
Active transport, 286
ADA programming language, 265
Adenine, 36
Adverse effects of globalization, 303
Advertisers, 303
Advertisers on mass media, 211
Advertising, 309, 322
Advertising industry, 208, 224, 226
Advisory Opinion of 1996, 376
Afghanistan, 172
Africa, 101, 104, 107, 109, 110, 239
Africa, conflicts, 379
African tribes, 358
African Union, 125
Age of Discovery, 153
Age of Reason, 150, 153, 154
Agenda 21, 320
Agent Orange, 381
Aggregate income, 328
Aggression, 354, 355, 357, 383, 389
Aggression drive, 21
Aggression towards outsiders, 383
Agreed-upon lies, 24
Agricultural land lost, 381
Agricultural overuse of antibiotics, 112
Agricultural research, 97
Agricultural revolution, 86
Agricultural screw press, 150
Agricultural societies, 236
Agricultural yields, 104
Agriculture, 78, 103, 233, 288
Ahimsa, 310
AIDS, 392
Aiken, Howard, 268, 272
Air attacks on civilians, 375
Aircraft engines, 286
Al-Hazen, 147
Al-Khwarizmi, 147
Alaska, 249
Albert, Prince, 185
Albury, 233
Alfred Lotka, 77, 351
Algae as a source of food, 126
Algebra, 147
Algebra derived from al-jabir, 147
Algorithm derived from al-Kwarizmi, 147
Alimentary canal, 77, 352
Alkali, 146
All men are created equal, 157
All-destroying thermonuclear war, 383
All-destroying weapons, 16
Allowed energy bands, 277
Alphabet, 136
Alternative for Germany party, 248
Alternative media, 25, 26, 211
Alternative ways of life, 153
Altruism, 58, 351, 352, 354, 357
Altruism in slime mold cells, 363
Amazon deforestation causes, 121
American Indians, 235, 366
American Revolution, 156
American Security Project, 248
Americans Who Tell The Truth, 211
Amino acids, 63
Amoebae, 58, 360
Ampere, A.M., 182
Anachronism of nation-states, 175
Analytical engine, 264
Analytical machine, 264
Anarchy, 175
Anatomy dissections alone, 167
Ancien r égime, 153
Ancient rice terraces, 89
And cells, 69
Andersen, Knud, 12
Anderson, Sir James, 193
Android, 207
Anglican Church, 233
Animal electricity, 181
Animal feed, 106
Animals, 37
Anions, 65
Annan, Kofi, 377
Anode, 445
Ant colonies, 78
Anthropogenic climate change, 385
Anthropoid ancestors, 21
Anthropology, 154, 167, 306, 308
Anti-Catholic laws, 238
Anti-refugee political parties, 117
Antibiotic apocalypse, 112
Antibiotic-resistant pathogens, 62
Antibiotics, 354
Antibiotics in agriculture, 62
Antigens, 63
Antisocial mutations, 352
Ants, 351, 352
Aperiodic crystal, 27
Apparatus used by Galvani, 179
Aquaculture, 128
Aquifers, 101, 107
Aquifers overdrawn, 100
Aquinas, Saint Thomas, 386
Arab Spring, 248
Arabic, 146
Arable land, 101, 122, 392
Arabs and their converts, 146
Aral Sea, 380
Archaebacteria, 37
Archbishop Desmond Tutu, 171
Archimedes, 145
Area of cropland, 101
Area under food production, 105
Argentina, 100, 359, 367
Arid grasslands, 104
Aridity, 100, 106
Aristotle, 31, 145, 148, 364
Armaments, 380
Armies, 396
Arms industries, 393
Arms manufacturers, 378
Arms spending, 380
Arnold, Sir Edward, 309
ARPANET, 204
Ars Magna Lucis et Umbrae, 199
Articles of Confederation, 388
Artificial fertilizer overuse, 112
Artificial intelligence, 261, 289
Artificial needs, 322
Artistic creativity, 289
Artistic freedom, 394
As big as a house, 276
ASCC calculator, 268, 272
Asche, Frank, 128
Asia, 239
Assassination, 396
Assassination of journalists, 211
Astronomy, 147
Atlantic cable landing, 193
Atmosphere, 320
Atmospheric pressure, 443
Atom bomb, 21
Atomic bomb, 356
Atomism, 432
Atoms, 74, 190
ATP, 65, 444
Atrocities, 355
Attack pathway, 71
Attenborough, David, 394
Atypical genetic systems, 112
Augusta Ada, 265
Australia, 100, 398
Autoassembly, 31, 281
Autocatalysts, 31
Autocatalytic systems, 409
Autocatylitic molecules, 360
Automatic warehouses, 287
Automation, 285, 288
Automobiles, 305
Autonomous Water Authority, 379
Autoradiography, 36
Average global temperature, 246
Averroes, 148
Avery, O.T., 35
Avicenna, 146
AVT Khyber, 170
Axons, 64, 65, 71, 289

Babbage, Charles, 261, 263, 264
Bacteria essential for digestion, 363
Bacterial chromosome, 112
Bacterial spores, 31
Baghdad, 146
Bain, Alexander, 201
Baird, John Logie, 201, 202
Balance of nature, 406
Ballhausen, Carl J., 285

Bananas cultivated and hybridized, 88
Band structure of crystals, 277
Bangladesh, 97, 242
Bangladesh, 30 million refugees, 248
Bank of England, 18
Banking, 287
Banks, Sir Joseph, 182, 183
Baran, Paul, 204
Barbed wire and tear gas, 116
Bardeen, John, 199, 277, 278
Barium, 182
Baron d’Holbach, 156
Baseball, 359
Bateson, Gregory, 272, 275
Battery, 179
BBC special Horizon, 207
BBC Urdu Service, 170
Beauty is woman’s scepter, 170
Bee-keeping, 125
Beef and methane, 122
Beef Industry in South America, 119
Beef killing the rainforest, 119
Bees, 351, 352
Behavioral experiments, 71
Bell Telephone Company, 198
Bell Telephone Laboratories, 269, 271, 277
Bell’s many inventions, 199
Bell, Alexander Graham, 179, 196, 198
Bell, Prof. A.M., 197
Belts made from shell beads, 139
Benedin, Edouard van, 33
Benzene, 185
Bering Strait, 83
Bering Strait land bridge, 91
Berkeley, California, 318
Bernays, Edward, 176
Besant, Annie, 304, 309
Bhagavad Gita, 309
Biased national standpoint, 367
Big dreams in our eyes, 171
Bikini Atoll, 370
Bilateral agreements, 304
Billionaire oligarchs, 383
Binary digit, 273
Binary digits, 434
Binary numbers, 269, 281
Binary system, 434
Bio-weapons, 378
Biodiversity, 113, 352
Bioeconomics, 19
Bioenergetics, 11, 28
Biological constraints, 321
Biological diversity, 320
Biological weapons, 393, 399
Biology of War and Peace, 358
Biomass, 78
Biosemiotics, 12, 13, 23, 54, 273
Biosphere, 16, 31
Biotechnology, 320
Birth abnormalities, 381, 382
Birth control, 113, 123, 239, 249, 303, 304
Birth control programs, 97, 113, 244
Birth rate, 233, 239
Bits, 281
Bits per unit area, 281
Black Hawk Down, 394
Blair, Bruce G., 376
Blake, William, 162
Blavatski, Madame, 309
Blight, 238
Block printing, 144
Blue-green algae, 126
Bodet, Jamie Torres, 404
Boko Haram, 172
Bolivia, 379
Boltzmann’s constant, 432, 434
Boltzmann, Ludwig, 432, 437
Bombyx mori, 273
Bonaparte, Napoleon, 24, 182
Book of Common Prayer, 366
Books, 140, 175
Borlaug, Norman, 97, 101
Boron, 182
Boston, Massachusetts, 197
Boterro, 231
Bottom line, 386
Boundaries, 368
Brahe, Tycho, 150
Brain size versus intelligence, 76
Brain, mechanism of, 289
Bramacharya, 310
Brattain, Walter, 199, 277, 278
Brazil, 101, 240, 359, 367, 398
Brazil subsidizes beef industry, 121
Bread and circuses, 25, 210
Breton Woods Conference, 328
Brexit and refugees, 248
British Empire, 310
British Library, 148
British museum, 140
British public, 313
British raj, 313
Brown, Lester R., 107, 329, 341
Brundtland Report, 105, 106, 318
Brundtland, Gro Harlem, 318
Brunel, Isambard Kingdom, 193
Bruni, Luis Emilio, 12
Buddha, 364
Buddhism, 144, 314
Buddhist monks, 144
Bukht-Yishu family, 146
Burned to death, 369
Burning of peatlands, 117
Bush, Vannevar, 269
Business cycle, 327
Business-as-usual scenario, 244
Butyric acid, 51
Bytes, 281
Byzantine church, 145
Cairo population conference, 115, 242
Cajal, Ramon y, 289
Calcium, 182
Calculating box, 261
Calculations took hundreds of hours, 276
Calcutta, 240
Caliph Harun al-Rashid, 146
Cambridge Analytica scandal, 208
Cambridge University, 36, 189
Camel domesticated, 88
Camera, 148
Camera obscura, 147
Camus, Albert, 369, 370
Can a computer be conscious?, 51
Canada, 100, 197, 398
Canadian Arctic, 249
Cancer and Agent Orange, 381
Cancer and uranium dust, 382
Cancer from fallout, 382
Canons, use in warfare, 175
Capacitance, 193
Capital Talk, 170
Capone, Al, 387, 401
Carbohydrates, 63
Carbon-dioxide fixation, 37
Carnot, Sadi, 425
Carrying capacity, 100, 224, 322, 392
Cassirer, Ernst, 54
Castles, 175
Catalysis, 63
Catastrophic climate change, 24, 26, 100
Catastrophic mistake, 376
Catastrophic war, 367
Cathode, 445
Cathode ray tube, 189, 201
Cathode rays, 189
Catholic Church and Roman Empire, 175
Cattle domesticated, 88
Cattle ranching in Amazonia, 119
Causes of Amazon deforestation, 121
Cavendish Laboratory, 189
Celibacy, 234
Cell differentiation, 58, 64
Cell membrane, 64, 409
Cell membranes, 37
Cell nucleus, 58
Cell society, 64
Cell-surface antigens, 63
Celluloid film for motion pictures, 199
Censorship, 394
Census, 237
Central Asia, conflicts, 379
Central monarchs, 175
Central nervous system, 61
Central processing unit, 278
Central processing units, 281
Centralization, 310
Cerf, Vinton, 204
Cerrado, 101
Change of diet, 122
Changes of diet, 250
Changing magnetic field, 183
Chargaff, Erwin, 36
Chase after excitement, 224
Chastity, 310
Chatelet, Madame du, 154
Chauvinism, 392, 398
Checks to population growth, 123, 235
Chemical energy, 11
Chemical industries, 286
Chemical reactions, 12, 441
Chemical signals, 58, 363
Chemical weapons, 393, 399
Chemistry, 146, 182, 285
Chemistry derived from al-chimia, 146
Cheney, Brig. Gen. Stephen, 248
Chess-playing program, 290
Child labor, 236, 303
Child marriage, 172
Childhood in a factory, 172
Chili peppers, 366
China, 97, 101, 107, 110, 115, 138, 140, 242
China's Great Green Wall, 125
China's palm oil demand, 118
Chinese empire, 138
Chinese invention of ink, 144
Chinese invention of paper, 140
Chinese invention of printing, 144
Chinese lyric poetry, 145
Chinese nuclear weapons, 374
Chinese Turkestan, 144
Chinese written language, 144
INDEX

Chips, 280
Chloroplasts, 360
Chocolate, 366
Chomsky, Noam, 211
Christian ethical principles, 313, 396
Christian Europe, 140, 366
Christianity, 375
Chromatography, 36
Chromosomal maps, 34
Chromosomes, 33
Chronicle of power struggles, 367
