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INTRODUCTION!

I hope that this book will be of interest to students of mathematics and
other disciplines related to mathematics, such as theoretical physics and the-
oretical chemistry.

An apology

I must apologize for the fact that the level of the book is uneven. Chapters
1-8, as well as Appendices A and B, are suitable for students who would like
to learn calculus and differential equations. However, the remainder of the
book is more demanding, and is suitable for more advanced students.

Human history as cultural history

We need to reform our teaching of history so that the emphasis will be placed
on the gradual growth of human culture and knowledge, a growth to which
all nations and ethnic groups have contributed.

This book is part of a series on cultural history. Here is a list of the other
books in the series that have, until now, been completed:

Lives in Exploration
Lives in Education
Lives in Poetry
Lives in Painting
Lives in Engineering
Lives in Astronomy
Lives in Chemistry
Lives in Medicine
Lives in Ecology
Lives in Physics
Lives in Economics

IThis book makes use of chapters and appendices that I have previously written, but
most of the material in the book’s 19 chapters is new. My son, Associate Professor James
Emil Avery of the Niels Bohr Institute, University of Copenhagen, is the co-author of
Appendices D, E, F and G. I am extremely grateful to the renouned Iranian scientist
and author, Hassan Fattahi for much help in writing the chapters on Emmy Noether and
Marayam Mirzakhani



e Lives in the Peace Movement

The pdf files of these books may be freely downloaded and circulated
from the following web addresses:

https://www.johnavery.info/
http://eacpe.org/about-john-scales-avery /

https://wsimag.com/authors/716-john-scales-avery
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Chapter 1
PYTHAGORAS

1.1 The Pythagorean brotherhood

Pythagoras, a student of Anaximander, first became famous as a leader and reformer of
the Orphic religion. He was born on the island of Samos, near the Asian mainland, and
like other early Ionian philosophers, he is said to have travelled extensively in Egypt and
Mesopotamia. In 529 B.C., he left Samos for Croton, a large Greek colony in southern
Italy. When he arrived in Croton, his reputation had preceded him, and a great crowd
of people came out of the city to meet him. After Pythagoras had spoken to this crowd,
six hundred of them left their homes to join the Pythagorean brotherhood without even
saying goodbye to their families.

For a period of about twenty years, the Pythagoreans gained political power in Croton,
and they also had political influence in the other Greek colonies of the western Mediter-
ranean. However, when Pythagoras was an old man, the brotherhood which he founded
fell from power, their temples at Croton were burned, and Pythagoras himself moved to
Metapontion, another Greek city in southern Italy. Although it was never again politically
influential, the Pythagorean brotherhood survived for more than a hundred years.

The Pythagorean brotherhood admitted women on equal terms, and all its members
held their property in common. Even the scientific discoveries of the brotherhood were
considered to have been made in common by all its members.

1.2 Pythagorean harmony

The Pythagoreans practiced medicine, and also a form of psychotherapy. According to
Aristoxenius, a philosopher who studied under the Pythagoreans, “They used medicine
to purge the body, and music to purge the soul”. Music was of great importance to the
Pythagoreans, as it was also to the original followers of Dionysus and Orpheus.

Both in music and in medicine, the concept of harmony was very important. Here
Pythagoras made a remarkable discovery which united music and mathematics. He dis-
covered that the harmonics which are pleasing to the human ear can be produced by

11



12 LIVES IN MATHEMATICS

dividing a lyre string into lengths which are expressible as simple ratios of whole numbers.
For example, if we divide the string in half by clamping it at the center, (keeping the
tension constant), the pitch of its note rises by an octave. If the length is reduced to 2/3 of
the basic length, then the note is raised from the fundamental tone by the musical interval
which we call a major fifth, and so on. The discovery that harmonious musical tones could
be related by rational numberg’| made the Pythagoreans think that rational numbers are
the key to understanding nature, and this belief became a part of their religion.

Having discovered that musical harmonics are governed by mathematics, Pythagoras
fitted this discovery into the framework of Orphism. According to the Orphic religion,
the soul may be reincarnated in a succession of bodies. In a similar way (according to
Pythagoras), the “soul” of the music is the mathematical structure of its harmony, and
the “body” through which it is expressed is the gross physical instrument. Just as the soul
can be reincarnated in many bodies, the mathematical idea of the music can be expressed
through many particular instruments; and just as the soul is immortal, the idea of the
music exists eternally, although the instruments through which it is expressed may decay.

In distinguishing very clearly between mathematical ideas and their physical expression,
Pythagoras was building on the earlier work of Thales, who thought of geometry as dealing
with dimensionless points and lines of perfect straightness, rather than with real physical
objects. The teachings of Pythagoras and his followers served in turn as an inspiration for
Plato’s idealistic philosophy.

Having found mathematical harmony in the world of sound, and having searched for it in
astronomy, Pythagoras tried to find mathematical relationships in the visual world. Among
other things, he discovered the five possible regular polyhedra. However, his greatest
contribution to geometry is the famous Pythagorean theorem, which is considered to be
the most important single theorem in the whole of mathematics.

The Mesopotamians and the Egyptians knew that for many special right triangles, the
sum of the squares formed on the two shorter sides is equal to the square formed on the
long side. For example, Egyptian surveyors used a triangle with sides of lengths 3, 4 and
5 units. They knew that between the two shorter sides, a right angle is formed, and that
for this particular right triangle, the sum of the squares of the two shorter sides is equal
to the square of the longer side. Pythagoras proved that this relationship holds for every
right triangle.

In exploring the consequences of his great theorem, Pythagoras and his followers dis-
covered that the square root of 2 is an irrational number. (In other words, it cannot be
expressed as the ratio of two integers.) The discovery of irrationals upset them so much
that they abandoned algebra. They concentrated entirely on geometry, and for the next
two thousand years geometrical ideas dominated science and philosophy.

li-e-. numbers that can be expressed as a ratio of two integers



1.2. PYTHAGOREAN HARMONY 13

Figure 1.1: Pythagoras (569 B.C. - 475 B.C.) discovered that the musical har-
monics that are pleasing to the human ear can be produced by clamping a lyre
string of constant tension at points that are related by rational numbers. In

the figure the octave and the major fifth above the octave correspond to the
ratios 1/2 and 1/3.
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Figure 1.2: Pythagoras founded a brotherhood that lasted about a hundred
years and greatly influenced the development of mathematics and science. The
Pythagorean theorem, which he discovered, is considered to be the most im-
portant single theorem in mathematics.
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Figure 1.3: This figure can be used to prove the famous theorem of Pythagoras
concerning squares constructed on the sides of a right triangle (i.e. a trian-
gle where two of the sides are perpendicular to each other). It shows a right
triangle whose sides, in order of increasing length, are a, b and c. Four iden-
tical copies of this triangle, with total area 2ab, are inscribed inside a square
constructed on the long side.
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1.3 Geometry as a part of religion

The classical Greek geometers, most of whom were Pythagoreans, discovered many ge-
ometrical theorems. They believed that the contemplation of eternal geometrical truths
was a way of finding release from the suffering of human existence, and geometry was a
part of their religion. There were certain rules that had to be followed in geometrical
constructions: only a compass and a straight ruler could be used. The theorems of the
geometers of classical Greece were collected and put into a logical order by Euclid, who
lived in Alexandria, the capital city of Egypt founded by Alexander of Macedon.
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Chapter 2
EUCLID

2.1 Alexandria

Alexander of Macedon’s brief conquest of the entire known world had the effect of blending
the ancient cultures of Greece, Persia, India and Egypt, and producing a world culture.
The era associated with this culture is usually called the Hellenistic Era (323 B.C. - 146
B.C.). Although the Hellenistic culture was a mixture of all the great cultures of the
ancient world, it had a decidedly Greek flavor, and during this period the language of
educated people throughout the known world was Greek.

Nowhere was the cosmopolitan character of the Hellenistic Era more apparent than
at Alexandria in Egypt. No city in history has ever boasted a greater variety of people.
Ideally located at the crossroads of world trading routes, Alexandria became the capital of
the world - not the political capital, but the cultural and intellectual capital.

Miletus in its prime had a population of 25,000; Athens in the age of Pericles had about
100,000 people; but Alexandria was the first city in history to reach a population of over
a million!

Strangers arriving in Alexandria were impressed by the marvels of the city - machines
which sprinkled holy water automatically when a five-drachma coin was inserted, water-
driven organs, guns powered by compressed air, and even moving statues, powered by
water or steam!

2.2 The Museum and the Great Library of Alexandria

For scholars, the chief marvels of Alexandria were the great library and the Museum
established by Ptolemy I. Credit for making Alexandria the intellectual capital of the
world must go to Ptolemy I and his successors (all of whom were named Ptolemy except
the last of the line, the famous queen, Cleopatra). Realizing the importance of the schools
which had been founded by Pythagoras, Plato and Aristotle, Ptolemy I established a school
at Alexandria. This school was called the Museum, because it was dedicated to the muses.

Near to the Museum, Ptolemy built a great library for the preservation of important

19
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manuscripts. The collection of manuscripts which Aristotle had built up at the Lyceum in
Athens became the nucleus of this great library. The library at Alexandria was open to the
general public, and at its height it was said to contain 750,000 volumes. Besides preserving
important manuscripts, the library became a center for copying and distributing books.

The material which the Alexandrian scribes used for making books was papyrus, which
was relatively inexpensive. The Ptolemys were anxious that Egypt should keep its near-
monopoly on book production, and they refused to permit the export of papyrus. Perga-
mum, a rival Hellenistic city in Asia Minor, also boasted a library, second in size only to
the great library at Alexandria. The scribes at Pergamum, unable to obtain papyrus from
Egypt, tried to improve the preparation of the skins traditionally used for writing in Asia.
The resulting material was called membranum pergamentum, and in English, this name
has become “parchment”.

2.3 Euclid is called to the Museum

One of the first scholars to be called to the newly-established Museum was Euclid. He
was born in 325 B.C. and was probably educated at Plato’s Academy in Athens. While
in Alexandria, Euclid wrote the most successful text-book of all time, the Elements of
Geometry. The theorems in this splendid book were not, for the most part, originated by
Euclid. They were the work of many generations of classical Greek geometers. Fuclid’s
contribution was to take the theorems of the classical period and to arrange them in an
order which is so logical and elegant that it almost defies improvement. One of Euclid’s
great merits is that he reduces the number of axioms to a minimum, and he does not
conceal the dubiousness of certain axioms.

Euclid’s axiom concerning parallel lines has an interesting history: This axiom states
that “Through a given point not on a given line, one and only one line can be drawn
parallel to a given line”. At first, mathematicians doubted that it was necessary to have
such an axiom. They suspected that it could be proved by means of Euclid’s other more
simple axioms. After much thought, however, they decided that the axiom is indeed one of
the necessary foundations of classical geometry. They then began to wonder whether there
could be another kind of geometry where the postulate concerning parallels is discarded.
These ideas were developed in the 18th and 19th centuries by Lobachevsky, Bolyai, Gauss
and Riemann, and in the 20th century by Levi-Civita. In 1915, the mathematical theory of
non-Euclidean geometry finally became the basis for Einstein’s general theory of relativity.

Besides classical geometry, Euclid’s book also contains some topics in number theory.
For example, he discusses irrational numbers, and he proves that the number of primes is
infinite. He also discusses geometrical optics.

Euclid’s Elements has gone through more than 1,000 editions since the invention of
printing - more than any other book, with the exception of the Bible. Its influence has
been immense. For more than two thousand years, Euclid’s Elements of Geometry has
served as a model for rational thought.
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Figure 2.1: Euclid, detail from “The School of Athens”, a painting by Raphael.
It is not proven that this is Euclid. Some references point this person out as
Archimedes.

Figure 2.2: One of the oldest surviving fragments of Euclid’s Elements, found at
Oxyrhynchus and dated to circa AD 100 (P. Oxy. 29). The diagram accompa-
nies Book II, Proposition 5.
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2.4 The eight books of Euclid’s FElements

Here are the titles of the eight books of Euclid’s Elements of Geometry]

1.