Chronophotographic gun, 199
Church, 396
Church-Turing hypothesis, 269
Cigarettes are Torches of Freedom, 176
Cinema, 196, 199
Citizens are hostages, 385
Citric acid cycle, 37
Civics, 400
Civil disobedience, 313, 315
Civil rights, 310
Civil service examinations, 138
Civil War, 396
Civil wars, 387, 401
Civilian casualties, 369
Civilian targets, 375
Civilians are bombed, 168
Civilization’s crisis, 17
Clark, Arthur C., 207
Clark, W., 204
Classical economic theory, 17
Classical economics, 327, 328, 392
Classical genetics, 32
Clausius, Rudolf, 425, 438
Clean water, 241
Clementi, Enrico, 276, 285
Climate change, 104, 106, 244, 320
Climate Change and Disasters, 245
Climate change and war, 247
Climate change as genocide, 244
Climate change denial, 26, 210
Climate change mitigation urgent, 97
Climate change refugees, 244
Climate refugees, 246
Climatic stability, 86
Clos, Joan, 117
Closed system, 427
Closed water-filled containers, 126
Closed world economics, 392
Cluster bombs, 381
Coastal cities threatened, 246
Coca Cola, 224
Coercion of states, 388, 389
Collective consciousness, 78, 285
Collective greed of stockholders, 386
Collective paranoia, 374
Colombia University, 34
Colonial system, 311
Colonialism, 392, 398
Color television, 201
Colossus, 269
Combinatorial analysis, 432, 435
Comfort, equality and dignity, 97
Commercial interests, 394
Commercial middle class, 153
Common global culture, 367
Common sense, 153
Communal aggression, 355
Communal defense reaction, 357
Communal defense response, 176, 355
Communication, 176, 434
Communication between cells, 64
Communication revolution, 179
Communications media, 387, 401
Communications revolution, 405
Communications satellites, 207
Compass needle, 182
Compassion, 383
Competition, 303, 354
Competition for territory, 236, 358
Competition of all against all, 224
Complementarity, 31, 63
Complexity, 16, 31
Crop failures, 106
Cropland, 109
Cropland per capita, 110, 115
Cropland, area of, 101
Cropland, limitations on, 101
Crossing, 34
Crown Prince Edward, 185
Crusades, 140, 365
Crystallography, 36, 285
Crystals, 277
Cuba, 176
Cuban Missile Crisis, 374
Cultivation of potatoes, 94
Cultural barriers, 358
Cultural diversity, 405
Cultural evolution, 389, 394, 395, 408
Cultural history, 136, 392, 398
Cultural patterns, 239
Culture, 403
Culture and civilization, 17
Culture and human solidarity, 366, 367
Culture of peace, 25, 394, 403, 405
Culture of violence, 394, 405, 406
Cuneiform, 135
Current of electricity, 181
Curriculum revisions, 400
Curvature of the Earth, 207
Cyanobacteria, 126
Cybernetic information, 12, 16, 31, 440
Cybernetics, 54, 269, 271, 275
Cyclic adenosine monophosphate, 58, 363
Cyclic AMP, 64
Cytosine, 36
Dakar, 125
Dale, Henry, 65
Dale, Sir Henry, 66
Dalton’s atomic hypothesis, 185
Dalton’s atomism, 432
Dalton, John, 185
Daly, Herman, 244
Daly, Herman E., 19
Damaraland mole rat, 351
Darfur genocide, 365
Dark side of human nature, 17, 383
Darwin, Charles, 32, 33, 148, 354, 359
Darwin, Erasmus, 162
Darwinian forces, 21
Darwinian natural selection, 70, 357
Data banks, 285
Davies, Prof. Dame Sally, 112
Davy, Sir Humphrey, 182
De revolutionibus orbium coelestium, 150
De Vries, Hugo, 33
Deadly climate conditions, 247
Deadly heat waves, 246
Death rate, 233, 239
Deaths from heat, 123
Deaths from nuclear attack, 371
Debt, 18
Decimal integer, 434
Decimal system, 147
Declaration of Independence, 154, 157
Decrease economic inequality, 26
Decreasing sexual dimorphism, 364
Dedicated editors, 211
Defamation, 405
Definition of consciousness, 51
Defoliants, 381
Deforestation, 109, 110, 125, 320
Deforestation in Amazonia, 119
Degradation of free energy, 78
Degradation of topsoil, 110
Degraded forests emit carbon, 124
Degraded form, 77, 352
Dehusking machine, 197
Delbrück, Max, 27
Demand, 104, 309, 328
Demands on the environment, 100
Democracy Now, 211
Demographic transition, 239, 241, 243
Demographic trap, 113
Demography, 320
Demonstrations, 313
Dendrites, 64, 71, 289
Denmark, 182, 207
Depleted uranium shells, 382
Depletion of minerals in soil, 101
Depolarization, 66
Depolarization wave, 66
Depression, 326, 328
Depression of 1929, 322
Descartes, René, 51
Desert areas, 445
Desertification, 101, 104, 123, 246
Destruction of civilization, 357
Destruction of ecosystems, 16
Destruction of forests, 109
Destruction of information, 70
Destruction of tropical rain forests, 305
Destruction statistically favored, 27
Deterioration of soil, 19
Deterrence, 374
Developing countries, 305
Development, 113, 320, 381
Devil’s dynamo, 379
Devil’s dynamo needs enemies, 379
Devotion, 355, 356
Diagnosis, 286
Dialect marking group boundaries, 359
Dialogue, 405
Diamond Sutra, 144, 145
DiCaprio, Leonardo, 26, 211
Dickens, Charles, 237
Dickson, W.K.L., 199
Diderot, Denis, 156
Dietary changes, 250
Dietary changes can help, 122
Differential and integral calculus, 263
Differentiation, 58
Diffractometers, 285
Diffusion of information, 16
Digital universe, 205
Digital universe reaches 1.2 zettabytes, 205
Dignity, respect for, 405
Dillehay, Tom, 91
Dirac, P.A.M, 263
Dirt huts, 233
Disappointment, 231
Discovery of the electron, 189
Discrete states, 432
Discrimination, 405
Disease, 235, 236, 239, 311, 392, 398
Disease, preventable, 380
Disease-resistant strains, 101
Disempowered and stupefied, 25
Disempowered TV viewers, 210
Disorder, 430
Disorder of the universe, 13
Disorder, chaos and destruction, 27
Dispersal of minerals, 78
Displaced persons, 245
Dissipative energy flow, 17
Distribution problems, 104
District Child Assembly, 170
Diversity, 367
Djibouti, 125
DNA sequence, 51, 365
DNA structure, 35
Do lower animals have souls?, 51
Doctoral education, 165
Domestication of animals, 86, 236
Domestication of the dog, 84
Dominant genes, 33
Dopamine, 65, 66
Doping, 278, 280
Double-stranded DNA, 36
Doubling time, 20
Drama, 400
Dreaming, 76
Dreaming and Intelligence, 76
Dresden, 375
Drinking water, 245
Drought, 104
Drought threatens grain production, 242
Drum parity, 276
Dueling scars, 358
Duve, Christian de, 38
Dwarf peas, 32
Dynamics of reactions, 286
Dynamo, 183
INDEX

Ethology, 54 273
Eubacteria, 37
Euclid, 145
Eukaryotes, 37, 58, 354 360 364 409
Eurasia, 84
Europe, 239
Europe’s right-wing parties, 248
European Federation, 383
European Parliament, 54
European Union, 23 383 387 393 398 399 401
Evolution, 16 148
Evolution of consciousness, 31
Evolution of cooperation, 354
Evolutionary forces, 24
Evolutionary process, 440
Excess charge, 63
Excess hear threatens human life, 247
Excess human mortality, 247
Excessive consumption, 224
Excessive saving, 328
Exchange of ideas is global, 365
Exosomatic parts, 77 354
Exothermic reactions, 443
Expansion of the money supply, 18
Experimental science, 153
Exploitation, 303 311
Explosion of human knowledge, 354
Explosive accumulation of information, 16 354
Exponential growth, 20 234 321 322
External circuit, 445
Extinction of species, 27
Extrachromosomal genetic system, 112
Extracting raw materials, 20
Extremophiles, 37
Eyes acting like gyroscopes, 61
F-factor, 112
Fabian Society, 309
Fabians, 304
Facebook, 208
Facebook users reached 2 billion, 208
Factories, 77 354
Factory civilization, 312
Failure of educational systems, 26
Failure of the mass media, 26
Fairchild Semiconductor, 278
Fake news, 24
Fallout, 382
Fallout casualties, 371
False system of education, 170
Families torn apart, 168
Family planning, 113 123 249
Family size, 235
Famine, 97 100 107 115 123 233 235 236 239 241 243
Famine in Somalia, 244
Famine relief, 380
Famine used in war, 244
Famous names of truth tellers, 211
Fanaticism, 355 405
FAO, 101 110 121 122 390
Faraday effect, 185
Faraday’s law of electrolysis, 185
Faraday, Michael, 182 185 196
Farm buildings, 105
Farming the seas, 128
Farnsworth’s image dissector camera, 201
Farnsworth, Philo, 201 202
Fascist leaders, 23
Fast neutrons, 371
Father and brother, 162
Father of biodiversity, 352
Favelas, 113
Favorable mutations, 440
FBI, 387 401
FCC, 211
Federal government, 388
Federalist Papers, 388
Federations, 398
Feed for livestock, 122
Feedback in biology, 271
Feedback loops, 54
Feedback neural circuit, 71
Feedstocks for fertilizer, 103
<table>
<thead>
<tr>
<th>Feedstocks for pesticides</th>
<th>105</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferocity</td>
<td>308</td>
</tr>
<tr>
<td>Fertile land</td>
<td>321</td>
</tr>
<tr>
<td>Fertility rates</td>
<td>165</td>
</tr>
<tr>
<td>Fertilization of flowers</td>
<td>359</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>104</td>
</tr>
<tr>
<td>Fessenden</td>
<td>196</td>
</tr>
<tr>
<td>Feudal barons</td>
<td>175</td>
</tr>
<tr>
<td>Feudal society</td>
<td>303</td>
</tr>
<tr>
<td>Fiber optics</td>
<td>284</td>
</tr>
<tr>
<td>Field machinery</td>
<td>105</td>
</tr>
<tr>
<td>Fielden, John</td>
<td>304</td>
</tr>
<tr>
<td>Film animation</td>
<td>288</td>
</tr>
<tr>
<td>Film technology</td>
<td>199</td>
</tr>
<tr>
<td>Films, evaluation of</td>
<td>394</td>
</tr>
<tr>
<td>Financial book-keeping</td>
<td>287</td>
</tr>
<tr>
<td>Financial institutions</td>
<td>392, 398</td>
</tr>
<tr>
<td>Financial wealth</td>
<td>165</td>
</tr>
<tr>
<td>Finding advantage</td>
<td>24</td>
</tr>
<tr>
<td>Finding truth</td>
<td>24</td>
</tr>
<tr>
<td>Finite food supply</td>
<td>321</td>
</tr>
<tr>
<td>Finite planet</td>
<td>20 224 244</td>
</tr>
<tr>
<td>First dynamo</td>
<td>185</td>
</tr>
<tr>
<td>First electric battery</td>
<td>181</td>
</tr>
<tr>
<td>First electric motor</td>
<td>183</td>
</tr>
<tr>