W

Book I, On basic plane geometry
Book II, On geometric algebra
Book III, On circles and angles

Book IV, On construction of regular polygons

. Book V, On Eudoxes’ of abstract theory of ratio proportions, abstract

algebra

. Book VI, On similar figures and geometric proportions

Book VII, On basic number theory

. Book VIII, On continurs proportions (geometric progressions) in number

theory

2.5 Euclid’s Book I, On basic plane geometry

Definitions

1. A point is that which has no part.

2. A line is breadthless length.

3. The ends of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6. The edges of a surface are lines.

7. A plane surface is a surface which lies evenly with the straight lines on
itself.

8. A plane angle is the inclination to one another of two lines in a plane
which meet one another and do not lie in a straight line.

9. And when the lines containing the angle are straight, the angle is called

rectilinear.

thttps://mathcs.clarku.edu/ djoyce/elements/trip.html



2.5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

EUCLID’S BOOK I, ON BASIC PLANE GEOMETRY 23

When a straight line standing on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight
line standing on the other is called a perpendicular to that on which it
stands.

An obtuse angle is an angle greater than a right angle.

An acute angle is an angle less than a right angle.

A boundary is that which is an extremity of anything.

A figure is that which is contained by any boundary or boundaries.

A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure
equal one another.

And the point is called the center of the circle.

A diameter of the circle is any straight line drawn through the center and
terminated in both directions by the circumference of the circle, and such
a straight line also bisects the circle.

A semicircle is the figure contained by the diameter and the circumference
cut off by it. And the center of the semicircle is the same as that of the
circle.

Rectilinear figures are those which are contained by straight lines, trilat-
eral figures being those contained by three, quadrilateral those contained
by four, and multilateral those contained by more than four straight lines.

Of trilateral figures, an equilateral triangle is that which has its three sides
equal, an isosceles triangle that which has two of its sides alone equal, and
a scalene triangle that which has its three sides unequal.

Further, of trilateral figures, a right-angled triangle is that which has a
right angle, an obtuse-angled triangle that which has an obtuse angle, and
an acute-angled triangle that which has its three angles acute.

Of quadrilateral figures, a square is that which is both equilateral and
right-angled; an oblong that which is right-angled but not equilateral; a
rhombus that which is equilateral but not right-angled; and a rhomboid
that which has its opposite sides and angles equal to one another but is
neither equilateral nor right-angled. And let quadrilaterals other than
these be called trapezia.
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Figure 2.3: Circumscribed circle, C, and circumcenter, O, of a cyclic polygon, P.

23. Parallel straight lines are straight lines which, being in the same plane and
being produced indefinitely in both directions, do not meet one another
in either direction.
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Figure 2.4: Construction of the circumcircle and the circumcenter.

&

Figure 2.5: The circumcenter of an acute triangle is inside the triangle.
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Figure 2.6: The circumcenter of a right triangle is at the midpoint of the hy-
potenuse.

Figure 2.7: The circumcenter of an obtuse triangle is outside the triangle.
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Figure 2.8: A diagram of the angles in a cirumcircle of a triangle, showing the
alternate angle theorem.

T~

Figure 2.9: Cyclic quadrilaterals.
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Figure 2.10: A sequence of circumscribed polygons and circles.

Figure 2.11: Straightedge and compass, the only tools that classical geometers
were allowed to use.
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Figure 2.12: The intercept theorem.

Figure 2.13: Another form of the intercept theorem.
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Figure 2.14: Equilateral triangle with angles.

Figure 2.15: Square with angles.
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Figure 2.16: Regular pentagon with angles.

Figure 2.17: Regular hexagon with angles.

31
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Figure 2.18: Regular heptagon with angles.

Figure 2.19: Regular octagon with angles.
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Figure 2.20: Regular nonagon with angles.
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Chapter 3

ARCHIMEDES

3.1 Heiron’s crown

Archimedes was the greatest mathematician of the Hellenistic Era. In fact, together with
Newton and Gauss, he is considered to be one of the greatest mathematicians of all time.

Archimedes was born in Syracuse in Sicily in 287 B.C.. He was the son of an astronomer,
and he was also a close relative of Hieron II, the king of Syracuse. Like most scientists
of his time, Archimedes was educated at the Museum in Alexandria, but unlike most, he
did not stay in Alexandria. He returned to Syracuse, probably because of his kinship with
Hieron II. Being a wealthy aristocrat, Archimedes had no need for the patronage of the
Ptolemys.

Many stories are told about Archimedes: For example, he is supposed to have been so
absent-minded that he often could not remember whether he had eaten. Another (perhaps
apocryphal) story has to do with the discovery of “Archimedes Principle” in hydrostatics.
According to the story, Hieron had purchased a golden crown of complex shape, and he
had begun to suspect that the goldsmith had cheated him by mixing silver with gold. Since
Hieron knew that his bright relative, Archimedes, was an expert in calculating the volumes
of complex shapes, he took the crown to Archimedes and asked him to determine whether
it was made of pure gold (by calculating its specific gravity). However, the crown was too
irregularly shaped, and even Archimedes could not calculate its volume.

While he was sitting in his bath worrying about this problem, Archimedes reflected on
the fact that his body seemed less heavy when it was in the water. Suddenly, in a flash of
intuition, he saw that the amount by which his weight was reduced was equal to the weight
of the displaced water. He leaped out of his bath shouting “Fureka! Eureka!” (“I've found
it!”) and ran stark naked through the streets of Syracuse to the palace of Hieron to tell
him of the discovery.

The story of Hieron’s crown illustrates the difference between the Hellenistic period
and the classical period. In the classical period, geometry was a branch of religion and
philosophy. For aesthetic reasons, the tools which a classical geometer was allowed too use
were restricted to a compass and a straight-edge. Within these restrictions, many problems

35
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Figure 3.1: A statue of Archimedes (287 BC - 212 BC. He invented both differential
and integral calculus almost two millennia before Newton, but he was unable to teach his
methods to his contemporaries.
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are insoluble. For example, within the restrictions of classical geometry, it is impossible to
solve the problem of trisecting an angle. In the story of Hieron’s crown, Archimedes breaks
free from the classical restrictions and shows himself willing to use every conceivable means
to achieve his purpose.

One is reminded of Alexander of Macedon who, when confronted with the Gordian
Knot, is supposed to have drawn his sword and cut the knot in two! In a book On Method,
which he sent to his friend Eratosthenes, Archimedes even confesses to cutting out figures
from paper and weighing them as a means of obtaining intuition about areas and centers
of gravity. Of course, having done this, he then derived the areas and centers of gravity by
more rigorous methods.

3.2 Invention of differential and integral calculus

One of Archimedes’ great contributions to mathematics was his development of methods
for finding the areas of plane figures bounded by curves, as well as methods for finding the
areas and volumes of solid figures bounded by curved surfaces. To do this, he employed
the “doctrine of limits”. For example, to find the area of a circle, he began by inscribing
a square inside the circle. The area of the square was a first approximation to the area of
the circle. Next, he inscribed a regular octagon and calculated its area, which was a closer
approximation to the area of the circle. This was followed by a figure with 16 sides, and
then 32 sides, and so on. Each increase in the number of sides brought him closer to the
true area of the circle.

Archimedes also circumscribed polygons about the circle, and thus he obtained an
upper limit for the area, as well as a lower limit. The true area was trapped between the
two limits. In this way, Archimedes showed that the value of pi lies between 223/71 and
220/70.

Sometimes Archimedes’ use of the doctrine of limits led to exact results. For example,
he was able to show that the ratio between the volume of a sphere inscribed in a cylinder
to the volume of the cylinder is 2/3, and that the area of the sphere is 2/3 the area of the
cylinder. He was so pleased with this result that he asked that a sphere and a cylinder be
engraved on his tomb, together with the ratio, 2/3.

Another problem which Archimedes was able to solve exactly was the problem of calcu-
lating the area of a plane figure bounded by a parabola. In his book On method, Archimedes
says that it was his habit to begin working on a problem by thinking of a plane figure as
being composed of a very large number of narrow strips, or, in the case of a solid, he
thought of it as being built up from a very large number of slices. This is exactly the
approach which is used in integral calculus .

Archimedes must really be credited with the invention of both differential and integral
calculus. He used what amounts to integral calculus to find the volumes and areas not only
of spheres, cylinders and cones, but also of spherical segments, spheroids, hyperboloids and
paraboloids of revolution; and his method for constructing tangents anticipates differential
calculus.
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Figure 3.2: This figure illustrates one of the ways in which Archimedes used his
doctrine of limits to calculate the area of a circle. He first inscribed a square
within the circle, then an octagon, then a figure with 16 sides, and so on. As
the number of sides became very large, the area of these figures (which he
could calculate) approached the true area of the circle.
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Figure 3.3: Here we see another way in which Archimedes used his doctrine of
limits. He could calculate the areas of figures bounded by curves by dividing
up these areas into a large number of narrow strips. As the number of strips
became very large, their total area approached the true area of the figure.
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Unfortunately, Archimedes was unable to transmit his invention of the calculus to the
other mathematicians of his time. The difficulty was that there was not yet any such thing
as algebraic geometry. The Pythagoreans had never recovered from the shock of discovering
irrational numbers, and they had therefore abandoned algebra in favor of geometry. The
union of algebra and geometry, and the development of a calculus which even non-geniuses
could use, had to wait for Descartes, Fermat, Newton and Leibniz.

3.3 Statics and hydrostatics

Archimedes was the father of statics (as well as of hydrostatics). He calculated the centers
of gravity of many kinds of figures, and he made a systematic, quantitative study of the
properties of levers. He is supposed to have said: “Give me a place to stand on, and I can
move the world!” This brings us to another of the stories about Archimedes: According to
the story, Hieron was a bit sceptical, and he challenged Archimedes to prove his statement
by moving something rather enormous, although not necessarily as large as the world.
Archimedes good-humoredly accepted the challenge, hooked up a system of pulleys to a
fully-loaded ship in the harbor, seated himself comfortably, and without excessive effort he
singlehandedly pulled the ship out of the water and onto the shore.

Archimedes had a very compact notation for expressing large numbers. Essentially
his system was the same as our own exponential notation, and it allowed him to handle
very large numbers with great ease. In a curious little book called The Sand Reckoner, he
used this notation to calculate the number of grains of sand which would be needed to fill
the universe. (Of course, he had to make a crude guess about the size of the universe.)
Archimedes wrote this little book to clarify the distinction between things which are very
large but finite and things which are infinite. He wanted to show that nothing finite - not
even the number of grains of sand needed to fill the universe - is too large to be measured
and expressed in numbers. The Sand Reckoner is important as an historical document,
because in it Archimedes incidentally mentions the revolutionary heliocentric model of
Aristarchus, which does not occur in the one surviving book by Aristarchus himself.

In addition to his mathematical genius, Archimedes showed a superb mechanical intu-
ition, similar to that of Leonardo da Vinci. Among his inventions are a planetarium and
an elegant pump in the form of a helical tube. This type of pump is called the “screw of
Archimedes”, and it is still in use in Egypt. The helix is held at an angle to the surface
of the water, with its lower end half-immersed. When the helical tube is rotated about its
long axis, the water is forced to flow uphill!
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Figure 3.4: Archimedes’ screw, the helical pump which he invented, is still in
use today.

3.4 Don’t disturb my circles!

His humanity and his towering intellect brought Archimedes universal respect, both during
his own lifetime and ever since. However, he was not allowed to live out his life in peace;
and the story of his death is both dramatic and symbolic:

In c. 212 B.C., Syracuse was attacked by a Roman fleet. The city would have fallen
quickly if Archimedes had not put his mind to work to think of ways to defend his coun-
trymen. He devised systems of mirrors which focused the sun’s rays on the attacking ships
and set them on fire, and cranes which plucked the ships from the water and overturned
them.

In the end, the Romans hardly dared to approach the walls of Syracuse. However, after
several years of siege, the city fell to a surprise attack. Roman soldiers rushed through the
streets, looting, burning and killing. One of them found Archimedes seated calmly in front
of diagrams sketched in the sand, working on a mathematical problem. When the soldier
ordered him to come along, the great mathematician is supposed to have looked up from
his work and replied: “Don’t disturb my circles.” The soldier immediately killed him.