<td>Fiscal policy</td>
<td>328</td>
</tr>
<tr>
<td>Fischer, R.A.</td>
<td>354, 357</td>
</tr>
<tr>
<td>Fisher, R.A.</td>
<td>271, 435</td>
</tr>
<tr>
<td>Fissile materials</td>
<td>377</td>
</tr>
<tr>
<td>Fixed magnet</td>
<td>183</td>
</tr>
<tr>
<td>Flags</td>
<td>355</td>
</tr>
<tr>
<td>Flemming, Walther</td>
<td>33</td>
</tr>
<tr>
<td>Flint trading</td>
<td>363</td>
</tr>
<tr>
<td>Flip book</td>
<td>199</td>
</tr>
<tr>
<td>Floating-point operations</td>
<td>280</td>
</tr>
<tr>
<td>Flocks of birds</td>
<td>363</td>
</tr>
<tr>
<td>Flops</td>
<td>280 281</td>
</tr>
<tr>
<td>Florida, Richard</td>
<td>330</td>
</tr>
<tr>
<td>Flow of information</td>
<td>63</td>
</tr>
<tr>
<td>Fly more</td>
<td>211</td>
</tr>
<tr>
<td>Fly squad</td>
<td>34</td>
</tr>
<tr>
<td>Fock, V.</td>
<td>285</td>
</tr>
<tr>
<td>Foerster, Heinz von</td>
<td>272</td>
</tr>
<tr>
<td>Folding of proteins</td>
<td>63</td>
</tr>
<tr>
<td>Food</td>
<td>319</td>
</tr>
<tr>
<td>Food and Agricultural Organization</td>
<td>121 122</td>
</tr>
<tr>
<td>Food calorie outputs</td>
<td>105</td>
</tr>
<tr>
<td>Food calories per capita</td>
<td>105</td>
</tr>
<tr>
<td>Food per capita</td>
<td>110</td>
</tr>
<tr>
<td>Food processing</td>
<td>125</td>
</tr>
<tr>
<td>Food production</td>
<td>101</td>
</tr>
<tr>
<td>Food security</td>
<td>245 246</td>
</tr>
<tr>
<td>Food supply</td>
<td>24 233</td>
</tr>
<tr>
<td>Food-exporting countries</td>
<td>100</td>
</tr>
<tr>
<td>Food-scarce future</td>
<td>97 242</td>
</tr>
<tr>
<td>Football</td>
<td>359</td>
</tr>
<tr>
<td>Forbidden energy bands</td>
<td>277</td>
</tr>
<tr>
<td>Force of truth</td>
<td>314</td>
</tr>
<tr>
<td>Forced labor</td>
<td>305</td>
</tr>
<tr>
<td>Forest drying and wildfires</td>
<td>124</td>
</tr>
<tr>
<td>Forest drying feedback loop</td>
<td>124</td>
</tr>
<tr>
<td>Forest loss</td>
<td>109</td>
</tr>
<tr>
<td>Forest loss and population</td>
<td>122</td>
</tr>
<tr>
<td>Forest resources</td>
<td>123</td>
</tr>
<tr>
<td>Forestry</td>
<td>125</td>
</tr>
<tr>
<td>Forgiveness</td>
<td>314</td>
</tr>
<tr>
<td>Formation of group identity</td>
<td>359 367</td>
</tr>
<tr>
<td>Former Soviet Republic</td>
<td>101</td>
</tr>
<tr>
<td>Fossil fuel corporations</td>
<td>210</td>
</tr>
<tr>
<td>Fossil fuel energy inputs</td>
<td>105</td>
</tr>
<tr>
<td>Fossil fuel era</td>
<td>239</td>
</tr>
<tr>
<td>Fossil fuel era ending</td>
<td>24</td>
</tr>
<tr>
<td>Fossil fuels</td>
<td>78 104 430 366</td>
</tr>
<tr>
<td>Foucault, Michel</td>
<td>54</td>
</tr>
<tr>
<td>Fractional reserve banking</td>
<td>18</td>
</tr>
<tr>
<td>Fragile ecosystems</td>
<td>320</td>
</tr>
<tr>
<td>Fragmentation of Europe</td>
<td>175</td>
</tr>
<tr>
<td>Framework convention</td>
<td>320</td>
</tr>
<tr>
<td>Frankenstein</td>
<td>162</td>
</tr>
<tr>
<td>Franklin, Benjamin</td>
<td>162 179 231</td>
</tr>
<tr>
<td>Franklin, Rosalind</td>
<td>36</td>
</tr>
<tr>
<td>Free association</td>
<td>400</td>
</tr>
<tr>
<td>Free energy</td>
<td>28 77 352</td>
</tr>
<tr>
<td>Free energy and wealth</td>
<td>18</td>
</tr>
<tr>
<td>Free speech movement</td>
<td>318</td>
</tr>
<tr>
<td>Free trade</td>
<td>303</td>
</tr>
<tr>
<td>Term</td>
<td>Page(s)</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Global food crisis</td>
<td>97,100</td>
</tr>
<tr>
<td>Global food production</td>
<td>126</td>
</tr>
<tr>
<td>Global governance</td>
<td>244</td>
</tr>
<tr>
<td>Global inequalities</td>
<td>400</td>
</tr>
<tr>
<td>Global interdependence</td>
<td>16,355</td>
</tr>
<tr>
<td>Global warming</td>
<td>104,117,246</td>
</tr>
<tr>
<td>Global warming and security</td>
<td>247</td>
</tr>
<tr>
<td>Globalization</td>
<td>175,303</td>
</tr>
<tr>
<td>Glorious Revolution of 1688</td>
<td>153</td>
</tr>
<tr>
<td>Glucose oxidation</td>
<td>444</td>
</tr>
<tr>
<td>Glutamate</td>
<td>65,66</td>
</tr>
<tr>
<td>Glyphs representing syllables</td>
<td>139</td>
</tr>
<tr>
<td>Gobi desert</td>
<td>123</td>
</tr>
<tr>
<td>God said: Let Newton be</td>
<td>157</td>
</tr>
<tr>
<td>Godwin, William</td>
<td>162,231,233,234,236,237</td>
</tr>
<tr>
<td>Goel, Anita</td>
<td>13</td>
</tr>
<tr>
<td>Gold standard</td>
<td>18</td>
</tr>
<tr>
<td>Golden Dawn party (Greece)</td>
<td>249</td>
</tr>
<tr>
<td>Gondisapur</td>
<td>145,146</td>
</tr>
<tr>
<td>Goodman, Amy</td>
<td>211</td>
</tr>
<tr>
<td>Goods</td>
<td>330</td>
</tr>
<tr>
<td>Goods per capita</td>
<td>340</td>
</tr>
<tr>
<td>Google</td>
<td>208</td>
</tr>
<tr>
<td>Gore, Al</td>
<td>211</td>
</tr>
<tr>
<td>Gore, Al</td>
<td>26</td>
</tr>
<tr>
<td>Governance</td>
<td>382</td>
</tr>
<tr>
<td>Governmental expenditure</td>
<td>324</td>
</tr>
<tr>
<td>Governmental responsibility</td>
<td>322</td>
</tr>
<tr>
<td>Gracilization</td>
<td>364</td>
</tr>
<tr>
<td>Gradient in pH</td>
<td>38</td>
</tr>
<tr>
<td>Grain production</td>
<td>110</td>
</tr>
<tr>
<td>Grandmother’s face cells</td>
<td>71</td>
</tr>
<tr>
<td>Grant, James P.</td>
<td>405</td>
</tr>
<tr>
<td>Graphics chips</td>
<td>288</td>
</tr>
<tr>
<td>Graphite electrodes</td>
<td>445</td>
</tr>
<tr>
<td>Grasslands</td>
<td>104</td>
</tr>
<tr>
<td>Gravitation</td>
<td>189</td>
</tr>
<tr>
<td>Grazing animal herds</td>
<td>78</td>
</tr>
<tr>
<td>Great Depression</td>
<td>326</td>
</tr>
<tr>
<td>Great Eastern</td>
<td>193</td>
</tr>
<tr>
<td>Great Green Wall</td>
<td>125</td>
</tr>
<tr>
<td>Great Library of Alexandria</td>
<td>27</td>
</tr>
<tr>
<td>Great upward steps</td>
<td>364</td>
</tr>
<tr>
<td>Greece</td>
<td>366</td>
</tr>
<tr>
<td>Greed of corporations</td>
<td>383</td>
</tr>
<tr>
<td>Greed of fossil fuel corporations</td>
<td>385</td>
</tr>
<tr>
<td>Greek</td>
<td>146</td>
</tr>
<tr>
<td>Green Belt Movement</td>
<td>125</td>
</tr>
<tr>
<td>Green Revolution</td>
<td>101,104</td>
</tr>
<tr>
<td>Greenhouse gas emissions</td>
<td>246,249</td>
</tr>
<tr>
<td>Greenhouse gases</td>
<td>124,247</td>
</tr>
<tr>
<td>Greening of America</td>
<td>318</td>
</tr>
<tr>
<td>Greenland</td>
<td>249</td>
</tr>
<tr>
<td>Grey, Colin S.</td>
<td>376</td>
</tr>
<tr>
<td>Gross national product</td>
<td>321</td>
</tr>
<tr>
<td>Groton, William</td>
<td>393,399</td>
</tr>
<tr>
<td>Groundwater</td>
<td>107</td>
</tr>
<tr>
<td>Group identity</td>
<td>359</td>
</tr>
<tr>
<td>Group identity a social construction</td>
<td>359</td>
</tr>
<tr>
<td>Group selection</td>
<td>354,357,358</td>
</tr>
<tr>
<td>Groups of animals</td>
<td>363</td>
</tr>
<tr>
<td>Growth</td>
<td>314,321,392</td>
</tr>
<tr>
<td>Growth implies future collapse</td>
<td>224</td>
</tr>
<tr>
<td>Growth-oriented economics</td>
<td>322</td>
</tr>
<tr>
<td>Guanine</td>
<td>36</td>
</tr>
<tr>
<td>Guattari, Félix</td>
<td>54</td>
</tr>
<tr>
<td>Guilt</td>
<td>375</td>
</tr>
<tr>
<td>Guinea pig domestication</td>
<td>92</td>
</tr>
<tr>
<td>Gulf War</td>
<td>381</td>
</tr>
<tr>
<td>Gulf War oil spills</td>
<td>382</td>
</tr>
<tr>
<td>Gunboat diplomacy</td>
<td>382</td>
</tr>
<tr>
<td>Gutenberg’s Bible</td>
<td>150</td>
</tr>
<tr>
<td>Gutenberg’s printing press</td>
<td>150</td>
</tr>
<tr>
<td>Gutenberg, Johannes</td>
<td>150</td>
</tr>
<tr>
<td>Haekel, Ernst</td>
<td>37</td>
</tr>
<tr>
<td>Hague Conventions</td>
<td>393,399</td>
</tr>
<tr>
<td>Haileybury</td>
<td>238</td>
</tr>
<tr>
<td>Hair standing on end</td>
<td>356</td>
</tr>
<tr>
<td>Hair-trigger alert</td>
<td>376</td>
</tr>
<tr>
<td>Haldane, J.B.S.</td>
<td>354,357</td>
</tr>
<tr>
<td>Half-reactions</td>
<td>445</td>
</tr>
<tr>
<td>Hall, Alen R.</td>
<td>38</td>
</tr>
<tr>
<td>Hals, Franz</td>
<td>153</td>
</tr>
<tr>
<td>Hamilton, Alexander</td>
<td>388,389</td>
</tr>
<tr>
<td>Haileybury</td>
<td>238</td>
</tr>
</tbody>
</table>
INDEX

Hamilton, R.A., 357
Hanseatic League, 398
Hansen, James, 211
Hardware, 289
Hardwood trees killed, 381
Harmony with nature, 314
Hartmann, Thom, 211
Hartree, D.R., 285
Harun al-Rashid, 146
Harvard University, 13, 171, 208, 352
Harvey, 147
Hate, 313, 396
Hawking, Steven, 263
Hawthorne, Nathaniel, 315
Health, 320
Hearst, William Randolph, 176
Heat, 427, 441
Heat bath, 441
Heat exchange, 441
Hedges, Chris, 211
Heidegger, Martin, 54
Heiliger Schauer, 356
Heinla, Priit, 207
Helmholtz, Hermann von, 187, 197, 441
Henry VIII of England, 175
Henry, Joseph, 191
Hepatitis, 113
Herbicides, 381
Hero, 145
Hero face, 356
Heroic behavior, 355
Heroic death, 357
Herschbach, Dudley, 286
Herschbach, Dudley R., 13
Hertz, Heinrich, 179, 187
Hieroglyphic writing system, 136
Hieroglyphics, 136
High petroleum prices, 100
High population density, 236
High-energy phosphate bonds, 444
High-yield agriculture, 101, 112, 242
High-yield grain varieties, 104
High-yield strains, 101
Higher loyalty, 364, 368
Higher loyalty to humanity, 25
Higher status for women, 116, 242
Highest ranked countries, 165
Highly developed human languages, 74, 363
Highly enriched uranium, 377
Highway development, 110
Highway systems, 305
Hillsides, 110
Hinduism, 309
Hippocrates, 145
Hiroshige, 144
Hiroshima, 355, 369
Histological studies, 71
History, 400, 404
History of federations, 388
History of ideas, 140
History of science, 393, 400
History of science and technology, 148
History of the telegraph, 190
History teaching, 398
Hitler Youth, 355
Hitler, Adolf, 403
Hobson, John A., 327
Hodgkin, Alan, 65, 289
Hodgkin, Dorothy, 285
Hoffmeyer, Jesper, 273
Hokusai, 144
Holistic view of psychology, 74
Holland, 153
Hollerith, Herman, 268
Homeless children, 240, 241
Homeostasis, 64, 241
Homespun cotton, 311
Honey trapping, 208
Hong Kong, 113
Hooke, Robert, 153
Horizontal information transfer, 62
Hormones, 64