The death of Archimedes and the destruction of the Hellenistic civilization illustrate the
fragility of civilization. It was only a short step from Archimedes to Galileo and Newton;
only a short step from Eratosthenes to Columbus, from Aristarchus to Copernicus, from
Aristotle to Darwin or from Hippocrates to Pasteur. These steps in the cultural evolution of
mankind had to wait nearly two thousand years, because the brilliant Hellenistic civilization
was destroyed, and Europe was plunged back into the dark ages.
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Figure 3.5: Machines used by Archimedes to defend Syracuse against the Roman
attack.

Figure 3.6: “The death of Archimedes”, a painting by Thomas Degeorge.
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Figure 3.7: The Great Library of Alexandria was partially burned during an
attack by Julius Caesar in 48 BC. Much of the library survived, but during the
Roman period which followed, it declined through neglect. With the destruc-
tion of the advanced Hellenistic civilization, much knowledge was lost. Had
it survived, the history of human culture and science would have been very
different.
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Chapter 4

AL-KHWARIZMI

Wikipedia says of him:

“Muhammad ibn Musa al-Khwarizmi (c.780-c.850), Arabized as al-Khwarizmi
and formerly Latinized as Algorithmi, was a Persian polymath who produced
vastly influential works in mathematics, astronomy, and geography. Around
820 CE he was appointed as the astronomer and head of the library of the
House of Wisdom in Baghdad.

“Al-Khwarizmi’s popularizing treatise on algebra (The Compendious Book
on Calculation by Completion and Balancing, c. 813-833 CE) presented the
first systematic solution of linear and quadratic equations. One of his princi-
pal achievements in algebra was his demonstration of how to solve quadratic
equations by completing the square, for which he provided geometric justifica-
tions. Because he was the first to treat algebra as an independent discipline
and introduced the methods of ‘reduction’ and ‘balancing’ (the transposition
of subtracted terms to the other side of an equation, that is, the cancellation
of like terms on opposite sides of the equation), he has been described as the
father or founder of algebra. The term algebra itself comes from the title of his
book (the word al-jabr meaning ‘completion’ or ‘rejoining’). His name gave rise
to the terms algorism and algorithm, as well as Spanish and Portuguese terms
algoritmo, and Spanish guarismo and Portuguese algarismo meaning ‘digit’.

“In the 12th century, Latin translations of his textbook on arithmetic (Al-
gorithmo de Numero Indorum) which codified the various Indian numerals,
introduced the decimal positional number system to the Western world. The
Compendious Book on Calculation by Completion and Balancing, translated
into Latin by Robert of Chester in 1145, was used until the sixteenth century
as the principal mathematical text-book of European universities.

“In addition to his best-known works, he revised Ptolemy’s Geography, list-
ing the longitudes and latitudes of various cities and localities. He further
produced a set of astronomical tables and wrote about calendaric works, as
well as the astrolabe and the sundial. He also made important contributions
to trigonometry, producing accurate sine and cosine tables...”

45
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Figure 4.1: Statue of al-Khwarizmi in front of the Faculty of Mathematics of
Amirkabir University of Technology in Tehran. Iran.
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Figure 4.2: A stamp issued September 6, 1983 in the Soviet Union, commemo-

rating al-Khwarizmi’s (approximate) 1200th birthday.
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Figure 4.3: Statue of Al-Khwarizmi in Uzbekistan.
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Figure 4.4: This map shows Khwarazm, the place of Al-Khwarizmi’s birth. It
lies to the east of the Caspian Sea.
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(D

Figure 4.5: Scholars at the library of the House of Wisdom in Baghdad. Illus-
tration by Yahya al-Wasiti, 1237.



4.1. AL-KHWARIZMI'S LIFE o1

4.1 Al-Khwarizmi’s life

Muhammad ibn Musa al-Khwarizmi (c.780-¢.850) was born in the Persian province of
Khwarazm, shown on the map in Figure 4.4. During his lifetime, Muslim conquests made
Baghdad the most important intellectual center, and scholars from as far away as China
were attracted to the Arab capitol. Al-Khwarizmi also traveled to Baghdad, where he
worked at the “House of Wisdom”, which had been established by Caliph al-Ma’mun. Here
he was able to study both Greek and Sanskrit manuscripts on science and mathematics,
and to carry out his highly influential original work.

4.2 The father of algebra

Al-Khwarizmi has been called “the father of algebra”. J. J. O’Connor and E. F. Robertson
wrote in the MacTutor History of Mathematics archive:

“Perhaps one of the most significant advances made by Arabic mathematics
began at this time with the work of al-Khwarizmi, namely the beginnings of
algebra. It is important to understand just how significant this new idea was. It
was a revolutionary move away from the Greek concept of mathematics which
was essentially geometry. Algebra was a unifying theory which allowed rational
numbers, irrational numbers, geometrical magnitudes, etc., to all be treated
as ‘algebraic objects’. It gave mathematics a whole new development path
so much broader in concept to that which had existed before, and provided a
vehicle for future development of the subject. Another important aspect of the
introduction of algebraic ideas was that it allowed mathematics to be applied
to itself in a way which had not happened before.”

In modern terms, one of the methods introduced by al-Khwarizmi corresponds to mov-
ing terms in an equation freely to the right or left of the equal sign in an equation, with
a change of sign. He also introduced a systematic method for solving quadratic equations.
However, modern notation had not been invented at the time, and al-Khwarizmi described
all of the operations for solving a problem in words, even using words rather than symbols
for numbers. He introduced the decimal positional number system to the west. When we
speak of “Arabic numerals”, it is because of his work. However, positional number systems
had long been in use, both in Mesopotamia and in India.

Wikipedia states that:

“Al-Khwarizmi’s work on arithmetic was responsible for introducing the
Arabic numerals, based on the Hindu-Arabic numeral system developed in In-
dian mathematics, to the Western world. The term ‘algorithm’ is derived from
the algorism, the technique of performing arithmetic with Hindu-Arabic nu-
merals developed by al-Khwarizmi. Both ‘algorithm’ and ‘algorism’ are derived
from the Latinized forms of al-Khwarizmi’s name, Algoritmi and Algorismi, re-
spectively.”
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In 1145. Al-Khwarizmi’s book Compendious Book on Calculation by Completion and
Balancing, was translated into Latin by Robert of Chester, and for many centuries it was
the principle book on mathematics used at European universities.

4.3 Contributions to astronomy

Al-Khwarizmi’s book on astronomy, Zij al-Sindhind, consisted of approximately 37 chapters
on calendars and calculations. and 116 tables. The tables give the values of trigonometric
functions and calculated locations of the sun, moon and the five planets that were known
at the time. The fact that al-Khwarizmi performed original calculations of these positions
marked a turning point in Islamic astronomy. The original manuscript has been lost, but
copies of a Latin translation, thought to be by Adalard of Bath, exist in four European
libraries, in Chartres, Paris, Madrid and Oxford.

4.4 Contributions to geography
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Chapter 5

OMAR KHAYYAM

5.1 Omar’s family and education

Omar Khayyam (1048-1131) was born in the city of Nishapur, which is located in the
northern part of Persia, or present-day Iran. His father was a wealthy physician, who
paid a tutor to give his son Omar an excellent education. The tutor, Bahmanyar bin
Marzban, was a Zoroastrian, and had been a student of the great physician, scientist,
and philosopher Avicenna. Thus Omar Khayyam received an unusually good education in
science, philosophy and mathematics.

In 1066, Omar’s father died, and his tutor also died soon afterwards. Two years later, in
1068, Omar joined a caravan for a three-month journey to Samarkand, then a great center
of learning in Uzbekistan. He arrived there at the age of 20, and introduced himself to the
governor of the city, Abe Tapir, an old friend of his father. Tahir soon recognized Omar’s
extraordinary mathematical ability and have him a job in his office. Soon afterwards,
Omar was promoted to a job in the king’s treasury.

Two years later, in 1070, Omar Khayyam published one of his greatest mathemati-
cal works, Treatise on Demonstration of Problems of Algebra and Balancing. This book
contains a discussion of cubic equations, and it shows that they may have more than one
root. Like other Islamic mathematicians, Omar did not consider negative roots. The book
established Omar’s reputation as a mathematician, and his fame spread throughout Persia,

5.2 Invited to Isfahan

In 1073, the young but already famous Omar received an invitation to come to Persia’s
capitol city, Isfahan. The invitation came from the two most powerful men of the Seljuk
Empire, Malik Shah, Sultan of the empire, and Nizam al-Mulk, his vizier. Omar’s job
was to produce a calendar that would be valid over a long period, without the need for
adjustment. He was given an enormous salary, and the means to hire many assistants. With
these ample means, he recruited many talented scientists and founded an astronomical

95



o6 LIVES IN MATHEMATICS

observatory.
Omar measured the length of the tropical year with extraordinary accuracy. His value,
365.2422 days. is extremely close to the currently-accepted value.

5.3 Linking algebra and geometry

The Pythagoreans had abandoned algebra when they discovered irrational numbers, such
as V/2, since their religion was based on the idea rationality both in mathematics and in
the social sphere. Ancient Greek mathematics concentrated on geometry.

The union of geometry and algebra was pioneered in the western world by Pierre de
Fermat and René Descartes. However, both Fermat and Descartes were preceded in the
Islamic world by Omar Khayyam, whose mathematical work united algebra and geometry.

5.4 Omar Khayyam anticipates non-Euclidean geom-
etry

Throughout history, many authors have doubted that Euclid’s fifth postulate concerning
parallel lines was necessary. Many, including Khayyam, have tried to prove the fifth pos-
tulate from the first four. Omar’s attempt is particularly interesting because in it we can
see the first glimmerings on non-Euclidean geometry, later developed in Europe by Gauss
and Riemann. One of Omar’s diagrams is shown in Figure 5.6.

5.5 The Rubaiyat

translated by Edward Fitzgerald. Only the first few verses are shown here

Awake! for Morning in the Bowl of Night

Has flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the Fast has caught

The Sultan’s Turret in a Noose of Light.

Dreaming when Dawn’s Left Hand was in the Sky
I heard a voice within the Tavern cry,

“Awake, my Little ones, and fill the Cup

Before Life’s Liquor in its Cup be dry.”

And, as the Cock crew, those who stood before
The Tavern shouted — “Open then the Door!
You know how little while we have to stay,
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And, once departed, may return no more.”

Now the New Year reviving old Desires,
The thoughtful Soul to Solitude retires,
Where the White Hand of Moses on the Bough

Puts out, and Jesus from the Ground suspires.

Iram indeed is gone with all its Rose,

And Jamshyd’s Sev’n-ring’d Cup where no one Knows;

But still the Vine her ancient ruby yields,
And still a Garden by the Water blows.

And David’s Lips are lock’t; but in divine
High piping Pehlevi, with “Wine! Wine! Wine!
Red Wine!” — the Nightingale cries to the Rose
That yellow Cheek of hers to incarnadine.

Come, fill the Cup, and in the Fire of Spring
The Winter Garment of Repentance fling:
The Bird of Time has but a little way

To fly — and Lo! the Bird is on the Wing.

Whether at Naishapur or Babylon,

Whether the Cup with sweet or bitter run,
The Wine of Life keeps oozing drop by drop,
The Leaves of Life kep falling one by one.

Morning a thousand Roses brings, you say;

Yes, but where leaves the Rose of Yesterday?

And this first Summer month that brings the Rose
Shall take Jamshyd and Kaikobad away.

But come with old Khayyam, and leave the Lot
Of Kaikobad and Kaikhosru forgot:

Let Rustum lay about him as he will,

Or Hatim Tai cry Supper — heed them not.

With me along the strip of Herbage strown
That just divides the desert from the sown,
Where name of Slave and Sultan is forgot —
And Peace is Mahmud on his Golden Throne!

A Book of Verses underneath the Bough,
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A Jug of Wine, a Loaf of Bread, — and Thou
Beside me singing in the Wilderness —
Oh, Wilderness were Paradise enow!

Some for the Glories of This World; and some
Sigh for the Prophet’s Paradise to come;

Ah, take the Cash, and let the Promise go,
Nor heed the rumble of a distant Drum!

Were it not Folly, Spider-like to spin

The Thread of present Life away to win —
What? for ourselves, who know not if we shall
Breathe out the very Breath we now breathe in!

Look to the Rose that blows about us — “Lo,
Laughing,” she says, “into the World I blow:
At once the silken Tassel of my Purse

Tear, and its Treasure on the Garden throw.”