Hospitals, 286
Hot springs, 37
House of Commons, 153
How is life possible?, 16
How is local order possible?, 16
Huaca PrietaS, 91
Hubbard, Mable, 197
Hubel, David H., 69
Human brain, 70
Human cultural evolution, 157, 354
Human Development Index, 165
Human Development Index map, 165
Human Development Report, 165
Human dignity, 405
Human failure, 377
Human genome project, 378
Human greed and folly, 26
Human misery, 101
Human nature, 310
Human rights, 393, 399, 400, 403, 405
Human rights abuses, 117
Human society a superorganism, 77, 351
Human solidary, 24
Human speech, 16, 197, 354
Humane response to refugees, 249
Humanitarian crisis, 248
Humanitarian crisis in Yemen, 165
Humanitarian law, 375
Humanity vanquished and enslaved, 168
Humans form a single species, 358
Hume, David, 231
Humility, 311
Hundreds of times faster and cheaper, 277
Hunger, 237
Hunter-gatherer societies, 235, 236
Hunter-gatherers, 84, 175, 354
Huxley, Andrew, 65, 289
Huxley, T.H., 354, 359
Huxley, Thomas Henry, 65
Huygens, Christian, 199
Hybrids, 32
Hydrogen, 182, 445
Hydrogen bomb, 370
Hydrogen bonds, 36
Hydrogen technologies, 445
Hydrophilic groups, 63
Hydrophobic groups, 63
Hydropower, 380
Hydrothermal vents, 37
Hyperthermophiles, 37
Hyrax Hill, 86
IAEA, 377
IBM Corporation, 268, 280
IBM machine, 276
Ibn Masawiah, Yuanna, 146
ICC, 389
Ikeda, President Daisaku, 211
Ikle, Fred, 377
Illegal burning of forests, 117
Illiteracy, 380, 392, 398
Illiteracy rates, 165
Image-forming eye, 69
IMF, 20
Immediate action required, 248
Immune systems, 63
Imperial College, 12, 276
Impossibility of perpetual growth, 20
Improvement of society, 233
Impurities, 280
Inaction not an option, 26
Inappropriate agriculture, 124
Incan language, 139
Incas built terraces, 94
Income policies, 288
Increasingly paranoid, 278
Independent centers of origin, 86
India, 97, 101, 110, 135, 144, 172, 242, 309, 311, 313, 314, 359, 360, 377
India’s palm oil demand, 118
Indian flag, 311
Indian home rule, 311, 313
Indian ink, 144
Indigenous peoples, 382
Indirect costs of war, 380, 398
Individual citizens, 387, 401
Individual responsibility, 389
Indivisible unit of electrical charge, 185
Indoctrination in chauvinism, 367
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indonesia</td>
<td>113, 117</td>
</tr>
<tr>
<td>Indonesia’s forest loss</td>
<td>118</td>
</tr>
<tr>
<td>Inductance</td>
<td>193</td>
</tr>
<tr>
<td>Induction</td>
<td>182</td>
</tr>
<tr>
<td>Indus River</td>
<td>109</td>
</tr>
<tr>
<td>Industrial activity</td>
<td>324</td>
</tr>
<tr>
<td>Industrial Revolution</td>
<td>150, 303, 305, 393, 400</td>
</tr>
<tr>
<td>Industrial sector</td>
<td>330</td>
</tr>
<tr>
<td>Industrial societies</td>
<td>394</td>
</tr>
<tr>
<td>Industrial waste</td>
<td>240</td>
</tr>
<tr>
<td>Industrial workers</td>
<td>231, 330</td>
</tr>
<tr>
<td>Industrialization</td>
<td>310</td>
</tr>
<tr>
<td>Industrialized countries</td>
<td>304</td>
</tr>
<tr>
<td>Industrialized farming: harmful effects</td>
<td>112</td>
</tr>
<tr>
<td>Industriousness</td>
<td>153</td>
</tr>
<tr>
<td>Industry</td>
<td>233</td>
</tr>
<tr>
<td>Inequality</td>
<td>17, 241, 392, 398</td>
</tr>
<tr>
<td>Infant mortality</td>
<td>233, 238, 242</td>
</tr>
<tr>
<td>Infanticide</td>
<td>238</td>
</tr>
<tr>
<td>Infinite desire for goods</td>
<td>317</td>
</tr>
<tr>
<td>Inflation</td>
<td>324, 328</td>
</tr>
<tr>
<td>Information</td>
<td>281</td>
</tr>
<tr>
<td>Information accumulation</td>
<td>284</td>
</tr>
<tr>
<td>Information explosion</td>
<td>23, 138, 140, 199, 284, 354</td>
</tr>
<tr>
<td>Information flow</td>
<td>63</td>
</tr>
<tr>
<td>Information function</td>
<td>435</td>
</tr>
<tr>
<td>Information revolution</td>
<td>16</td>
</tr>
<tr>
<td>Information technology</td>
<td>261</td>
</tr>
<tr>
<td>Information theory</td>
<td>23, 425, 434</td>
</tr>
<tr>
<td>Information Theory and Evolution</td>
<td>11</td>
</tr>
<tr>
<td>Information Theory and Statistics</td>
<td>12</td>
</tr>
<tr>
<td>Information transfer between cells</td>
<td>62</td>
</tr>
<tr>
<td>Information-driven population growth</td>
<td>97</td>
</tr>
<tr>
<td>Information-related work</td>
<td>330</td>
</tr>
<tr>
<td>Infra-red radiation</td>
<td>187</td>
</tr>
<tr>
<td>Infrastructure</td>
<td>113, 380, 381, 393</td>
</tr>
<tr>
<td>Infrastructure, war damage to</td>
<td>381</td>
</tr>
<tr>
<td>Inhibited cells</td>
<td>69</td>
</tr>
<tr>
<td>Inhibitory neurotransmitters</td>
<td>65</td>
</tr>
<tr>
<td>Inhibitory transmitters</td>
<td>66</td>
</tr>
<tr>
<td>Injustice</td>
<td>310</td>
</tr>
<tr>
<td>Injustice, economic</td>
<td>175</td>
</tr>
<tr>
<td>Ink</td>
<td>144</td>
</tr>
<tr>
<td>Inland rainfall</td>
<td>109</td>
</tr>
<tr>
<td>Innocence</td>
<td>375</td>
</tr>
<tr>
<td>Inorganic fertilizer</td>
<td>105</td>
</tr>
<tr>
<td>Input/output ratio</td>
<td>105</td>
</tr>
<tr>
<td>Insects essential for pollination</td>
<td>363</td>
</tr>
<tr>
<td>Instantaneous communication</td>
<td>16</td>
</tr>
<tr>
<td>Instantaneous worldwide communication</td>
<td>305</td>
</tr>
<tr>
<td>Institute für Umweltforschung</td>
<td>54</td>
</tr>
<tr>
<td>Institute for Advanced Studies</td>
<td>11</td>
</tr>
<tr>
<td>Institution of war</td>
<td>355</td>
</tr>
<tr>
<td>Insulating materials</td>
<td>185</td>
</tr>
<tr>
<td>Insulator</td>
<td>277</td>
</tr>
<tr>
<td>Insulin</td>
<td>64</td>
</tr>
<tr>
<td>Integrated circuits</td>
<td>280</td>
</tr>
<tr>
<td>Intel</td>
<td>281</td>
</tr>
<tr>
<td>Inter Press Services</td>
<td>211</td>
</tr>
<tr>
<td>Inter-specie cooperative network</td>
<td>365</td>
</tr>
<tr>
<td>Inter-tribal aggression</td>
<td>354</td>
</tr>
<tr>
<td>Interactive calculations</td>
<td>281</td>
</tr>
<tr>
<td>Interdependent world</td>
<td>389</td>
</tr>
<tr>
<td>Interest rates</td>
<td>328</td>
</tr>
<tr>
<td>Intermittency</td>
<td>445</td>
</tr>
<tr>
<td>Internal affairs</td>
<td>388</td>
</tr>
<tr>
<td>Internal energy</td>
<td>441</td>
</tr>
<tr>
<td>Internal peace</td>
<td>359, 387, 401</td>
</tr>
<tr>
<td>Internally displaced persons</td>
<td>116</td>
</tr>
<tr>
<td>International Children’s Peace Prize</td>
<td>171</td>
</tr>
<tr>
<td>International cooperation</td>
<td>403</td>
</tr>
<tr>
<td>International Court of Justice</td>
<td>393, 399</td>
</tr>
<tr>
<td>International Criminal Court</td>
<td>389, 393, 399</td>
</tr>
<tr>
<td>International law</td>
<td>1, 25, 97, 244, 304, 382, 393, 399</td>
</tr>
<tr>
<td>International Monetary Fund</td>
<td>328</td>
</tr>
<tr>
<td>International understanding</td>
<td>404</td>
</tr>
<tr>
<td>Internet</td>
<td>16, 78, 179, 204, 285, 354</td>
</tr>
<tr>
<td>Internet giants</td>
<td>208</td>
</tr>
<tr>
<td>Internet neutrality undermined</td>
<td>211</td>
</tr>
<tr>
<td>Internet traffic</td>
<td>205, 206</td>
</tr>
<tr>
<td>Internet users, total</td>
<td>205</td>
</tr>
<tr>
<td>INTERNIST-1</td>
<td>286</td>
</tr>
<tr>
<td>Intermuncial circuits</td>
<td>70</td>
</tr>
<tr>
<td>Intermuncial part</td>
<td>64, 69</td>
</tr>
<tr>
<td>Term</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Interrelatedness of all life</td>
<td>27</td>
</tr>
<tr>
<td>Interreligious understanding</td>
<td>399</td>
</tr>
<tr>
<td>Interstate matters</td>
<td>388</td>
</tr>
<tr>
<td>Intertribal wars</td>
<td>236</td>
</tr>
<tr>
<td>Intolerance</td>
<td>156</td>
</tr>
<tr>
<td>Intra-tribal altruism</td>
<td>354</td>
</tr>
<tr>
<td>Intricate structures</td>
<td>16</td>
</tr>
<tr>
<td>Invention of computers</td>
<td>261</td>
</tr>
<tr>
<td>Invention of paper</td>
<td>140</td>
</tr>
<tr>
<td>Invention of television</td>
<td>201</td>
</tr>
<tr>
<td>Invention of transistors</td>
<td>277</td>
</tr>
<tr>
<td>Invention of writing</td>
<td>16 135 364</td>
</tr>
<tr>
<td>Inventory data base</td>
<td>287</td>
</tr>
<tr>
<td>Investment</td>
<td>328</td>
</tr>
<tr>
<td>Investments</td>
<td>321</td>
</tr>
<tr>
<td>Ion pump</td>
<td>65</td>
</tr>
<tr>
<td>IPCC</td>
<td>104</td>
</tr>
<tr>
<td>Iran</td>
<td>377</td>
</tr>
<tr>
<td>Iraq</td>
<td>172 381 382</td>
</tr>
<tr>
<td>Irish Potato Famine</td>
<td>104 112 238</td>
</tr>
<tr>
<td>Irish potato famine</td>
<td>94</td>
</tr>
<tr>
<td>Iron-Sulfur reactions</td>
<td>37</td>
</tr>
<tr>
<td>Irrational beliefs and tribalism</td>
<td>24</td>
</tr>
<tr>
<td>Irrigation</td>
<td>104 110 380</td>
</tr>
<tr>
<td>Irrigation of rice and wheat</td>
<td>109</td>
</tr>
<tr>
<td>Islamic contributions to civilization</td>
<td>145</td>
</tr>
<tr>
<td>Islamic hand-written manuscript</td>
<td>148</td>
</tr>
<tr>
<td>Islamic physics</td>
<td>147</td>
</tr>
<tr>
<td>Islamic world</td>
<td>366</td>
</tr>
<tr>
<td>Island nations</td>
<td>26</td>
</tr>
<tr>
<td>Isomeric conformations</td>
<td>27</td>
</tr>
<tr>
<td>Italian paper-mill</td>
<td>140</td>
</tr>
<tr>
<td>Italy</td>
<td>181</td>
</tr>
<tr>
<td>Jabir</td>
<td>146</td>
</tr>
<tr>
<td>Jacquard’s loom</td>
<td>265</td>
</tr>
<tr>
<td>Jacquard, Joseph Marie</td>
<td>265</td>
</tr>
<tr>
<td>Jade jewelry trading</td>
<td>363</td>
</tr>
<tr>
<td>JANET</td>
<td>205</td>
</tr>
<tr>
<td>Japan</td>
<td>113 366 369</td>
</tr>
<tr>
<td>Japanese woodblock prints</td>
<td>144</td>
</tr>
<tr>
<td>Jarmo</td>
<td>86</td>
</tr>
<tr>
<td>Jellyfish</td>
<td>61</td>
</tr>
<tr>
<td>Jericho</td>
<td>86</td>
</tr>
<tr>
<td>Jesus</td>
<td>364</td>
</tr>
<tr>
<td>Jewish intellectual traditions</td>
<td>366</td>
</tr>
<tr>
<td>Job security</td>
<td>330</td>
</tr>
<tr>
<td>Jobbic party (Hungary)</td>
<td>249</td>
</tr>
<tr>
<td>Johnson, Joseph</td>
<td>162 170</td>
</tr>
<tr>
<td>Journalists assassinated</td>
<td>211</td>
</tr>
<tr>
<td>Junk DNA</td>
<td>378</td>
</tr>
<tr>
<td>Köhler, Wolfgang</td>
<td>74</td>
</tr>
<tr>
<td>Kahn, Robert F.</td>
<td>204</td>
</tr>
<tr>
<td>Kamal, Baher</td>
<td>211</td>
</tr>
<tr>
<td>Karma</td>
<td>314</td>
</tr>
<tr>
<td>Keeping up appearances</td>
<td>305</td>
</tr>
<tr>
<td>Keller, Helen</td>
<td>197</td>
</tr>
<tr>
<td>Kelly, Kathy</td>
<td>211</td>
</tr>
<tr>
<td>Kelvin, Lord</td>
<td>425 427</td>
</tr>
<tr>
<td>Kennedy, John F.</td>
<td>374</td>
</tr>
<tr>
<td>Kenya</td>
<td>240</td>
</tr>
<tr>
<td>Kepler, Johannes</td>
<td>150</td>
</tr>
<tr>
<td>Keynes, John Maynard</td>
<td>322 324</td>
</tr>
<tr>
<td>Keynesian economics</td>
<td>324</td>
</tr>
<tr>
<td>Khan, A.Q.</td>
<td>377</td>
</tr>
<tr>
<td>Khpal Kor Foundation</td>
<td>170</td>
</tr>
<tr>
<td>Killing journalists</td>
<td>211</td>
</tr>
<tr>
<td>Killing-fields of Cambodia</td>
<td>365</td>
</tr>
<tr>
<td>Kindness and human solidarity</td>
<td>117</td>
</tr>
<tr>
<td>Kindness within one’s own group</td>
<td>383</td>
</tr>
<tr>
<td>King George I</td>
<td>263</td>
</tr>
<tr>
<td>King Louis XVI</td>
<td>153</td>
</tr>
<tr>
<td>King, Martin Luther</td>
<td>315</td>
</tr>
<tr>
<td>Kings College, London</td>
<td>36</td>
</tr>
<tr>
<td>Klare, Michael T.</td>
<td>379</td>
</tr>
<tr>
<td>Klein, Naomi</td>
<td>26 211</td>
</tr>
<tr>
<td>Kleinrock</td>
<td>204</td>
</tr>
<tr>
<td>Kleinrock, Leonard</td>
<td>204</td>
</tr>
<tr>
<td>Knotted string systems</td>
<td>139</td>
</tr>
<tr>
<td>Knowledge-based economies</td>
<td>165</td>
</tr>
<tr>
<td>Knowlton, Charles</td>
<td>304</td>
</tr>
<tr>
<td>Koestler, Arthur</td>
<td>355</td>
</tr>
<tr>
<td>Kok-Aral Dam</td>
<td>380</td>
</tr>
<tr>
<td>Korea</td>
<td>144</td>
</tr>
<tr>
<td>Kropotkin, Peter</td>
<td>354 360</td>
</tr>
<tr>
<td>Kucinich, Dennis</td>
<td>211</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----</td>
</tr>
<tr>
<td>Kuffler, Steven W.</td>
<td>69</td>
</tr>
<tr>
<td>Kull, K.</td>
<td>273</td>
</tr>
<tr>
<td>Kull, Kalevi</td>
<td>54</td>
</tr>
<tr>
<td>Löwdin, Per-Olov</td>
<td>285</td>
</tr>
<tr>
<td>Labile genetic traits</td>
<td>112</td>
</tr>
<tr>
<td>Ladik, Janos</td>
<td>276</td>
</tr>
<tr>
<td>Lady Mary Wortley Montegue</td>
<td>156</td>
</tr>
<tr>
<td>Lake Titicaca</td>
<td>379</td>
</tr>
<tr>
<td>Land mines</td>
<td>381</td>
</tr>
<tr>
<td>Land surface used for cattle</td>
<td>122</td>
</tr>
<tr>
<td>Land Use Policy</td>
<td>246</td>
</tr>
<tr>
<td>Land-grabs</td>
<td>113</td>
</tr>
<tr>
<td>Landscape fires kill 100,000/y</td>
<td>117</td>
</tr>
<tr>
<td>Language marking group boundaries</td>
<td>359</td>
</tr>
<tr>
<td>Lao Tzu</td>
<td>364</td>
</tr>
<tr>
<td>Lapham, Robert J.</td>
<td>113</td>
</tr>
<tr>
<td>Large nations</td>
<td>387</td>
</tr>
<tr>
<td>Large-scale global famine</td>
<td>26</td>
</tr>
<tr>
<td>Larger social units</td>
<td>364</td>
</tr>
<tr>
<td>Laser</td>
<td>287</td>
</tr>
<tr>
<td>Last frontier</td>
<td>101</td>
</tr>
<tr>
<td>Last glacial maximum</td>
<td>84</td>
</tr>
<tr>
<td>Late marriage</td>
<td>238</td>
</tr>
<tr>
<td>Laterite</td>
<td>110</td>
</tr>
<tr>
<td>Laterization of soil</td>
<td>110</td>
</tr>
<tr>
<td>Latin America</td>
<td>101</td>
</tr>
<tr>
<td>Latin America, conflicts</td>
<td>379</td>
</tr>
<tr>
<td>Le Chatelier, Henri Louis</td>
<td>441</td>
</tr>
<tr>
<td>Lead hydroxycarbonate</td>
<td>146</td>
</tr>
<tr>
<td>Lead, tin and antimony</td>
<td>150</td>
</tr>
<tr>
<td>Learning by computers</td>
<td>289</td>
</tr>
<tr>
<td>Learning in the octopus</td>
<td>71</td>
</tr>
<tr>
<td>Lederberg, J.</td>
<td>62</td>
</tr>
<tr>
<td>Lederberg, Joshua</td>
<td>112</td>
</tr>
<tr>
<td>Lee, Yuan</td>
<td>286</td>
</tr>
<tr>
<td>Leeuwenhoek, Anton van</td>
<td>153</td>
</tr>
<tr>
<td>Leibniz, Gottfried Wilhelm</td>
<td>61</td>
</tr>
<tr>
<td>Leisure class</td>
<td>308</td>
</tr>
<tr>
<td>LeMay, Curtis E.</td>
<td>376</td>
</tr>
<tr>
<td>Leonardo da Vinci</td>
<td>140</td>
</tr>
<tr>
<td>Leontief, Wassily W.</td>
<td>288</td>
</tr>
<tr>
<td>Lema Rogo</td>
<td>101</td>
</tr>
<tr>
<td>Lethal heat events</td>
<td>247</td>
</tr>
<tr>
<td>Letters Concerning the English</td>
<td>156</td>
</tr>
<tr>
<td>Lewin, Kurt</td>
<td>272</td>
</tr>
<tr>
<td>Liberalism</td>
<td>310</td>
</tr>
<tr>
<td>Libya</td>
<td>107</td>
</tr>
<tr>
<td>Licenses to burn forests</td>
<td>118</td>
</tr>
<tr>
<td>Licklider, J.C.R.</td>
<td>204</td>
</tr>
<tr>
<td>Lie detector test</td>
<td>278</td>
</tr>
<tr>
<td>Life-oriented insights of women</td>
<td>172</td>
</tr>
<tr>
<td>Life-styles from mass media</td>
<td>209</td>
</tr>
<tr>
<td>Life-supporting systems</td>
<td>320</td>
</tr>
<tr>
<td>Light</td>
<td>185</td>
</tr>
<tr>
<td>Light is an electromagnetic wave</td>
<td>185</td>
</tr>
<tr>
<td>Light-receptor cells</td>
<td>69</td>
</tr>
<tr>
<td>Light-sensitive organs</td>
<td>61</td>
</tr>
<tr>
<td>Limitations on cropland</td>
<td>101</td>
</tr>
<tr>
<td>Limits to Growth</td>
<td>100</td>
</tr>
<tr>
<td>Limits to material growth</td>
<td>19</td>
</tr>
<tr>
<td>Lincoln, Abraham</td>
<td>396</td>
</tr>
<tr>
<td>Linear progression</td>
<td>234</td>
</tr>
<tr>
<td>Linguistic symbols</td>
<td>354</td>
</tr>
<tr>
<td>Linguistics</td>
<td>197</td>
</tr>
<tr>
<td>Linux</td>
<td>207</td>
</tr>
<tr>
<td>Lipids</td>
<td>37</td>
</tr>
<tr>
<td>Literature and art</td>
<td>367</td>
</tr>
<tr>
<td>Literature searches</td>
<td>286</td>
</tr>
<tr>
<td>Lithium</td>
<td>182</td>
</tr>
<tr>
<td>Livestock feed</td>
<td>105</td>
</tr>
<tr>
<td>Living standards</td>
<td>330</td>
</tr>
<tr>
<td>Llama domestication</td>
<td>92</td>
</tr>
<tr>
<td>Local autonomy</td>
<td>388</td>
</tr>
<tr>
<td>Locke, John</td>
<td>154</td>
</tr>
<tr>
<td>Loewi, Otto</td>
<td>65</td>
</tr>
<tr>
<td>Logging, drought, fire and hunting</td>
<td>124</td>
</tr>
</tbody>
</table>
INDEX

Mathematical relationships, 51
Mathew, Binu, 11
Mature ethical system, 26
Mauchley, J.W., 269
Maudlin, W. Parker, 113
Maxwell's demon, 430, 434
Maxwell's equations, 187, 189
Maxwell, James Clerk, 179, 187, 189, 196, 430
Mayan system of writing, 139
Mayor, Federico, 405
McCulloch, Warren, 272
MCIR system, 287
McKibben, Bill, 26, 211
Mead, Margaret, 272, 275
Meadows, Dennis L., 100
Means, 314
Measure of order, 16
Meat consumption, 106
Mechanical work, 425, 444
Mechanistic explanations, 187
Mechanization of agriculture, 288
Media are a battleground, 25, 211
Media as a battleground, 176
Media neglect of climate change, 210
Media, misuse of, 176
Medical science, 239
Medicine, 146, 286
Mekong River, 109
Mekong River Commission, 380
Melting of Glaciers, 97
Melting of glaciers, 242
Membrane permeability, 66
Membrane-bound proteins, 64
Memories, 281
Memories of previous experience, 70
Memory of previous input, 51
Mendel, Gregor, 32
Mendelian laws, 33
Menlo Park, California, 208
Mentality of apes, 74
Merchants, 175
Mercury computer, 276
Mercury poisoning, 185
Merkel, Angela, 117, 248
Mesopotamia, 135, 145, 364, 366
Messenger RNA, 63
Metabolic pathways, 16
Metabolism, 28
Metals, 182
Methane and beef, 122
Mexico City, 240
Microelectronics, 277, 280
Microminiaturization, 276
Microprocessors, 280, 281
Microscope, 153, 280, 289
Microstates, 432, 437
Microwaves, 187
Middle East, 107
Middle East, conflicts, 379
Miescher, Friedrich, 35
Migration, 383
Migration into Europe, 248
Migration to cities, 113
Migration, political reactions, 248
Militant enthusiasm, 176, 355
Militarily powerful countries, 20
Militarism, 394
Military budgets, 386, 392, 398
Military ecological damage, 381
Military intervention, 389
Military lobbies, 406
Military spending, 380
Military targets, 375
Military-industrial complex, 25, 378, 379
Milk and potato diet, 238
Mill, James, 328
Mill, John Stuart, 97
Millions still suffer, 172
Miner’s safety lamp, 183
Miniaturization, 280, 281
Minicomputer, 280
Minimum wage laws, 303, 327
Minimum wage levels, 304
MIPS, 280
INDEX

Nationalism, 175, 176, 392, 398
Nationalism and printing, 175
Nationalist teaching, 404
Natural capital, 320
Natural gas, 104
Natural selection, 21, 31, 140
Natural topsoil, 113
Nature, and nature’s laws, 157
Nature: Climate Change, 246
Nazi regime in Germany, 74
Near East, 101
Necessity, 237
Negative entropy, 16, 28
Negative feedback, 54, 273
Negative peace, 400
Netherlands and life, 27
Nehru, Jawaharlal, 404
Neocolonialism, 392, 398
Neolithic agricultural revolution, 97
Neolithic ancestors, 354
Neolithic founder crops, 88
Neolithic site in eastern China, 89
Nerve cells, 289
Nerve gas, 354
Nervous system, 289
Nervous systems, 64
Nestorian scholars, 145
Nestorians, 145
Net neutrality undermined, 211
Network of nerves, 61
Networks, 281
Networks of association, 76
Neumann, John von, 28, 269, 271, 437
Neural networks, 289
Neurons, 64
Neurophysiology, 271
Neurotransmitter molecules, 65
Neutral states, 375
New Agenda Resolution, 376
New clothes, 316
New Deal, 328
New economic system, 26
New era of happiness, 156
New York Times, 170
Newman, M.H.A., 269
Newspapers, 175, 176
Newton’s equations of motion, 189
Newton, Isaac, 78, 150, 153, 154, 157, 263
Nicholson, William, 182
Niels Bohr Institute, 54
Nigeria, 123, 172, 240
Nigeria, famine, 244
Nightmare bacteria, 112
Nile valley, 86
Nipkow disc, 201
Nipkow, P.J.G, 201
Nix, Alexander, 208
No rightful duty to submit, 157
Nobel Peace Prize, 211
Nodes, 204
Non-discrimination, 406
Non-discrimination principle, 305
Non-renewable resources, 19, 78, 322, 366, 392
Non-violence, 310, 312, 314, 405
Non-violent protest, 310, 313