The Worldly Hope men set their Hearts upon
Turns Ashes — or it prospers; and anon,

Like Snow upon the Desert’s dusty Face
Lighting a little Hour or two — is gone.

And those who husbanded the Golden Grain,
And those who flung it to the Winds like Rain,
Alike to no such aureate Farth are turn’d

As, buried once, Men want dug up again.

Think, in this batter’d Caravanserai

Whose Doorways are alternate Night and Day,
How Sultan after Sultan with his Pomp

Abode his Hour or two and went his way.

They say the Lion and the Lizard keep

The Courts where Jamshyd gloried and drank deep:

And Bahram, that great Hunter — the Wild Ass

Stamps o’er his Head, but cannot break his Sleep.

I sometimes think that never blows so red
The Rose as where some buried Caesar bled;
That every Hyacinth the Garden wears
Dropt in its Lap from some once lovely Head.
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And this delightful Herb whose tender Green
Fledges the River’s Lip on which we lean —
Ah, lean upon it lightly! for who knows
From what once lovely Lip it springs unseen!

Ah, my Beloved, fill the Cup that clears
To-day of past Regrets and future Fears —
To-morrow? — Why, To-morrow I may be
Myself with Yesterday’s Sev’'n Thousand Years.

Lo! some we loved, the loveliest and best

That Time and Fate of all their Vintage prest,
Have drunk their Cup a Round or two before,
And one by one crept silently to Rest.

And we, that now make merry in the Room

They left, and Summer dresses in new Bloom,
Ourselves must we beneath the Couch of Earth
Descend, ourselves to make a Couch — for whom?

Ah, make the most of what we may yet spend,

Before we too into the Dust descend;

Dust into Dust, and under Dust, to lie;

Sans Wine, sans Song, sans Singer, and — sans End!

Alike for those who for To-day prepare,

And those that after some To-morrow stare,

A Muezzin from the Tower of Darkness cries
“Fools! Your Reward is neither Here nor There!”

Why, all the Saints and Sages who discuss’d

Of the Two Worlds so learnedly, are thrust

Like foolish Prophets forth; their Works to Scorn
Are scatter’d, and their Mouths are stopt with Dust.

Oh, come with old Khayyam, and leave the Wise
To talk; one thing is certain, that Life flies;

One thing is certain, and the Rest is Lies;

The Flower that once has blown forever dies.

Muyself when young did eagerly frequent
Doctor and Saint, and heard great Argument
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About it and about; but evermore
Came out by the same Door as in I went.

With them the Seed of Wisdom did I sow,
And with my own hand labour’d it to grow:
And this was all the Harvest that I reap’d —
“I came like Water and like Wind I go.”

Into this Universe, and Why not knowing,
Nor Whence, like Water willy-nilly flowing:
And out of it, as Wind along the Waste,

I know not Whither, willy-nilly blowing.

Up from Farth’s Centre through the Seventh Gate
I rose, and on the Throne of Saturn sate,

And many Knots unravel’d by the Road;

But not the Master-Knot of Human Fate.

There was the Door to which I found no Key:
There was the Veil through which I could not see:
Some little talk awhile of Me and Thee

There was — and then no more of Thee and Me.
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Figure 5.1: Omar Khayyam was a Persian mathematician, astronomer and poet.
His work in mathematics was notable for his solutions to cubic equations,
his understanding of the binomial theorem, and his discussions of the axioms
of Euclid. As an astronomer, he directed the building of an observatory to
reform the Persian calendar. Omar Khayyam’s long poem, Rubaiyat, is known
to western readers through Edward Fitzgerald’s brilliant translation.
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Figure 5.2: Omar Khayyam.
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Figure 5.3: “Cubic equation and intersection of conic sections” the first page of

a two-chaptered manuscript kept in Tehran University.
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Figure 5.4: Omar Khayyam’s construction of a solution to the cubic equation
23 +2x = 22°+2. The intersection point produced by the circle and the hyperbola
determine the desired segment.
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Figure 5.5: In the language of modern mathematics, Khayyam’s solution to the
equation z3 + a’z = b features a parabola of equation 2? = ay, a circle with
diameter b/a?, and a vertical line through the intersection point. The solution
is given by the distance on the z-axis between the origin and the (red) vertical
line. Image by Pieter Kuiper.
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Figure 5.6: In Omar Khayyam’s discussion of Euclid’s postulate concerning par-
allel lines, we see the first glimmering of non-Euclidean geometry. The figure
shows one of Khayyam’s diagrams. Lines which are locally parallel at one point
meet at another point when they are drawn on curved surfaces.
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Figure 5.7: Statue of Omar Khayyam in Bucharest.
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Figure 5.8: “At the Tomb of Omar Khayyam” by Jay Hambidge (1911).
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Figure 5.9: The statue of Khayyam in United Nations Office in Vienna as a part
of Persian Scholars Pavilion donated by Iran.
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Chapter 6

RENE DESCARTES

6.1 Uniting geometry and algebra

Until the night of November 10, 1619, algebra and geometry were separate disciplines. On
that autumn evening, the troops of the Elector of Bavaria were celebrating the Feast of
Saint Martin at the village of Neuberg in Bohemia. With them was a young Frenchman
named René Descartes (1596-1659), who had enlisted in the army of the Elector in order
to escape from Parisian society. During that night, Descartes had a series of dreams which,
as he said later, filled him with enthusiasm, converted him to a life of philosophy, and put
him in possession of a wonderful key with which to unlock the secrets of nature.

The program of natural philosophy on which Descartes embarked as a result of his
dreams led him to the discovery of analytic geometry, the combination of algebra and
geometry. Essentially, Descartes” method amounted to labeling each point in a plane with
two numbers, x and y. These numbers represented the distance between the point and two
perpendicular fixed lines, (the coordinate axes). Then every algebraic equation relating x
and y generated a curve in the plane.

Descartes realized the power of using algebra to generate and study geometrical fig-
ures; and he developed his method in an important book, which was among the books that
Newton studied at Cambridge. Descartes’ pioneering work in analytic geometry paved the
way for the invention of differential and integral calculus by Fermat, Newton and Leibniz.
(Besides taking some steps towards the invention of calculus, the great French mathemati-
cian, Pierre de Fermat (1601-1665), also discovered analytic geometry independently, but
he did not publish this work.)

Analytic geometry made it possible to treat with ease the elliptical orbits which Kepler
had introduced into astronomy, as well as the parabolic trajectories which Galileo had
calculated for projectiles.

Descartes also worked on a theory which explained planetary motion by means of
“vortices”; but this theory was by no means so successful as his analytic geometry, and
eventually it had to be abandoned.
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Figure 6.1: Portrait of René Descartes, after Frans Hals.
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Figure 6.2: Queen Christina (at the table on the right) in discussion with French
philosopher René Descartes. (Romanticized painting by Nils Forsberg (1842-
1934), after Pierre Louis Dumesnil.
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Figure 6.3: Queen Christina of Sweden in a portrait by Sébastien Bourdon.
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Figure 6.4: This figure shows the parabola f = t*> plotted using the method
of Descartes. Values of f are measured on the vertical axis, while values of
t are measured along the horizontal axis. The curve tells us the value of f
corresponding to every value of t. For example, when t = 1, f = 1, while
when t = 2, f = 4. If we want to know the value of f = t? corresponding to a
particular value of t, we go vertically up to the curve from the horizontal axis,
and then horizontally left from the curve to the vertical axis.
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Figure 6.5: The slope of a curve at a given point t is defined as the limit of the
ratio df/dt, when dt becomes infinitesimally small.
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Figure 6.6: This figure shows the trigonometric functions f = sin(t) and f =

cos(t) plotted as functions of t using the method of Descartes. The functions
were first tabulated by the Egyptian astronomer Hipparchus.

6.2 Descartes’ work on Optics, physiology and philos-
ophy

Descartes did important work in optics, physiology and philosophy. In philosophy, he is
the author of the famous phrase “Cogito, ergo sum?”, “I think; therefore I exist”, which is
the starting point for his theory of knowledge. He resolved to doubt everything which it
was possible to doubt; and finally he was reduced to knowledge of his own existence as the
only real certainty.

René Descartes died tragically through the combination of two evils which he had
always tried to avoid: cold weather and early rising. Even as a student, he spent a large
portion of his time in bed. He was able to indulge in this taste for a womblike existence
because his father had left him some estates in Brittany. Descartes sold these estates and
invested the money, from which he obtained an ample income. He never married, and he
succeeded in avoiding responsibilities of every kind.

6.3 Descartes’ tragic death

Descartes might have been able to live happily in this way to a ripe old age if only he
had been able to resist a flattering invitation sent to him by Queen Christina of Sweden.
Christina, the intellectual and strong-willed daughter of King Gustav Adolf, was deter-
mined to bring culture to Sweden, much to the disgust of the Swedish noblemen, who
considered that money from the royal treasury ought to be spent exclusively on guns and
fortifications. Unfortunately for Descartes, he had become so famous that Queen Christina
wished to take lessons in philosophy from him; and she sent a warship to fetch him from
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Holland, where he was staying. Descartes, unable to resist this flattering attention from a
royal patron, left his sanctuary in Holland and sailed to the frozen north.

The only time Christina could spare for her lessons was at five o’clock in the morning,
three times a week. Poor Descartes was forced to get up in the utter darkness of the bitterly
cold Swedish winter nights to give Christina her lessons in a draughty castle library; but
his strength was by no means equal to that of the queen, and before the winter was over
he had died of pneumonia.

Suggestions for further reading

1.

= o

11.
12.

13.

14.
15.

16.
17.

18.

19.

20.
21.

Phillip Bricker and R.I.G. Hughs, Philosophical Perspectives on Newtonian Science,
M.L.T. Press, Cambridge, Mass., (1990).

. Zev Bechler, Newton’s Physics and the Conceptual Structure of the Scientific Revo-

lution, Kluwer, Dordrecht, (1991).

Zev Bechler, Contemporary Newtonian Research, Reidel, Dordrecht, (1982).

I. Bernard Cohen, The Newtonian Revolution, Cambridge University Press, (1980).
B.J.T. Dobbs, The Janus Face of Genius; The Role of Alchemy in Newton’s Thought,
Cambridge University Press, (1991).

Paul B. Scheurer and G. Debrock, Newton’s Scientific and Philosophical Legacy,
Kluwer, Dordrecht, (1988).

A. Rupert Hall, Isaac Newton, Adventurer in Thought, Blackwell, Oxford, (1992).
Frank Durham and Robert D. Purrington, Some Truer Method; Reflections on the
Heritage of Newton, Columbia University Press, New York, (1990).

John Fauvel, Let Newton Be, Oxford University Press, (1989).

. René Taton and Curtis Wilson, Planetary Astronomy from the Renaissance to the

Rise of Astrophysics, Cambridge University Press, (1989).

Brian Vickers, English Science, Bacon to Newton, Cambridge University Press, (1989).
John G. Burke, The Uses of Science in the Age of Newton, University of California
Press, (1983).

A.L. Sabra, Theories of Light from Descartes to Newton, Cambridge University Press,
(1991).

E.N. da Costa Andrade, Isaac Newton, Folcroft Library Editions, (1979).

Gideon Freudenthal, Atom and Individual in the Age of Newton, Reidel, Dordrecht,
(1986).

Henry Guerlac, Newton on the Continent, Cornell University Press, (1981).

A.R. Hall, Philosophers at War; the Quarrel Between Newton and Leibnitz, Cam-
bridge University Press, (1980).

Gale E. Christianson, In the Presence of the Creator; Isaac Newton and his Times,
Free Press, New York, (1984).

Lesley Murdin, Under Newton’s Shadow; Astronomical Practices in the Seventeenth
Century, Hilger, Bristol, (1985).

H.D. Anthony, Sir Isaac Newton, Collier, New York (1961).

Sir Oliver Lodge, Pioneers of Science, Dover, New York (1960).



Chapter 7

NEWTON

7.1 Newton’s early life

On Christmas day in 1642 (the year in which Galileo died), a recently widowed woman
named Hannah Newton gave birth to a premature baby at the manor house of Woolsthorpe,
a small village in Lincolnshire, England. Her baby was so small that, as she said later,
“he could have been put into a quart mug”, and he was not expected to live. He did live,
however, and lived to achieve a great scientific synthesis, uniting the work of Copernicus,
Brahe, Kepler, Galileo and Descartes.