Nonrenewable resources, 392
Noradrenalin, 65, 66
Norepinepherine, 66
Norepinephrine, 65
Norms, 393, 394
North Korea, 377
Northern Africa, 101
Norway, 236
Not truly human, 358
Novic, Richard, 112
NSFNET, 205
Nuclear annihilation, 23, 396
Nuclear arms race, 369, 396
Nuclear black market, 377
Nuclear disarmament, 375
Nuclear families, 209
Nuclear magnetic resonance, 36
Nuclear terrorism, 377
Nuclear tests, 382
Nuclear war, probability of, 374
Nuclear weapons, 17, 354, 355, 367, 393, 399, 400
Nuremberg Principles, 399
Nutrient-poor soils, 110
Oakwood Chapel, 233
Obama, Barack, 246
Obama, Barak, 171
Oberg, Jan, 211
Observation, 153
Obsidian trading, 363
Occupation numbers, 432
Oceans, 320
Octopus brain, 69, 71
Octopus eye, 69
Off-center arrays, 69
Ogallala aquifer, 101, 107
Oil Change International, 25
Oil depletion, 305
Oklahoma, 104
Older people marginalized, 209
Oligarchs, 211
Oliver Twist, 237
On-center arrays, 69
Ontogeny, 37
Open world economics, 392
Optical storage devices, 281
Optics, 147
Optimism, 231
Optimum global population, 97
Or cells, 69
Orderliness, 28
Organized criminals, 377
Orwell, George, 24
Ostwald, Wilhelm, 432, 441
Our Common Future, 105, 318
Out-of-sight objects, 74
Overconsumption, 320
Overgrazing, 104, 124
Oversized global economy, 20
Oxfam, 17
Oxford Union, 171
Oxidation of glucose, 444

Oxygen, 38, 182, 445
Package of broadcasts, 210
Package switching systems, 204
Packaging and retailing, 105
Pai, Ajit, 211
Paine, Thomas, 162
Pakistan, 101, 104, 170, 172, 377
Pale-faced teenagers, 276
Palm oil and biodiversity, 117
Palm oil cultivation, 117
Palm oil plantations, 117
Palme, Olof, 172
Paper, 16, 140, 144, 354
Paper in the Muslim world, 140, 148
Papyrus, 140
Paraguay, 113
Parallel-processing, 280
Parallelization, 281
Parasites, 63
Parchment, 140
Paris, 148
Parish assistance, 237
Parliamentary democracy, 314
Parr, Samuel, 234
Participation of women, 406
Party for Freedom, 249
Pascal, Blaise, 261
Pashto-language station, 170
Passions of mankind, 237, 354
Passive resistance, 396
Pastoral societies, 236
Pasturage, 101, 109
Patagonia, 249
Patriotism, 368
Pattern abstraction, 69, 71
Pauling, Linus, 36, 285
Paupers, 238
PC hard-drive capacity, 281
Peace education, 392, 397
Peace, culture of, 394
Peanut butter and palm oil, 118
INDEX

Probability, 435, 444
Problem of feeding urban populations, 117
Producer, 327
Production, 17, 355
Profits, 321
Profits of arms manufacturers, 386
Progesterone, 64
Progress, 16, 233
Progress of science, 387, 401
Prokaryotes, 37, 112, 354, 360, 364, 409
Prolactin, 64
Prolonged education, 138
Promoting peace, 403
Propaganda, 25, 176
Propaganda and entertainment, 210
Protein-rich algae, 126
Proteins, 63
Protestant Reformation, 175
Prudence, 238
Prussian army officers, 358
Pseudospeciation, 358
Psychology, 154, 167, 306
Ptolemy, 145
Public education, 176
Public health, 113, 380
Public image, 386
Public opinion, 16, 176, 355
Public transportation, 305, 330
Pugwash Conferences, 21
Pullman, Alberte, 286
Pullman, Bernard, 286
Punched cards, 265, 276
Punched tape, 435
Purchasing power, 328
Purchasing Power Parity, 241
Puritan Rebellion, 153
Pygmalion, 197
Pyrite formation, 37
Pythagoras, 51
Pythagorean concept of the soul, 51
Qaddafi, Muammar, 107
Quantum biochemistry, 286
Quantum chemical calculations, 276
Quantum chemistry, 285
Quantum dot technology, 281
Quantum dots, 281
Quantum theory, 11, 277, 284, 354, 432
Queen Elizabeth I, 94
Queen Elizabeth II, 171
Queen Victoria, 185, 193
Quick Medical Reference, 286
Quinine, 366
R-Factor, 112
R-factors, 62
R-type pneumococci, 35
Racial boundaries, 358
Racial specificty, 378
Racially selective weapons, 378
Racism, 309
Radiation, 375
Radiation sickness, 369
Radical change, 237
Radio waves, 187
Radio-carbon dating, 86, 135
Radioactive ashes, 27
Radioactive decay processes, 18
Radioactive fallout, 371, 382
Radioactive tracer techniques, 36
Radiocarbon dates, 91
Rahzes, 146
Rainbow, 147
Rainfall, 104, 106
Raleigh, Lord, 189
Raleigh, Sir Walter, 94
Rand Corporation, 377
Rank-determining fights, 355
Rapidly oscillating current, 187
Rapidly rotating drum, 276
Rates of exchange, 390
Rational fellowship, 170
Rationalism, 154
Rationality, 157
Raychandbhai, 310
Reactions that heat the sun, 20
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive scattering</td>
<td>286</td>
</tr>
<tr>
<td>Reading</td>
<td>74</td>
</tr>
<tr>
<td>Real needs</td>
<td>322</td>
</tr>
<tr>
<td>Realistic view of the world</td>
<td>153</td>
</tr>
<tr>
<td>Reason</td>
<td>157, 237</td>
</tr>
<tr>
<td>Receptors</td>
<td>64</td>
</tr>
<tr>
<td>Recession</td>
<td>226, 327, 328</td>
</tr>
<tr>
<td>Recessive genes</td>
<td>32</td>
</tr>
<tr>
<td>Reciprocity</td>
<td>314</td>
</tr>
<tr>
<td>Reconciliation</td>
<td>310, 314</td>
</tr>
<tr>
<td>Recycling agricultural waste</td>
<td>113</td>
</tr>
<tr>
<td>Recycling resources</td>
<td>329, 341</td>
</tr>
<tr>
<td>Redox potential</td>
<td>38</td>
</tr>
<tr>
<td>Reduced consumption of meat</td>
<td>250</td>
</tr>
<tr>
<td>Reduced rainfall</td>
<td>244</td>
</tr>
<tr>
<td>Reducing agents</td>
<td>37</td>
</tr>
<tr>
<td>Rees, William</td>
<td>100</td>
</tr>
<tr>
<td>Reforestation</td>
<td>329, 341</td>
</tr>
<tr>
<td>Reforestation initiatives</td>
<td>125</td>
</tr>
<tr>
<td>Reform</td>
<td>310</td>
</tr>
<tr>
<td>Reformation</td>
<td>150</td>
</tr>
<tr>
<td>Reformation aided by printing</td>
<td>175</td>
</tr>
<tr>
<td>Reformed educational system</td>
<td>367</td>
</tr>
<tr>
<td>Reformed teaching of history</td>
<td>367</td>
</tr>
<tr>
<td>Refugee crisis</td>
<td>24, 97, 244, 246, 247</td>
</tr>
<tr>
<td>Refugees from rising temperatures</td>
<td>246</td>
</tr>
<tr>
<td>Refugees from war</td>
<td>24</td>
</tr>
<tr>
<td>Refugees produced by war</td>
<td>244</td>
</tr>
<tr>
<td>Regaining democratic government</td>
<td>24</td>
</tr>
<tr>
<td>Regulating multinational corporations</td>
<td>305</td>
</tr>
<tr>
<td>Regulatory social legislation</td>
<td>304</td>
</tr>
<tr>
<td>Reich, Charles</td>
<td>318</td>
</tr>
<tr>
<td>Reign of Terror</td>
<td>234</td>
</tr>
<tr>
<td>Reintroduction of the spinning wheel</td>
<td>311</td>
</tr>
<tr>
<td>Rejection of violence</td>
<td>405</td>
</tr>
<tr>
<td>Relativity</td>
<td>354</td>
</tr>
<tr>
<td>Religion</td>
<td>17, 366, 394, 400</td>
</tr>
<tr>
<td>Religion and politics</td>
<td>313</td>
</tr>
<tr>
<td>Religion marking group boundaries</td>
<td>359</td>
</tr>
<tr>
<td>Religions</td>
<td>368</td>
</tr>
<tr>
<td>Religious dogma</td>
<td>156</td>
</tr>
<tr>
<td>Religious ethics</td>
<td>399</td>
</tr>
<tr>
<td>Rembrandt van Rijn</td>
<td>153</td>
</tr>
<tr>
<td>Remember your humanity</td>
<td>21</td>
</tr>
<tr>
<td>Remington, Fredrick</td>
<td>176</td>
</tr>
<tr>
<td>Renewable energy</td>
<td>78, 226, 329, 341</td>
</tr>
<tr>
<td>Renewable energy infrastructure</td>
<td>25, 366, 367</td>
</tr>
<tr>
<td>Renewable energy systems</td>
<td>445</td>
</tr>
<tr>
<td>Rents, agricultural</td>
<td>321</td>
</tr>
<tr>
<td>Replacement orders</td>
<td>287</td>
</tr>
<tr>
<td>Replanting forests</td>
<td>125</td>
</tr>
<tr>
<td>Replies to Malthus</td>
<td>237</td>
</tr>
<tr>
<td>Reply to Parr</td>
<td>234</td>
</tr>
<tr>
<td>Reprocessing of fuel rods</td>
<td>377</td>
</tr>
<tr>
<td>Reproduction of social insects</td>
<td>352</td>
</tr>
<tr>
<td>Resolution of international conflicts</td>
<td>305</td>
</tr>
<tr>
<td>Resource wars</td>
<td>20, 244, 379</td>
</tr>
<tr>
<td>Resources</td>
<td>77, 352, 392</td>
</tr>
<tr>
<td>Resources of the sea bed</td>
<td>390</td>
</tr>
<tr>
<td>Resources per capita</td>
<td>100</td>
</tr>
<tr>
<td>Respect for human needs</td>
<td>305</td>
</tr>
<tr>
<td>Respect for life</td>
<td>405, 406</td>
</tr>
<tr>
<td>Respect for the environment</td>
<td>97, 305</td>
</tr>
<tr>
<td>Respiration</td>
<td>360</td>
</tr>
<tr>
<td>Respiratory diseases</td>
<td>240</td>
</tr>
<tr>
<td>Resting potential</td>
<td>66</td>
</tr>
<tr>
<td>Retailing</td>
<td>287</td>
</tr>
<tr>
<td>Retarded children</td>
<td>167</td>
</tr>
<tr>
<td>Retreat pathway</td>
<td>71</td>
</tr>
<tr>
<td>Revenge</td>
<td>375</td>
</tr>
<tr>
<td>Ribosomes</td>
<td>37</td>
</tr>
<tr>
<td>Ricardo, David</td>
<td>321</td>
</tr>
<tr>
<td>Rice cultivation</td>
<td>86</td>
</tr>
<tr>
<td>Rice cultivation in Asia</td>
<td>89</td>
</tr>
<tr>
<td>Right Livelihood Award</td>
<td>54</td>
</tr>
<tr>
<td>Righteousness</td>
<td>355</td>
</tr>
<tr>
<td>Rights of individuals</td>
<td>405</td>
</tr>
<tr>
<td>Rights of man</td>
<td>157</td>
</tr>
<tr>
<td>Rise of fascism</td>
<td>24</td>
</tr>
<tr>
<td>Rising death rates</td>
<td>123</td>
</tr>
<tr>
<td>Rising sea levels</td>
<td>26</td>
</tr>
<tr>
<td>Rising temperatures</td>
<td>244</td>
</tr>
<tr>
<td>Rising temperatures in Africa</td>
<td>26</td>
</tr>
<tr>
<td>Ritual scarification</td>
<td>358</td>
</tr>
<tr>
<td>River deltas threatened</td>
<td>246</td>
</tr>
<tr>
<td>Robespierre</td>
<td>231</td>
</tr>
</tbody>
</table>
Self-pollination, 32
Self-reinforcing accumulation, 284
Self-reliance, 311
Self-sacrifice, 357
Self-sacrificing courage, 356
Self-sufficiency, 313
Self-sacrifice, 357
Self-sacriﬁcing courage, 356
Self-sacriﬁcence, 313
Selﬁsh motives, 355, 356
Semiconductors, 278
Semiotic information, 440
Semiotics, 273
Sensation, 275
Sense of smell, 51
Sensors, 286
Sensory inputs to the brain, 51
Sensory perception, 74
September 11 attacks, 406
Sequence of events, 435
Sequestered carbon, 109, 113
Serotonin, 65, 66
Service sector, 330
Sewage, 240
Sex workers, 208
Sexual dimorphism decreasing, 364
Sexual process, 363
Sexual reproduction, 63
Shall mankind renounce war?, 21
Shall we instead choose death?, 21
Shamanism, 83
Shanidar, 86
Shannon entropy, 437, 440
Shannon’s formula, 434, 437
Shannon, Claude, 271, 434
Shared knowledge, 365
Sharing of information, 78
Sharing of knowledge, 354
Sharing time and resources, 405
Shaw, George Bernard, 197
Shaw, Pamela, 329, 341
Sheep domesticated, 88
Shelley, Percy Bysshe, 162, 237
Shelly, Mary, 162
Shetterly, Robert, 211
Shiver, 355
Shockley, William, 199, 277, 278
Shooting Santa Claus, 224
Short-term disasters, 26
Shortened food chain, 250
Siberia, 249
Sign systems, 273
Signal transmission, 193
Silicon, 278
Silicon Valley, 278
Singapore, 113
Single cooperative society, 17
Single-celled organisms, 59
Single-stranded DNA, 36
Sit-coms and soap operas, 25
Sixth-order polynomials, 264
Skou, Jens C., 12
Skype, 207
Slashing and burning, 118
Slater, J.C., 285
Slave-like conditions, 303
Slavish obedience, 170
Sleeping on three chairs, 276
Slime mold unhappiness, 363
Slime molds, 58, 59, 64, 360
Slowness of genetic evolution, 354
Slums, 113
Small hydro, 78
Smallpox, 146
Smallpox, global eradication, 380
Smith, Adam, 304, 321, 322, 328
Soap and palm oil, 118
Social cohesion, 359, 367
Social communication, 271
Social competition, 309, 317
Social conscience, 20
Social contract, 154
Social goals, 312
Social impact of change, 303
Social impact of science, 393, 400
Social inequality, 104
Social insects, 77, 78, 351, 352
Social institutions, 16, 21, 355
Social interactions, 204
Social legislation, 304
Social mobility, 138
Social reform, 309
Social responsibility, 303
Social science, 154
Social services, 18
Social status, 308 309
Socially beneficial projects, 289
Societies, 364
Sociobiology, 352
Sociology, 154 306
Sociosemiotics, 23
Socks held up by safety pins, 308
Socrates, 364
Soddy, Frederick, 18 244
Software, 289
Soho, 276
Soil conservation, 329 341
Soil erosion, 101 110 123 125
Soka Gakkai, 211
Solar energy, 78 445
Solar power, 25
Solidarity, 368 405 406
Solutrian, 83
Somalia, 244
Somalia, famine, 244
Some jellyfish have 24 eyes, 61
Sonora, 64, 101
Sources and sinks, 20
South Africa, 309 310 313
South Sudan, famine, 244
Southeast Asia, 117
Southern Africa, 101
Southern Asia, 101
Southey, Robert, 237
Soviet H-bombs, 371
Soviet nuclear bomb, 370
Space exploration, 280
Space telescopes, 354
Spain, 148 289
Spanish-American War, 176
Spark flashing across the gap, 187
Specificity, 71
Speech, 365
Speed of computers, 280
Speed of light, 278
Sperm cells, 33
Spinning wheel, 311
Spinning wheel in India’s flag, 311
Sponges, 58 59
Spontaneous chemical reactions, 12
Spontaneous creativity, 167
Spontaneous process, 441 444
Spray-painting, 286
Spying and brigandage, 168
Squash, 366
Stabilization of population, 249
Stable, peaceful and sustainable world, 355
Standardization, 287 288
Starvation, 237 239 380
Starvation wages, 304
Starving child in Somalia, 244
State Militia, 387 401
State of nature, 154
Static electricity, 179 185
Stationary economy, 321
Statistical improbability, 16 31
Statistical Mechanics, 12
Statistical mechanics, 425 432 437
Status symbols, 306
Steady-state economic system, 26 244
Steady-state economics, 226 322
Steady-state economy, 19
Steam engines, 425
Stenography, 148
Steric complementarity, 31
Sterling’s approximation, 436
Stern Report, 104 106 109
Stibitz, George R., 269
Stimulus and response, 70
Stock market, 321
Stockholm, 330
Stockmarket, 287
Stone tools, 91
Stone, Oliver, 211
Storage density, 281
Strassburg, 150
Strategic air force, 371
Stream of sensory data, 51
Strength to Love, 396
Stromatolites, 38
Stronger bargaining powers, 304
Strontium, 182
Structure of corporations, 386
Struggle for existence, 360
Subatomic particles, 189
Subcellular structures, 360
Subjective perception, 54
Subjugation, 154, 308
Submarginal land, 101
Submarine seepage waters, 38
Subprime mortgage crisis, 18
Subsidies to fossil fuel, 25
Subsistence, 234
Substrate molecules, 186
Suburbia, 305
Subversion of democracy, 157
Sudden end in utmost misery, 21
Suffering and hopeless refugees, 117
Sugar-phosphate backbone, 36
Sumerian city of Susa, 135
Sumerian civilization, 135
Sumerian writing, 135
Summer water supplies, 242
Summer water supplies threatened, 97
Supercomputers, 354
Superior linguistic abilities, 74
Supermarkets, 287
Superorganisms, 77, 351
Supply, 328
Surface antigens, 64
Surrey, 233
Survival, 233
Susa, 135
Sustainability, 320, 322, 329, 341, 392
Sustainable development, 318
Sustainable economic system, 367
Sustainable limits to growth, 224
Swadeshi movement, 311
Swaminathan, M.S., 101
Swat Degree College for Women, 171
Swat Valley of Pakistan, 170
Sweden, 207
Sweden Democrats party, 249
Swimming pools, 305
Switzerland, 398
Symbiosis, 354, 359, 363
Symbols of power, 176
Symington Committee, 371
Synapse, 66
Synapses, 65, 66, 71
Synthesis of sugars, 12
Syria, 172
Syriac, 146
Szent-Györgyi, Albert, 11, 20, 24, 28
Szent-Györgyi, Albert, 286
Szilard, Leo, 271, 434, 437
T’ang dynasty, 145
Tables of quadratic functions, 264
Taiwan, 363
Taliban, 170
Taliban leaders agreed to kill her, 171
Talking knots, 139
Tallinn, Jaan, 207
Targeted people, 208
Tax on currency exchange, 390
Tax-gatherer, 237
Taxation, 330
Taxation, power of, 387, 401
Teacher’s training colleges, 400
Team Internet, 211
Team-spirit, 355
Technical accident, 377
Technical change, 16, 355
Technological unemployment, 288
Technology, 175, 231, 303
Technology of films, 199
Technology, transfer of, 113
Telegraph history, 190
Telephone, 196
Telescope, 153
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Television</td>
<td>378</td>
</tr>
<tr>
<td>Television part of education</td>
<td>209</td>
</tr>
<tr>
<td>Television timeline</td>
<td>201</td>
</tr>
<tr>
<td>Television underestimated</td>
<td>209</td>
</tr>
<tr>
<td>Temperature</td>
<td>430</td>
</tr>
<tr>
<td>Temperature and agriculture</td>
<td>106</td>
</tr>
<tr>
<td>Temperature difference</td>
<td>38</td>
</tr>
<tr>
<td>Templates</td>
<td>36</td>
</tr>
<tr>
<td>Tepe Yahya</td>
<td>135</td>
</tr>
<tr>
<td>Terabyte, definition</td>
<td>206</td>
</tr>
<tr>
<td>Termites</td>
<td>351</td>
</tr>
<tr>
<td>Tertiary conformation</td>
<td>63</td>
</tr>
<tr>
<td>Textbooks</td>
<td>404</td>
</tr>
<tr>
<td>Thailand</td>
<td>363</td>
</tr>
<tr>
<td>The Absorbent Mind</td>
<td>167</td>
</tr>
<tr>
<td>The Curse of the Factory System</td>
<td>304</td>
</tr>
<tr>
<td>The Formation of Man</td>
<td>168</td>
</tr>
<tr>
<td>The future of work</td>
<td>303</td>
</tr>
<tr>
<td>The Montessori Method</td>
<td>168</td>
</tr>
<tr>
<td>The nature of fire</td>
<td>157</td>
</tr>
<tr>
<td>The Potato Eaters</td>
<td>94</td>
</tr>
<tr>
<td>The Social Contract</td>
<td>157</td>
</tr>
<tr>
<td>Theme days</td>
<td>400</td>
</tr>
<tr>
<td>Theology studies</td>
<td>399</td>
</tr>
<tr>
<td>Theoretical physics</td>
<td>74</td>
</tr>
<tr>
<td>Theory of Games</td>
<td>272</td>
</tr>
<tr>
<td>Theory of rents</td>
<td>321</td>
</tr>
<tr>
<td>Theory of the Leisure Class</td>
<td>306</td>
</tr>
<tr>
<td>Theosophists</td>
<td>309</td>
</tr>
<tr>
<td>Thermal reservoir</td>
<td>441</td>
</tr>
<tr>
<td>Thermodynamic entropy</td>
<td>440</td>
</tr>
<tr>
<td>Thermodynamic equilibrium</td>
<td>31</td>
</tr>
<tr>
<td>Thermodynamic information</td>
<td>12</td>
</tr>
<tr>
<td>Thermodynamic information (continued)</td>
<td>16, 27, 28</td>
</tr>
<tr>
<td>Thermodynamics</td>
<td>23</td>
</tr>
<tr>
<td>Thermonuclear bombs</td>
<td>370</td>
</tr>
<tr>
<td>Thermonuclear catastrophe</td>
<td>25</td>
</tr>
<tr>
<td>Thermonuclear war</td>
<td>26, 367, 374</td>
</tr>
<tr>
<td>Thermonuclear weapons</td>
<td>175, 355, 378</td>
</tr>
<tr>
<td>Thin films</td>
<td>280</td>
</tr>
<tr>
<td>Thioacid activation</td>
<td>37</td>
</tr>
<tr>
<td>Third world debt</td>
<td>20</td>
</tr>
<tr>
<td>Third World War</td>
<td>357</td>
</tr>
<tr>
<td>thisisyourdigitallife</td>
<td>208</td>
</tr>
<tr>
<td>Thomson, J.J.</td>
<td>189</td>
</tr>
<tr>
<td>Thomson, William</td>
<td>425</td>
</tr>
<tr>
<td>Thoreau, Henry David</td>
<td>314</td>
</tr>
<tr>
<td>Threat of population crash</td>
<td>97</td>
</tr>
<tr>
<td>Threat of widespread famine</td>
<td>242</td>
</tr>
<tr>
<td>Threatened species</td>
<td>352</td>
</tr>
<tr>
<td>Threats and counter-threats</td>
<td>385</td>
</tr>
<tr>
<td>Three sisters</td>
<td>92</td>
</tr>
<tr>
<td>Thylakoids</td>
<td>11</td>
</tr>
<tr>
<td>Thymine</td>
<td>36</td>
</tr>
<tr>
<td>Tibet-Quinghai Plateau</td>
<td>109</td>
</tr>
<tr>
<td>Tick</td>
<td>51</td>
</tr>
<tr>
<td>Tidal energy</td>
<td>77, 78</td>
</tr>
<tr>
<td>Tigris River</td>
<td>135</td>
</tr>
<tr>
<td>Tobacco mosaic virus</td>
<td>31</td>
</tr>
<tr>
<td>Tobin, James</td>
<td>390</td>
</tr>
<tr>
<td>Tobin tax</td>
<td>390</td>
</tr>
<tr>
<td>Tolerance</td>
<td>405, 406</td>
</tr>
<tr>
<td>Tolstoy Farm</td>
<td>310</td>
</tr>
<tr>
<td>Tolstoy, Leo</td>
<td>310, 315</td>
</tr>
<tr>
<td>Tool making</td>
<td>83</td>
</tr>
<tr>
<td>Top Gear</td>
<td>210</td>
</tr>
<tr>
<td>Topsoil</td>
<td>109</td>
</tr>
<tr>
<td>Topsoil degradation</td>
<td>112</td>
</tr>
<tr>
<td>Topsoil loss</td>
<td>100</td>
</tr>
<tr>
<td>Topsoil organisms</td>
<td>113</td>
</tr>
<tr>
<td>Topsoil, loss of</td>
<td>101</td>
</tr>
<tr>
<td>Torop, Peeter</td>
<td>54</td>
</tr>
<tr>
<td>Total internal reflection</td>
<td>284</td>
</tr>
<tr>
<td>Total reaction</td>
<td>445</td>
</tr>
<tr>
<td>Trade</td>
<td>175</td>
</tr>
<tr>