When Isaac Newton was four years old, his mother married again and went to live
with her new husband, leaving the boy to be cared for by his grandmother. This may
have caused Newton to become more solemn and introverted than he might otherwise have
been. One of his childhood friends remembered him as “a sober, silent, thinking lad, scarce
known to play with the other boys at their silly amusements”.

7.2 Newton becomes a student at Cambridge

As a boy, Newton was fond of making mechanical models, but at first he showed no special
brilliance as a scholar. He showed even less interest in running the family farm, however;
and a relative (who was a fellow of Trinity College) recommended that he be sent to
grammar school to prepare for Cambridge University.

When Newton arrived at Cambridge, he found a substitute father in the famous math-
ematician Isaac Barrow, who was his tutor. Under Barrow’s guidance, and while still a
student, Newton showed his mathematical genius by inventing the binomial theorem.

To understand Newton’s work on the binomial theorem, we can begin by thinking of
what happens when we multiply the quantity a + b by itself. The result is a? + 2ab + b%.
Now suppose that we continue the process and multiply a? + 2ab + b? by a + b. The result
of this second multiplication is a® + 3a*b + 3ab® + b , which can also be written as (a+ )3
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. Continuing in this way we can obtain higher powers of a + b:

(a+b)' = a+b

(a+b)? = a*+ 2ab+V?

(a+b)? = a®+3a’+3b%a + b
(a+b)* = a*+4a®b+ 6a%b? + 4ab® + b

(7.1)

and so on. Newton realized that in general, an integral power of a + b can be expressed
in the form:

n(n—1)(n — 2)

(a+b)" =a"+ %a"’lb + wa"%ﬁ + i a3 4 (7.2)
where
0 =1
1 =1
2 = 2x1=2
3l = 3x2x1=6 (7.3)

41 4x3x2x1=24

From the definition of n!, it follows that

n!
"= (n —'1)'
n(n—1) = —- (7.4)
(n ;!2)!
n(n—1)(n—3) = =3

so that we can rewrite the equation for (a + b)" can be rewritten in the form

n

(a+b)" = ZO j!(nn%j)!)a"_jbj (75)

The large Greek letter > indicates a sum. In this case, it is taken over all integral values
from 0 up to and including to n.
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Figure 7.1: Newton’s work on binomial coefficients was foreshadowed by that
of the French mathematician Blaise Pascal (1623-1662), inventor of “Pascal’s
triangle”. However, Pascal was in turn preceded by the Persian mathematician-
poet Omar Khayyam (1048-1131) and by the Chinese mathematician Yanghui,
who lived 500 years before Pascal. In the figure we see the Yanghui triangle.
The binomial coefficients in each successive row are obtained by adding together
coefficients in the previous row. The number above and slightly to the left is
added to the number above and slightly to the right, and the sum forms the
new coeflicient.
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7.3 Differential calculus

In 1665, Cambridge University was closed because of an outbreak of the plague, and Newton
returned for two years to the family farm at Woolsthorpe. He was then twenty-three years
old. During the two years of isolation, Newton developed his binomial theorem into the
beginnings of differential calculus. He imagined At to be an extremely small increase in the
value of a variable t. For example, t might represent time, in which case At would represent
an infinitesimal increase in time - a tiny fraction of a split-second. Newton realized that
the series

—1
(t + At)P =P + ptP LAt + +%tﬁ‘2(m)2 e (7.6)

could then be represented to a very good approximation by its first two terms, and in the
limit At — 0, he obtained the result:

limit [ f(t 4+ At) — f(t)
N%O{ At

] = ptP? (7.7)

Thus, in the particular case where f(t) = t* he found that

df _ limit {f(HAt) - f(t)} —

g — N (7.8)

dt — At —=0

d
— can be thought of as an operator which one can apply to a function f (t). Today we call

this operation “differentiation”, and df /dt is called the function’s “first derivative”.

The derivative of a function can be interpreted as the slope (at a particular point t) of
a curve representing the function. Differential calculus is the branch of mathematics that
deals with differentiation, with slopes, with tangents, and with rates of change.

If we differentiate the sum of two functions, we obtain

d ~ limit [ f(E+ AL) — f(E) + gt + At) — g(2)
GO +9l= A,y A7 (7.9)
which can be rewritten as p i d
g
il =2 4 7 1
G Tel= (7.10)
For example
if f4+g=1t+1, then%[f—l—g]:l—i—% (7.11)
Differentiating the product of two functions yields
d ~ limit flt+At)g(t+ At) — f(t)g(t)
S FRgl= A, ) A (7.12)
which can be rewritten in the form
d df dg
L i (7.13)

dt dt
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Now suppose that g(t) = a where a is a constant, i.e. independent of ¢t. Then from (7.13)
we find that

d df
if a = tant, then — =a— 7.14
if @ = constant, then — [af] a— (7.14)
Combining these results, we obtain
a 2 L gt 4] = 2 3.
[ag + ait + aot” + agt® + ] = aq + 2ast + 3ast” + dast’ + (7.15)

dt

Differentiating a function gives us a new function, but this new function can also be
differentiated, and this process will yield another function, which today is called the “second

derivative”. In modern notation, the new function obtained by differentiating f(t) twice
2

with respect to t is represented by the symbol TR where
d’f d [df
= |ZL 1
2 dt [dt} (7.16)

For example

2

ﬁ [CL() -+ Cblt -+ a2t2 —+ a3t3 -+ - ] = 2(12 + 6a3t + 12a4t2 + - (717)

We can continue and take the third derivative:
d3

ﬁ |:CL() + alt + ath —f- a3t3 + . } = 6(13 —f- 24a4t + 60(15t2 + R (718)

Continuing to differentiate, we obtain in general

oo dn
if f= Zant”, then [W’{] = nla, (7.19)
n=0 t=0
Finally, dividing (7.19) by n! we have
> 1 [drf
if f= ot", then a, = — | —= 7.20
if f nz%a en a n!{dt”}to (7.20)

Many examples of series obtained using equation (7.20) can be found in the tables of
Appendix A. Some important differential relationships are also shown in the tables.

We have used modern notation to go through the reasoning that Newton used to de-
velop his binomial theorem into differential calculus. The quantities that we today call
“derivatives”, he called “fluxions”, i.e. flowing quantities, perhaps because he associated
them with a water clock that he had made as a boy - a water-filled jar with a hole in the
bottom. If f(t) represents the volume of water in the jar as a function of time, then df /dt
represents the rate at which water is flowing out through the hole.
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Newton also applied his “method of fluxions” to mechanics. From the three laws of
planetary motion discovered by the German astronomer Kepler, Newton had deduced that
the force with which the sun attracts a planet must fall off as the square of the distance
between the planet and the sun. With great boldness, he guessed that this force is universal,
and that every object in the universe attracts every other object with a gravitational force
that is directly proportional to the product of the two masses, and inversely proportional
to the square of the distance between them.

Newton also guessed correctly that in attracting an object outside its surface, the earth
acts as though its mass were concentrated at its center. However, he could not construct
the proof of this theorem, since it depended on integral calculus, which did not exist in
1666. (Newton himself perfected integral calculus later in his life.)

Referring to the year 1666, Newton wrote later: “I began to think of gravity extending
to the orb of the moon; and having found out how to estimate the force with which a
globe revolving within a sphere presses the surface of the sphere, from Kepler’s rule of the
periodical times of the planets being in a sesquialternate proportion of their distances from
the centres of their orbs, I deduced that the forces which keep the planets in their orbs
must be reciprocally as the squares of the distances from the centres about which they
revolve; and thereby compared the force requisite to keep the moon in her orb with the
force of gravity at the surface of the earth, and found them to answer pretty nearly.”

“All this was in the plague years of 1665 and 1666, for in those days I was in the prime
of my age for invention, and minded mathematics and philosophy more than at any time
since.”

Galileo had studied the motion of projectiles, and Newton was able to build on this
work by thinking of the moon as a sort of projectile, dropping towards the earth, but at
the same time moving rapidly to the side. The combination of these two motions gives the
moon its nearly-circular path.

To see how Newton made this calculation, we can let x, y and z represent the Cartesian
position coordinates of a body (for example the moon, or an apple). These are functions
of time, and if we assume that the functions can be represented by polynomials in ¢, we
can make use of (7.20) and write

dx t? [d%x
R £ ldx 721
=] 5|, (21
[dy 2 [d?y]
H=yo+t|Y L 7.22
y(t) = o+ ), Tl T (7.22)
[dz ] 2 [d?2]
t — t - P —_ o .. 723
2t) = 20+ |, e, T (7.23)

The three Cartesian coordinates of a particle can be the three components of a vector
which we can call r. or mathematical quantity that has a direction as well the velocity of
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an object is a vector, since it has a magnitude.)
r={x,y,z} (7.24)

The force acting on an object has components in the directions of the three Cartesian
coordinates, and thus the force can also be thought of as a vector:

F={F,F,F)} (7.25)

(We use bold-face type here to denote vectors). In addition to guessing the universal law
of gravitation, Newton also postulated that the second derivative of the position vector
of a body with respect to time (i.e. its acceleration) is directly proportional to the force
acting on it, the constant of proportionality being the inverse of the body’s mass:

d’r F

_— = — (7.26)

at>  m
Equation (7.26) is Newton’s famous third law of motion. It is a vector equaion, and its
meaning is that each component of the vector on the left side is equal to the corresponding
component of the vector on the right. In other words,

Pz F,
a2 m
Ty _ F (7.27)
dt? m
?z  F,
a2 m

Suppose now that the body is an apple, falling to the ground because of the earth’s
gravitational attraction. If z represents the vertical height of the apple above the earth’s
surface, while z and y measure its horizontal position on the surface, and if —mg is the
force of gravity acting on the apple, then we can write:

F = {0,0,—mg} (7.28)

Combining (7.26) and (7.28), we have

{%LO ={0,0, —g} (7.29)

The constant g which appears in equation (7.29) is the acceleration due to the earth’s
gravity acting on an object near to its surface, and it has the value

feet i
g = 32174 0 — 9.8066
sec2 sec2

(7.30)
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(Newton used the English units, feet and miles. 1 meter = 3.28084 feet. 1 mile = 5280
feet.) Notice that the mass m has now disappeared! The force of gravity in Newton’s
theory is directly proportional to a body’s mass, but the acceleration produced by a force
in inversely proportional to it, and therefore the mass cancels out of the equation for
gravitational acceleration.

To make the problem of the falling apple a little more complicated, let us suppose that
a small boy has climbed the tree and that instead of just dropping the apple, he throws it
out horizontally with velocity

dr
[%] T {v,,0,0} (7.31)

Then substituting the initial velocity and acceleration of the apple into the equations of
motion, and letting xq = y9 = 0, we obtain

T = vt

y =0 (7.32)
gt?

zZ = Zo— —

2

We can use the first of these equations to express ¢ in terms of x and rewrite the equation

for z in the form:
22

z =2z QQU,,; (7.33)
Thus we see that if it is thrown out horizontally from the tree, the apple will fall to the
ground following a parabolic trajectory. Equations (7.32) and (7.33) describe the motions
of projectiles and falling bodies. These were already well known to Galileo, who was the
first to study such motions experimentally.

Newton boldly postulated that the laws of motion and gravitation that can be observed
here on earth extend throughout the universe. To him it seemed that the moon resembles
an apple thrown to the side by a small boy sitting in the apple tree. The moon falls towards
the earth, but at the same time it moves to the side with the constant velocity v,. The
combination of these two motions gives the moon its nearly-circular orbit. Of course, after
it has moved a little, the force of gravitation comes from a different direction, and therefore
the moon does not follow a parabolic orbit but an approximately circular one. However, if
we consider only a very short period of time, the circle and parabola fit closely together, as
is illustrated in Figure 7.2. If we take the origin of our coordinate system to be the center
of the earth, then zy = R,, where R,, is the radius of the moon’s orbit, and the trajectory
of the moon through a very short interval of time is given by

332

=R, —¢— 7.34
z 950 (7.34)
We use ¢ instead of g in equation (7.34) because the moon is much more distant from

the earth’s center than the apple is, and the moon’s gravitational acceleration is much less
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Figure 7.2: The orbit of the moon is approximately circular in shape. During
a very short interval of time, the moon can be thought of as being similar to
an object moving horizontally, and at the same time being accelerated in a
vertical direction by the force of gravity. The parabolic trajectory of such an
object is approximately the same as a circle during that short interval of time,
as is shown in the figure.
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than the apple’s. Building on Kepler’s laws of planetary motion, Newton postulated that
the force of gravity exerted by the earth falls off as the reciprocal of the square of the
distance from the earth’s center. Thus ¢’ and g are related by

R\’ 3963 miles feet
g/zg( ) :g(ﬂ) = 0089 —=2 (7.35)

R,, 238.600 miles sec?
2 2
— VR m—22~R, —— =R — g ,
z R:m?>—-x2~R o R 20 (7.36)
21 R,, feet
Vp = U 3356 (7.37)
T SecC.

where 7 is the period of the moon’s orbit.

In this way, Newton “compared the force necessary to keep the moon in her orb with
the force of gravity on the earth’s surface, and found them to answer pretty nearly.”

Newton was not satisfied with this incomplete triumph, and he did not show his calcu-
lations to anyone. He not only kept his ideas on gravitation to himself, (probably because
of the missing proof), but he also refrained for many years from publishing his work on the
calculus. By the time Newton published, the calculus had been invented independently
by the great German mathematician and philosopher, Gottfried Wilhelm Leibniz (1646-
1716); and the result was a bitter quarrel over priority. However, Newton did publish his
experiments in optics, and these alone were enough to make him famous.

7.4 Optics

Newton’s famous experiments in optics also date from these years. The sensational exper-
iments of Galileo were very much discussed at the time, and Newton began to think about
ways to improve the telescope. Writing about his experiments in optics, Newton says:

“In the year 1666 (at which time I applied myself to the grinding of optic glasses of other
figures than spherical), I procured me a triangular prism, to try therewith the celebrated
phenomena of colours. And in order thereto having darkened my chamber, and made a
small hole in the window shuts to let in a convenient quantity of the sun’s light, I placed
my prism at its entrance, that it might thereby be refracted to the opposite wall.”

“It was at first a very pleasing divertisment to view the vivid and intense colours
produced thereby; but after a while, applying myself to consider them more circumspectly,
I became surprised to see them in an oblong form, which, according to the received laws
of refraction I expected should have been circular.”

Newton then describes his crucial experiment. In this experiment, the beam of sunlight
from the hole in the window shutters was refracted by two prisms in succession. The first
prism spread the light into a rainbow-like band of colors. From this spectrum, he selected
a beam of a single color, and allowed the beam to pass through a second prism; but when
light of a single color passed through the second prism, the color did not change, nor was
the image spread out into a band. No matter what Newton did to it, red light always
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remained red, once it had been completely separated from the other colors; yellow light
remained yellow, green remained green, and blue remained blue.

Newton then measured the amounts by which the beams of various colors were bent by
the second prism; and he discovered that red light was bent the least. Next in sequence
came orange, yellow, green, blue and finally violet, which was deflected the most. Newton
recombined the separated colors, and he found that together, they once again produced
white light.

Concluding the description of his experiments, Newton wrote:

“..and so the true cause of the length of the image (formed by the first prism) was
detected to be no other than that light is not similar or homogenial, but consists of deform
rays, some of which are more refrangible than others.”

“As rays of light differ in their degrees of refrangibility, so they also differ in their
disposition to exhibit this or that particular colour... To the same degree of refrangibility
ever belongs the same colour, and to the same colour ever belongs the same degree of
refrangibility.”

“...The species of colour and the degree of refrangibility belonging to any particular
sort of rays is not mutable by refraction, nor by reflection from natural bodies, nor by any
other cause that I could yet observe. When any one sort of rays hath been well parted from
those of other kinds, it hath afterwards obstinately retained its colour, notwithstanding
my utmost endeavours to change it.”
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Figure 7.3: Illustration of a dispersive prism separating white light into the
colours of the spectrum, as discovered by Newton.
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Figure 7.4: Replica of Newton’s second reflecting telescope, which he presented
to the Royal Society in 1672.
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7.5 Integral calculus

In 1669, Newton’s teacher, Isaac Barrow, generously resigned his post as Lucasian Professor
of Mathematics so that Newton could have it. Thus, at the age of 27, Newton became the
head of the mathematics department at Cambridge. He was required to give eight lectures
a year, but the rest of his time was free for research.

Newton worked at this time on developing what he called “the method of inverse
fluxions”. Today we call his method “integral calculus”. What did Newton mean by
“inverse fluxions”? By “fluxions” he meant differentials, so we must think of an operation
that is the reverse of differentiation.

Suppose that we know from our experience with differentiation that (for example)

d
if and only if f =’ + C then d_J; = pt?! (7.38)
where C'is a constant. Then we also know that
d
if d—j; = pt?~! then f =1* + C (7.39)

In equation (7.39), we know that C'is a constant, but we do not know its value. Knowledge
of the derivative df /dt allows us to determine the original function f(¢) from which it was
derived up to an additive constant that must be determined in some other way. The
operation of going backwards from the differential of a function to the function itself is
called “integration”, and the unknown constant C' is called the “constant of integration”.
If we replace p by p + 1, it follows from (7-39) that

Y4
G pthen fo - b0 pt-1 (7.40)

i 4
' dt p+1

(We have to exclude p = —1 in (3.3) to avoid dividing by zero.) It is customary to write
this relationship in the form

tp
dt t¥ = +C -1 7.41
/ P p# (7.41)
Once again the constant of integration, C', is unknown and must be determined in some
other way. When p = 1, equation (7.41) becomes

2
/dtt:%JrC (7.42)

Equations (7.41) and (7.42) are called “indefinite integrals” - indefinite because the constant
of integration is unknown. One also speaks of “definite integrals”, where knowledge of
the derivative df /dt is used to find f(t2) — f(t1). If the variable ¢ represents time, then
f(t2)— f(t1) would represent the difference between the function f(t) evaluated at the time
t = t, minus the same function evaluated at the time t = ¢; . For example,

df 2



7.5. INTEGRAL CALCULUS 93
This relationship is written in the form

/t2dtt=§—ﬁ (7.44)
" 2 2

The integration is said to be taken between the lower limit ¢ = ¢; and the upper limit,
t =ty . The more general indefinite integral shown in equation (7.41) has a corresponding
definite integral of the form:

to tp-i-l tp-l—l
/ ﬁﬁ:;ﬁq_pll p#—1 (7.45)
t1

When p = 0, this becomes

to
/‘ﬂ:m—h (7.46)
t1

The reason why integrals taken between two limits are called “definite integrals” is that
the unknown constant of integration C has cancelled out so no information is missing when
we go from the differential of a function to the function itself.

In a previous chapter, we mentioned that Archimedes invented integral calculus and
used it to determine the areas of figures bounded by curves. To see how he did this and
how Newton, many centuries later, did the same thing, let us begin by multiplying both
sides of equation (7.46) by a constant v. This gives us

v /t2 dt = U(tg - tl) (747)

t1

If we let t; = 0 we have .
2
v/ dt = vty (7.48)
0

What we have done here. and in Figures 7.5 and 7.6, seems a bit like cracking a peanut
with a sledge- hammer. Why have we used such a heavy piece of mathematical hardware
to crack a problem that we could have solved in 30 seconds in our heads? However, if the
reader will be patient with the first two simple examples, which we have included for the
sake of clarity, we will soon go on to problems involving figures bounded by curves, and
these cannot be solved without the help of integral calculus.

In the next simple example, we multiply both sides of equation (7.44) with the constant

a. This will give us
- 4 8
dtt=a(—=—— 7.49
f eee(53) 79

Tables of important indefinite and definite integrals are given in Appendix A.
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t1 T2 t

Figure 7.5: This figure shows a rectangle with height v and base t, —¢; . The area
of the figure is v(t; —t1). If v represents the constant velocity of an object, then
the area of the rectangle represents distance that the object moves between
the times ¢; and ¢,.
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t1 2 t

Figure 7.6: We now divide the large rectangle of Figure 7.5 into five small rect-
angular strips, each with area vAt = v(t; — t;)/5. When we add together the
areas of the small strips, we get the same answer for the total area of the rect-
angle. Physically, vAt can represent the distance that an object with constant
velocity v moves in a small interval of time At.
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Figure 7.7: This figure illustrates the geometrical interpretation of equation
(7.48). The area under the straight line v = at between the points ¢t = 0 and
t =ty is given by at3/2, i.e., the height of the triangle, multiplied by half the
length of the base. Physically, the area of the triangle can represent the distance
moved by an object with constant acceleration a. It’s velocity is then given by
v = at, and the distance travelled is proportional to the square of the elapsed
time. Galileo found this law experimentally for falling bodies with constant
gravitational acceleration. He observed that the distance travelled by a falling
body is proportional to the square of the elapsed time.
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Figure 7.8: We now divide the triangle of Figure 7.7 into N small rectangular
strips. (In the figure, N =5.) The area of the triangle is approximated by the
sum of the areas of the small strips. If we increase the number of strips, N
, the approximation will become more exact. The area of each of the narrow
strips can represent physically the approximate distance that an object with
constant acceleration a travels during the interval of time A¢. This distance
changes with time because acceleration changes the velocity of the object.
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tl t2

Figure 7.9: Equation (3.25) tells us how to find the area under the parabola
f(t) = t * 22 between vertical lines drawn at ¢t = t; and ¢t = t . The other
boundary of the calculation.
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7.6 Halley visits Newton

Newton’s prism experiments had led him to believe that the only possible way to avoid blur-
ring of colors in the image formed by a telescope was to avoid refraction entirely. Therefore
he designed and constructed the first reflecting telescope. In 1672, he presented a reflecting
telescope to the newly-formed Royal Society, which then elected him to membership.

Meanwhile, the problems of gravitation and planetary motion were increasingly dis-
cussed by the members of the Royal Society. In January, 1684, three members of the
Society were gathered in a London coffee house. One of them was Robert Hooke (1635-
1703), author of Micrographia and Professor of Geometry at Gresham College, a brilliant
but irritable man. He had begun his career as Robert Boyle’s assistant, and had gone on
to do important work in many fields of science. Hooke claimed that he could calculate the
motion of the planets by assuming that they were attracted to the sun by a force which
diminished as the square of the distance.

Listening to Hooke were Sir Christopher Wren (1632-1723), the designer of St. Paul’s
Cathedral, and the young astronomer, Edmund Halley (1656-1742). Wren challenged
Hooke to produce his calculations; and he offered to present Hooke with a book worth
40 shillings if he could prove his inverse square force law by means of rigorous mathemat-
ics. Hooke tried for several months, but he was unable to win Wren’s reward.

Meanwhile, in August, 1684, Halley made a journey to Cambridge to talk with Newton,
who was rumored to know very much more about the motions of the planets than he had
revealed in his published papers. According to an almost-contemporary account, what
happened then was the following:

“Without mentioning his own speculations, or those of Hooke and Wren, he (Halley)
at once indicated the object of his visit by asking Newton what would be the curve de-
scribed by the planets on the supposition that gravity diminished as the square of the
distance. Newton immediately answered: an Ellipse. Struck with joy and amazement,
Halley asked how he knew it? ‘Why’, replied he, ‘I have calculated it’; and being asked for
the calculation, he could not find it, but promised to send it to him.”

Newton soon reconstructed the calculation and sent it to Halley; and Halley, filled with
enthusiasm and admiration, urged Newton to write out in detail all of his work on motion
and gravitation. Spurred on by Halley’s encouragement and enthusiasm, Newton began to
put his research in order. He returned to the problems which had occupied him during the
plague years, and now his progress was rapid because he had invented integral calculus.
This allowed him to prove rigorously that terrestrial gravitation acts as though all the
earth’s mass were concentrated at its center. Newton also had available an improved value
for the radius of the earth, measured by the French astronomer Jean Picard (1620-1682).
This time, when he approached the problem of gravitation, everything fell into place.

By the autumn of 1684, Newton was ready to give a series of lectures on dynamics,
and he sent the notes for these lectures to Halley in the form of a small booklet entitled
On the Motion of Bodies. Halley persuaded Newton to develop these notes into a larger
book, and with great tact and patience he struggled to keep a controversy from developing
between Newton, who was neurotically sensitive, and Hooke, who was claiming his share
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Figure 7.10: Portrait of Isaac Newton (1642-1727) by Sir Godfrey Kneller.
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of recognition in very loud tones, hinting that Newton was guilty of plagiarism.