<td>Trade is global</td>
<td>365</td>
</tr>
<tr>
<td>Trade unions</td>
<td>303, 327</td>
</tr>
<tr>
<td>Trading in primitive societies</td>
<td>363</td>
</tr>
<tr>
<td>Traditional agriculture</td>
<td>113</td>
</tr>
<tr>
<td>Traditional rain patterns</td>
<td>246</td>
</tr>
<tr>
<td>Traditional societies</td>
<td>209</td>
</tr>
<tr>
<td>Traitorous eight</td>
<td>278</td>
</tr>
<tr>
<td>Transatlantic cable</td>
<td>193</td>
</tr>
<tr>
<td>Transistors</td>
<td>280, 284</td>
</tr>
<tr>
<td>Transistors, invention of</td>
<td>277</td>
</tr>
<tr>
<td>Transmission of information</td>
<td>16</td>
</tr>
</tbody>
</table>
INDEX

Transmitter molecules, 64
Transmitters, 66
Transnational Foundation, 211
Transportation, 105, 175, 287, 305
Transportation links, 77, 351
Treatise on Electricity and Magnetism, 187
Tree-killing spree, 118
Tree-cutting for firewood, 124
Trees, destruction of, 104
Trench warfare, 355
Tribal markings, 358, 359
Tribalism, 21, 24, 175, 354, 356, 364, 368
Tribalism and irrational beliefs, 24
Tropical rain forests, 58, 101, 322
True state of the world, 226
True-breeding plants, 32
Trump, Donald, 249
Truth, 310, 311, 314
Truth must be common to all, 170
Tsai Lun, 140
Tuberculosis, 197, 380, 392
Tubes sometimes failed, 276
Turgot, 156
Turing, Alan, 269
Turkey, 104
Twentieth century, 231
Two sides of human nature, 365
Typhoid fever, 113
Tyrannical government, 154
Tyranny, 168

Uexküll, Carl W.J. von, 54
Uexküll, Jakob von, 51, 54, 273
Ul Haq, Mahbub, 165
Ultracentrifugation, 36
Ultraviolet light, 54, 187, 273
Ultraviolet spectroscopy, 36
Umwelt, 51, 54, 273
UN General Assembly, 375, 390, 406
UN lacks large and dependable income, 305
UN Summit on Refugees and Migrants, 116
UN television network?, 394
Undernourished: 1.5 billion people, 97
Understanding between cultures, 405
Understanding between religions, 405
Undreamt of wealth and dignity, 21
Unemployment, 113, 289, 322, 323
UNESCO, 390, 403, 406
UNESCO Courier, 404
UNHCR, 245
UNICEF, 405
Unicellular eukaryotes, 58
Universal computer, 269
Universal education, 165
Universal human brotherhood, 399
Universal language, 138
Universal laws governing multinationals, 303
Universal philogenetic tree, 37
Universal primary health care, 123
Universal product code, 287
Universal programmable computer, 265
University of Chicago, 308
University of Copenhagen, 12, 54
University of Heidelberg, 54
University of London, 12
University of Oxford, 157
University of Stvanger, 128
University of Tartu, 54
Unsanitary housing, 236
Unselfishness, 383
Unselfishness of natural philosophers, 183
Unsustainable high-yield agriculture, 113
Unsustainable lifestyles in media, 210
Unto This Last, 310
Uranium enrichment, 377
Urban growth, 110
Urban populations exploding, 117
Urban sprawl, 246, 305
Urbanization, 101, 113, 240
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urdu-language Daily Aaj</td>
<td>170</td>
</tr>
<tr>
<td>US Federal Constitution</td>
<td>388</td>
</tr>
<tr>
<td>US Federal Government</td>
<td>387, 401</td>
</tr>
<tr>
<td>US food system</td>
<td>105</td>
</tr>
<tr>
<td>US grain belt</td>
<td>106</td>
</tr>
<tr>
<td>Useful work</td>
<td>11</td>
</tr>
<tr>
<td>USSR</td>
<td>104</td>
</tr>
<tr>
<td>Utility</td>
<td>237</td>
</tr>
<tr>
<td>Utilization of information</td>
<td>16</td>
</tr>
<tr>
<td>Utopian communities</td>
<td>310</td>
</tr>
<tr>
<td>Vacuum tubes</td>
<td>269</td>
</tr>
<tr>
<td>Vacuum tubes required cooling</td>
<td>276</td>
</tr>
<tr>
<td>Valence band</td>
<td>278</td>
</tr>
<tr>
<td>Valence bands</td>
<td>277</td>
</tr>
<tr>
<td>Values</td>
<td>394</td>
</tr>
<tr>
<td>Values from the mass media</td>
<td>209</td>
</tr>
<tr>
<td>Values, transmission of</td>
<td>394</td>
</tr>
<tr>
<td>Van der Waals forces</td>
<td>63</td>
</tr>
<tr>
<td>Van Gogh, Vincent</td>
<td>94</td>
</tr>
<tr>
<td>Van Vleck, J.H.</td>
<td>285</td>
</tr>
<tr>
<td>Vanderbilt University</td>
<td>91</td>
</tr>
<tr>
<td>Vanilla</td>
<td>366</td>
</tr>
<tr>
<td>Variability</td>
<td>63</td>
</tr>
<tr>
<td>Variable genetic traits</td>
<td>112</td>
</tr>
<tr>
<td>Veblen, Thorstein</td>
<td>306</td>
</tr>
<tr>
<td>Vegetarians</td>
<td>309</td>
</tr>
<tr>
<td>Vermeer, Jan</td>
<td>153</td>
</tr>
<tr>
<td>Versailles Treaty</td>
<td>326</td>
</tr>
<tr>
<td>Vertical information transfer</td>
<td>62</td>
</tr>
<tr>
<td>Vice</td>
<td>234, 236</td>
</tr>
<tr>
<td>Viceroy Lord Irwin</td>
<td>313</td>
</tr>
<tr>
<td>Video games</td>
<td>394</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>97, 242, 363</td>
</tr>
<tr>
<td>Vietnam War</td>
<td>317, 381, 396</td>
</tr>
<tr>
<td>Vikings</td>
<td>366</td>
</tr>
<tr>
<td>Village life</td>
<td>311</td>
</tr>
<tr>
<td>Vindication of the Rights of Women</td>
<td>170</td>
</tr>
<tr>
<td>Violence</td>
<td>308, 396, 405</td>
</tr>
<tr>
<td>Violence in mass media</td>
<td>394</td>
</tr>
<tr>
<td>Violence, culture of</td>
<td>394</td>
</tr>
<tr>
<td>Violence, pornography of</td>
<td>394</td>
</tr>
<tr>
<td>Violence, rejection of</td>
<td>405</td>
</tr>
<tr>
<td>Virtual wealth</td>
<td>18</td>
</tr>
<tr>
<td>Visible light</td>
<td>187</td>
</tr>
<tr>
<td>Visual cortex</td>
<td>69, 71</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>11</td>
</tr>
<tr>
<td>Vocal signals</td>
<td>363</td>
</tr>
<tr>
<td>Voice and video communications</td>
<td>207</td>
</tr>
<tr>
<td>Volta, Alessandro</td>
<td>179, 181</td>
</tr>
<tr>
<td>Voltaic pile</td>
<td>181, 182</td>
</tr>
<tr>
<td>Voltaire</td>
<td>154, 156</td>
</tr>
<tr>
<td>Voltaire Foundation</td>
<td>157</td>
</tr>
<tr>
<td>Von Neumann’s automaton</td>
<td>28</td>
</tr>
<tr>
<td>Voting system, UN</td>
<td>390</td>
</tr>
<tr>
<td>Vries, Hugo de</td>
<td>33</td>
</tr>
<tr>
<td>Wächthäuser, Günther</td>
<td>37</td>
</tr>
<tr>
<td>Wade, Lizzie</td>
<td>91</td>
</tr>
<tr>
<td>Wafers</td>
<td>280</td>
</tr>
<tr>
<td>Waggle dance</td>
<td>78, 273</td>
</tr>
<tr>
<td>Wakefield, Gilbert</td>
<td>162</td>
</tr>
<tr>
<td>Wakefield, Pricilla</td>
<td>162</td>
</tr>
<tr>
<td>Walden</td>
<td>315, 316</td>
</tr>
<tr>
<td>Walgensten, T.R.</td>
<td>199</td>
</tr>
<tr>
<td>Wali, Mohan</td>
<td>106</td>
</tr>
<tr>
<td>Wallace, Robert</td>
<td>231</td>
</tr>
<tr>
<td>Wampum</td>
<td>139</td>
</tr>
<tr>
<td>War</td>
<td>235, 236, 239, 324, 392, 398</td>
</tr>
<tr>
<td>War and mass media</td>
<td>394</td>
</tr>
<tr>
<td>War as a business</td>
<td>378</td>
</tr>
<tr>
<td>War crimes</td>
<td>389</td>
</tr>
<tr>
<td>War Departments</td>
<td>385</td>
</tr>
<tr>
<td>War in primitive societies</td>
<td>363</td>
</tr>
<tr>
<td>War in Syria</td>
<td>248</td>
</tr>
<tr>
<td>War on Terror</td>
<td>379</td>
</tr>
<tr>
<td>War, poverty and injustice</td>
<td>172</td>
</tr>
<tr>
<td>War-free world</td>
<td>23, 367, 100</td>
</tr>
<tr>
<td>Wasps</td>
<td>351</td>
</tr>
<tr>
<td>Waste products</td>
<td>77, 352</td>
</tr>
<tr>
<td>Wasted potentials</td>
<td>172</td>
</tr>
<tr>
<td>Wastefulness</td>
<td>392, 398</td>
</tr>
<tr>
<td>Water</td>
<td>445</td>
</tr>
<tr>
<td>Water availability</td>
<td>104</td>
</tr>
<tr>
<td>Water erosion</td>
<td>110</td>
</tr>
<tr>
<td>Water purification facilities</td>
<td>381</td>
</tr>
</tbody>
</table>
Water resources, 107
Water supplies, 77, 101, 242, 351
Water tables falling, 100
Water, rapid run-off, 125
Water, safe, 241, 380
Watson, James, 36
Watson, Peter, 363
Watson-Crick model, 36
Watt, James, 425
Wave energy, 78
Wave equation, 285
Wave of depolarization, 66
Wave theory of light, 185
WCED, 105
Weakly-interacting systems, 432, 437
Wealth, 308
Wealth and money, 18
Weapon-making, 83
Weapons industry, 378
Well-paid work, 165
Wessel, Torsten N., 69
Western Union Telegraph Company, 197
What is Life?, 16, 27
What use is a baby?, 183
Wheat farms, 104
Wheat varieties, 101
Wheatstone, Charles, 191
White lead, 146
WHO, 375, 390
Wholesaling, 287
Wide-spread famine, 97
Wider ethic needed, 364
Wiener, Norbert, 269, 271, 275
Wild grains, 88
Wilkins, Maurice, 36
Wilkinson, Ellen, 404
Will, 237
Willingness to kill, 357
Wilson, E. Bright, 285
Wilson, Edward O., 352, 354, 357
Wind energy, 25, 78, 445
Wind erosion, 104
Windows, 207
Wittenberg, 150
Woese, Carl, 37
Wolfram, Steven, 76
Wollstonecraft, Mary, 162, 170
Women are the primary educators, 170
Women were flogged, 171
Women, education for, 115
Women, higher status for, 115
Women, participation of, 406
Woodblock printing, 144
Wooden printing press, 130
Word-processors, 288
Workhouses, 237
World Bank, 328
World Cities Report, 117
World citizenship, 392, 397
World Court, 375
World federal authority, 387, 401
World federation, 388
World free from war, 367
World Future Council, 54
World government, 387, 401
World Health Organization, 112, 380
World Resources Institute, 110
World Scientific Publishing Co., 13
World War I, 324
World War II, 328, 371, 379, 381
World Wide Web, 204
World's most famous teenager, 171
Worldwatch Institute, 107, 329, 344
Worship of power, 224
Writing, 16, 74, 78, 135, 136, 138, 144, 289, 354, 364, 365
Writing in the Americas, 139
Wurm glacial period, 83
Wynner, Edith, 388
X-ray diffraction, 36, 285
X-rays, 27, 34, 187
Yemen, famine, 244
Yemen, humanitarian crisis, 165
Yields per hectare, 105
INDEX

Young population, 115
Young, J.Z., 69, 71
Yousafzai, Malala, 170, 172
Yousafzai, Ziauddin, 170
YouTube, 211

Zagros mountains, 86
Zambia, 240
Zaragoza, Federico Mayor, 405
Zennström, Niklas, 207
Zero, 147
Zero points, 443
Zettabyte, definition, 205
Zettabytes, 205
Zuckerberg, Mark, 208
Zuse, Konrad, 269
Zworykin, Vladimir, 201