Although Newton was undoubtedly the greatest physicist of all time, he had his short-
comings as a human being; and he reacted by striking out from his book every single
reference to Robert Hooke. The Royal Society at first offered to pay for the publication
costs of Newton’s book, but because a fight between Newton and Hooke seemed possible,
the Society discretely backed out. Halley then generously offered to pay the publication
costs himself, and in 1686 Newton’s great book was printed. It is entitled Philosophae
Naturalis Principia Mathematica, (The Mathematical Principles of Natural Philosophy),
and it is divided into three sections.

The first book sets down the general principles of mechanics. In it, Newton states his
three laws of motion, and he also discusses differential and integral calculus (both invented
by himself).

In the second book, Newton applies these methods to systems of particles and to hydro-
dynamics. For example, he calculates the velocity of sound in air from the compressibility
and density of air; and he treats a great variety of other problems, such as the problem of
calculating how a body moves when its motion is slowed by a resisting medium, such as
air or water.

The third book is entitled The System of the World. In this book, Newton sets out to
derive the entire behavior of the solar system from his three laws of motion and from his
law of universal gravitation. From these, he not only derives all three of Kepler’s laws, but
he also calculates the periods of the planets and the periods of their moons; and he explains
such details as the flattened, non-spherical shape of the earth, and the slow precession of
its axis about a fixed axis in space. Newton also calculated the irregular motion of the
moon resulting from the combined attractions of the earth and the sun; and he determined
the mass of the moon from the behavior of the tides.

Newton’s Principia is generally considered to be the greatest scientific work of all time.
To present a unified theory explaining such a wide variety of phenomena with so few
assumptions was a magnificent and unprecedented achievement; and Newton’s contempo-
raries immediately recognized the importance of what he had done.

The great Dutch physicist, Christian Huygens (1629-1695), inventor of the pendulum
clock and the wave theory of light, travelled to England with the express purpose of meeting
Newton. Voltaire, who for reasons of personal safety was forced to spend three years in
England, used the time to study Newton’s Principia; and when he returned to France,
he persuaded his mistress, Madame du Chatelet, to translate the Principia into French;
and Alexander Pope, expressing the general opinion of his contemporaries, wrote a famous
couplet, which he hoped would be carved on Newton’s tombstone:

“Nature and Nature’s law lay hid in night.

God said: ‘Let Newton be!’, and all was light!”

The Newtonian synthesis was the first great achievement of a new epoch in human
thought, an epoch which came to be known as the “Age of Reason” or the “Enlightenment”.
We might ask just what it was in Newton’s work that so much impressed the intellectuals
of the 18th century. The answer is that in the Newtonian system of the world, the entire
evolution of the solar system is determined by the laws of motion and by the positions and
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velocities of the planets and their moons at a given instant of time. Knowing these, it is
possible to predict all of the future and to deduce all of the past.

The Newtonian system of the world is like an enormous clock which has to run on in
a predictable way once it is started. In this picture of the world, comets and eclipses are
no longer objects of fear and superstition. They too are part of the majestic clockwork
of the universe. The Newtonian laws are simple and mathematical in form; they have
complete generality; and they are unalterable. In this picture, although there are no
miracles or exceptions to natural law, nature itself, in its beautiful works, can be regarded
as miraculous.

Newton’s contemporaries knew that there were other laws of nature to be discovered
besides those of motion and gravitation; but they had no doubt that, given time, all of the
laws of nature would be discovered. The climate of intellectual optimism was such that
many people thought that these discoveries would be made in a few generations, or at most
in a few centuries.

In 1704, Newton published a book entitled Opticks, expanded editions of which ap-
peared in 1717 and 1721. Among the many phenomena discussed in this book are the
colors produced by thin films. For example, Newton discovered that when he pressed two
convex lenses together, the thin film of air trapped between the lenses gave rise to rings of
colors (“Newton’s rings”). The same phenomenon can be seen in the in the colors of soap
bubbles or in films of oil on water.

In order to explain these rings, Newton postulated that “.every ray of light in its
passage through any refracting surface is put into a transient constitution or state, which
in the progress of the ray returns at equal intervals, and disposes the ray at every return
to be easily transmitted through the next refracting surface and between the returns to be
easily reflected from it.”

Newton’s rings were later understood on the basis of the wave theory of light advocated
by Huygens and Hooke. Each color has a characteristic wavelength, and is easily reflected
when the ratio of the wavelength to the film thickness is such that the wave reflected from
the bottom surface of the film interferes constructively with the wave reflected from the
top surface. However, although he ascribed periodic “fits of easy reflection” and “fits of
easy transmission” to light, and although he suggested that a particular wavelength is
associated with each color, Newton rejected the wave theory of light, and believed instead
that light consists of corpuscles emitted from luminous bodies.

Newton believed in his corpuscular theory of light because he could not understand on
the basis of Huygens’ wave theory how light casts sharp shadows. This is strange, because
in his Opticks he includes the following passage:

“Grimaldo has inform’d us that if a beam of the sun’s light be let into a dark room
through a very small hole, the shadows of things in this light will be larger than they
ought to be if the rays went on by the bodies in straight lines, and that these shadows
have three parallel fringes, bands or ranks of colour’d light adjacent to them. But if the
hole be enlarg’d, the fringes grow broad and run into one another, so that they cannot be
distinguish’d”

After this mention of the discovery of diffraction by the Italian physicist, Francesco
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Figure 7.11: Newton own evaluation of his work was modest. He wrote “I do
not know what I may appear to the world, but to myself I seem to have been
only like a boy playing on the seashore, and diverting myself in now and then
finding a smoother pebble or a prettier shell than ordinary, whilst the great
ocean of truth lay all undiscovered before me.”

Marea Grimaldi (1618-1663), Newton discusses his own studies of diffraction. Thus, New-
ton must have been aware of the fact that light from a very small source does not cast
completely sharp shadows!

Newton felt that his work on optics was incomplete, and at the end of his book he
included a list of “Queries”, which he would have liked to have investigated. He hoped
that this list would help the research of others. In general, although his contemporaries
were extravagant in praising him, Newton’s own evaluation of his work was modest. “I do
not know how I may appear to the world”, he wrote, “but to myself I seem to have been
only like a boy playing on the seashore and diverting myself in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.”

7.7 The conflict over priority between Leibniz and
Newton

In this chapter, we have used the modern notation, which is much closer to the notation
used by the great German mathematician and universal genius, Gottfried Wilhelm von
Leibniz than to that used by Newton.

Newton did not publish his work on differential and integral calculus. Slightly later,
Leibniz invented these two branches of mathematics independently. Thus a bitter dispute
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over priority was precipated, from which Leibniz suffered when his patron, the Elector of
Hanover, left Germany to become King George I of England.

Huygens and Leibniz

On the continent of Europe, mathematics and physics had been developing rapidly, stim-
ulated by the writings of René Descartes. One of the most distinguished followers of
Descartes was the Dutch physicist, Christian Huygens (1629-1695).

Huygens was the son of an important official in the Dutch government. After studying
mathematics at the University of Leiden, he published the first formal book ever written
about probability. However, he soon was diverted from pure mathematics by a growing
interest in physics.

In 1655, while working on improvements to the telescope together with his brother
and the Dutch philosopher Benedict Spinoza, Huygens invented an improved method for
grinding lenses. He used his new method to construct a twenty-three foot telescope, and
with this instrument he made a number of astronomical discoveries, including a satellite
of Saturn, the rings of Saturn, the markings on the surface of Mars and the Orion Nebula.

Huygens was the first person to estimate numerically the distance to a star. By as-
suming the star Sirius to be exactly as luminous as the sun, he calculated the distance to
Sirius, and found it to be 2.5 trillion miles. In fact, Sirius is more luminous than the sun,
and its true distance is twenty times Huygens’ estimate.

Another of Huygens’ important inventions is the pendulum clock. Improving on Galileo’s
studies, he showed that for a pendulum swinging in a circular arc, the period is not pre-
cisely independent of the amplitude of the swing. Huygens then invented a pendulum with
a modified arc, not quite circular, for which the swing was exactly isochronous. He used
this improved pendulum to regulate the turning of cog wheels, driven by a falling weight;
and thus he invented the pendulum clock, almost exactly as we know it today.

In discussing Newton’s contributions to optics, we mentioned that Huygens opposed
Newton’s corpuscular theory of light, and instead advocated a wave theory. Huygens
believed that the rapid motion of particles in a hot body, such as a candle flame, produces
a wave-like disturbance in the surrounding medium; and he believed that this wavelike
disturbance of the “ether” produces the sensation of vision by acting on the nerves at the
back of our eyes.

In 1678, while he was working in France under the patronage of Louis XIV, Huygens
composed a book entitled Traité de la Lumiere, (Treatise on Light), in which he says:

“...It is inconceivable to doubt that light consists of the motion of some sort of matter.
For if one considers its production, one sees that here upon the earth it is chiefly engendered
by fire and flame, which undoubtedly contain bodies in rapid motion, since they dissolve
and melt many other bodies, even the most solid; or if one considers its effects, one sees
that when light is collected, as by concave mirrors, it has the property of burning as fire
does, that is to say, it disunites the particles of bodies. This is assuredly the mark of
motion, at least in the true philosophy in which one conceives the causes of all natural
effects in terms of mechanical motions...”
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Figure 7.12: Christian Huygens (1629-1695).
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“Further, when one considers the extreme speed with which light spreads on every
side, and how, when it comes from different regions, even from those directly opposite, the
rays traverse one another without hindrance, one may well understand that when we see a
luminous object, it cannot be by any transport of matter coming to us from the object, in
the way in which a shot or an arrow traverses the air; for assuredly that would too greatly
impugn these two properties of light, especially the second of them. It is in some other way
that light spreads; and that which can lead us to comprehend it is the knowledge which
we have of the spreading of sound in the air.”

Huygens knew the velocity of light rather accurately from the work of the Danish
astronomer, Ole Rgmer (1644-1710), who observed the moons of Jupiter from the near
and far sides of the earth’s orbit. By comparing the calculated and observed times for the
moons to reach a certain configuration, Rgmer was able to calculate the time needed for
light to propagate across the diameter of the earth’s orbit. In this way, Remer calculated
the velocity of light to be 227,000 kilometers per second. Considering the early date of this
first successful measurement of the velocity of light, it is remarkably close to the accepted
modern value of 299,792 kilometers per second. Thus Huygens knew that although the
speed of light is enormous, it is not infinite.

Huygens considered the propagation of a light wave to be analogous to the spreading
of sound, or the widening of the ripple produced when a pebble is thrown into still water.
He developed a mathematical principle for calculating the position of a light wave after a
short interval of time if the initial surface describing the wave front is known. Huygens
considered each point on the initial wave front to be the source of spherical wavelets,
moving outward with the speed of light in the medium. The surface marking the boundary
between the region outside all of the wavelets and the region inside some of them forms
the new wave front.

If one uses Huygens’ Principle to calculate the wave fronts and rays for light from a
point source propagating past a knife edge, one finds that a part of the wave enters the
shadow region. This is, in fact, precisely the effect which was observed by both Grimaldi
and Newton, and which was given the name “diffraction” by Grimaldi. In the hands of
Thomas Young (1773-1829) and Augustin Jean Fresnel (1788-1827), diffraction effects later
became a strong argument in favor of Huygens’ wave theory of light.

(You can observe diffraction effects yourself by looking at a point source of light, such
as a distant street lamp, through a piece of cloth, or through a small slit or hole. Another
type of diffraction can be seen by looking at light reflected at a grazing angle from a
phonograph record. The light will appear to be colored. This effect is caused by the fact
that each groove is a source of wavelets, in accordance with Huygens’ Principle. At certain
angles, the wavelets will interfere constructively, the angles for constructive interference
being different for each color.)

Interestingly, modern quantum theory (sometimes called wave mechanics) has shown
that both Huygens’ wave theory of light and Newton’s corpuscular theory contain aspects
of the truth! Light has both wave-like and particle-like properties. Furthermore, quantum
theory has shown that small particles of matter, such as electrons, also have wave-like
properties! For example, electrons can be diffracted by the atoms of a crystal in a manner
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Figure 7.13: Portrait of Gottfried Wilhelm Leibniz by J.F. Wentzel.

exactly analogous to the diffraction of light by the grooves of a phonograph record. Thus
the difference of opinion between Huygens and Newton concerning the nature of light is
especially interesting, since it foreshadows the wave-particle duality of modern physics.

Among the friends of Christian Huygens was the German philosopher and mathemati-
cian Gottfried Wilhelm Leibniz (1646-1716). Leibniz was a man of universal and spectac-
ular ability. In addition to being a mathematician and philosopher, he was also a lawyer,
historian and diplomat. He invented the doctrine of balance of power, attempted to unify
the Catholic and Protestant churches, founded academies of science in Berlin and St.
Petersburg, invented combinatorial analysis, introduced determinants into mathematics,
independently invented the calculus, invented a calculating machine which could multiply
and divide as well as adding and subtracting, acted as advisor to Peter the Great and orig-
inated the theory that “this is the best of all possible worlds” (later mercilessly satirized
by Voltaire in Candide).

Leibniz learned mathematics from Christian Huygens, whom he met while travelling as
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an emissary of the Elector of Mainz. Since Huygens too was a man of very wide interests,
he found the versatile Leibniz congenial, and gladly agreed to give him lessons. Leibniz
continued to correspond with Huygens and to receive encouragement from him until the
end of the older man’s life.

In 1673, Leibniz visited England, where he was elected to membership by the Royal
Society. During the same year, he began his work on calculus, which he completed and
published in 1684. Newton’s invention of differential and integral calculus had been made
much earlier than the independent work of Leibniz, but Newton did not publish his discov-
eries until 1687. This set the stage for a bitter quarrel over priority between the admirers
of Newton and those of Leibniz. The quarrel was unfortunate for everyone concerned,
especially for Leibniz himself. He had taken a position in the service of the Elector of
Hanover, which he held for forty years. However, in 1714, the Elector was called to the
throne of England as George 1. Leibniz wanted to accompany the Elector to England, but
was left behind, mainly because of the quarrel with the followers of Newton. Leibniz died
two years later, neglected and forgotten, with only his secretary attending the funeral.

7.8 Political philosophy of the Enlightenment

The 16th, 17th and 18th centuries have been called the “Age of Discovery”, and the “Age
of Reason”, but they might equally well be called the “Age of Observation”. On every
side, new worlds were opening up to the human mind. The great voyages of discovery
had revealed new continents, whose peoples demonstrated alternative ways of life. The
telescopic exploration of the heavens revealed enormous depths of space, containing myriads
of previously unknown stars; and explorations with the microscope revealed a new and
marvelously intricate world of the infinitesimally small.

In the science of this period, the emphasis was on careful observation. This same
emphasis on observation can be seen in the Dutch and English painters of the period. The
great Dutch masters, such as Jan Vermeer (1632-1675), Frans Hals (1580-1666), Pieter
de Hooch (1629-1678) and Rembrandt van Rijn (1606-1669), achieved a careful realism
in their paintings and drawings which was the artistic counterpart of the observations of
the pioneers of microscopy, Anton van Leeuwenhoek and Robert Hooke. These artists
were supported by the patronage of the middle class, which had become prominent and
powerful both in England and in the Netherlands because of the extensive world trade in
which these two nations were engaged.

Members of the commercial middle class needed a clear and realistic view of the world
in order to succeed with their enterprises. (An aristocrat of the period, on the other hand,
might have been more comfortable with a somewhat romanticized and out-of-focus vision,
which would allow him to overlook the suffering and injustice upon which his privileges
were based.) The rise of the commercial middle class, with its virtues of industriousness,
common sense and realism, went hand in hand with the rise of experimental science, which
required the same virtues for its success.

In England, the House of Commons (which reflected the interests of the middle class),
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had achieved political power, and had demonstrated (in the Puritan Rebellion of 1640 and
the Glorious Revolution of 1688) that Parliament could execute or depose any monarch
who tried to rule without its consent. In France, however, the situation was very different.

After passing through a period of disorder and civil war, the French tried to achieve
order and stability by making their monarchy more absolute. The movement towards
absolute monarchy in France culminated in the long reign of Louis XIV, who became king
in 1643 and who ruled until he died in 1715.

The historical scene which we have just sketched was the background against which
the news of Newton’s scientific triumph was received. The news was received by a Europe
which was tired of religious wars; and in France, it was received by a middle class which
was searching for an ideology in its struggle against the ancien régime.

To the intellectuals of the 18th century, the orderly Newtonian cosmos, with its planets
circling the sun in obedience to natural law, became an imaginative symbol representing
rationality. In their search for a society more in accordance with human nature, 18th
century Europeans were greatly encouraged by the triumphs of science. Reason had shown
itself to be an adequate guide in natural philosophy. Could not reason and natural law
also be made the basis of moral and political philosophy? In attempting to carry out
this program, the philosophers of the Enlightenment laid the foundations of psychology,
anthropology, social science, political science and economics.

One of the earliest and most influential of these philosophers was John Locke (1632-
1705), a contemporary and friend of Newton. In his Second Treatise on Government,
published in 1690, John Locke’s aim was to refute the doctrine that kings rule by divine
right, and to replace that doctrine by an alternative theory of government, derived by
reason from the laws of nature. According to Locke’s theory, men originally lived together
without formal government:

“Men living together according to reason,” he wrote, “without a common superior on
earth with authority to judge between them, is properly the state of nature... A state
also of equality, wherein all the power and jurisdiction is reciprocal, no one having more
than another; there being nothing more evident than that creatures of the same species,
promiscuously born to all the same advantages of nature and the use of the same facilities,
should also be equal amongst one another without subordination or subjection...”

“But though this be a state of liberty, yet it is not a state of licence... The state of
nature has a law to govern it, which obliges every one; and reason, which is that law,
teaches all mankind who will but consult it, that being equal and independent, no one
ought to harm another in his life, health, liberty or possessions.”

In Locke’s view, a government is set up by means of a social contract. The government
is given its powers by the consent of the citizens in return for the services which it renders
to them, such as the protection of their lives and property. If a government fails to render
these services, or if it becomes tyrannical, then the contract has been broken, and the
citizens must set up a new government.

Locke’s influence on 18th century thought was very great. His influence can be seen,
for example, in the wording of the American Declaration of Independence. In England,
Locke’s political philosophy was accepted by almost everyone. In fact, he was only codifying
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Figure 7.14: Portrait of John Locke, by Sir Godfrey Kneller.
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ideas which were already in wide circulation and justifying a revolution which had already
occurred. In France, on the other hand, Locke’s writings had a revolutionary impact.

Credit for bringing the ideas of both Newton and Locke to France, and making them
fashionable, belongs to Francois Marie Arouet (1694-1778), better known as “Voltaire”.
Besides persuading his mistress, Madame de Chatelet, to translate Newton’s Principia
into French, Voltaire wrote an extremely readable commentary on the book; and as a
result, Newton’s ideas became highly fashionable among French intellectuals. Voltaire
lived with Madame du Chatelet until she died, producing the books which established him
as the leading writer of Europe, a prophet of the Age of Reason, and an enemy of injustice,
feudalism and superstition.

The Enlightenment in France is considered to have begun with Voltaire’s return from
England in 1729; and it reached its high point with the publication of of the Encyclopedia
between 1751 and 1780. Many authors contributed to the Encyclopedia, which was an
enormous work, designed to sum up the state of human knowledge.

Turgot and Montesquieu wrote on politics and history; Rousseau wrote on music, and
Buffon on natural history; Quesnay contributed articles on agriculture, while the Baron
d’Holbach discussed chemistry. Other articles were contributed by Condorcet, Voltaire
and d’Alembert. The whole enterprise was directed and inspired by the passionate faith
of Denis Diderot (1713-1784). The men who took part in this movement called themselves
“philosophes”. Their creed was a faith in reason, and an optimistic belief in the perfectibil-
ity of human nature and society by means of education, political reforms, and the scientific
method.

The philosophes of the Enlightenment visualized history as a long progression towards
the discovery of the scientific method. Once discovered, this method could never be lost;
and it would lead inevitably (they believed) to both the material and moral improvement
of society. The philosophes believed that science, reason, and education, together with the
principles of political liberty and equality, would inevitably lead humanity forward to a
new era of happiness. These ideas were the faith of the Enlightenment; they influenced
the French and American revolutions; and they are still the basis of liberal political belief.

7.9 Voltaire and Rousseau

Voltaire (1694-1778)

Francois-Marie Arouet, who later changed his name to Voltaire, was born in Paris. His
father was a lawyer and a minor treasury official, while his mother’s family was on the
lowest rank if the French nobility. He was educated by Jesuits at College Louis-le-Grande,
where he learned Latin theology and rhetoric. He later became fluent in Italian, Spanish
and English.

Despite his father’s efforts to make him study law, the young Voltaire was determined to
become a writer. He eventually became the author of more than 2,000 books and pamphlets
and more than 20,000 letters. His works include many forms of writing, including plays,
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poems, novels, essays and historical and scientific works. His writings advocated civil
liberties, and he used his satirical and witty style of writing to criticize intolerance, religious
dogma and absolute monarchy. Because of the intolerance and censorship of his day, he
was frequently in trouble and sometimes imprisoned. Nevertheless, his works were very
popular, and he eventually became extremely rich, partly through clever investment of
money gained through part ownership of a lottery.

During a period of forced exile in England, Voltaire mixed with the English aristocracy,
meeting Alexander Pope, John Gay, Jonathan Swift, Lady Mary Wortley Montague, Sarah,
Duchess of Marlborough, and many other members of the nobility and royalty. He admired
the English system of constitutional monarchy, which he considered to be far superior to
the absolutism then prevailing in France. In 1733, he published a book entitled Letters
concerning the English Nation, in London. When French translation was published in
1734, Voltaire was again in deep trouble. In order to avoid arrest, he stayed in the country
chateau belonging to Emilie du Chéatelet and her husband, the Marquis du Chatelet.

As a result, Madame du Chatelet became his mistress and the relationship lasted for
16 years. Her tolerant husband, the Marquis, who shared their intellectual and scientific
interests, often lived together with them. Voltaire paid for improvements to the chateau,
and together, the Marquis and Voltaire collected more than 21,000 books, and enormous
number for that time. Madame du Chatelet translated Isaac Newton’s great book, Prin-
cipia Mathematica, into French, and her translation was destined to be the standard one
until modern times. Meanwhile, Voltaire wrote a French explanation of the ideas of the
Principia, which made these ideas accessible to a wide public in France. Together, the
Marquis, his wife and Voltaire also performed many scientific experiments, for example
experiments designed to study the nature of fire.

Voltaire’s vast literary output is available today in approximately 200 volumes, pub-
lished by the University of Oxford, where the Voltaire Foundation is now established as a
research department.

Rousseau (1712-1778)

In 1754 Rousseau wrote: “The first man who, having fenced in a piece of land, said ‘This
is mine’, and found people naive enough to believe him, that man was the true founder
of civil society. From how many crimes, wars, and murders, from how many horrors and
misfortunes might not any one have saved mankind, by pulling up the stakes, or filling up
the ditch, and crying to his fellows: Beware of listening to this impostor; you are undone if
you once forget that the fruits of the earth belong to us all, and the earth itself to nobody.”

Later, he began his influential book The Social Contract, published in 1752, with the
dramatic words: “Man is born free, and everywhere he is in chains. Those who think
themselves the masters of others are indeed greater slaves than they.” Rousseau concludes
Chapter 3 of this book with the words: “Let us then admit that force does not create right,
and that we are obliged to obey only legitimate powers”. In other words, the ability to
coerce is not a legitimate power, and there is no rightful duty to submit to it. A state has
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Figure 7.15: Voltaire used his satirical and witty style of writing to criticize in-
tolerance, religious dogma and absolute monarchy. He wrote more than 2,000
books and pamphlets and more than 20,000 letters. His writings made a sig-
nificant contribution to the Enlightenment, and paved the way for revolutions
both in France and America.
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Figure 7.16: The frontpiece of Voltaire’s book popularizing Newton’s ideas for
French readers. Madame du Chatelet appears as a muse, reflecting Newton’s
thoughts down to Voltaire.
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Figure 7.17: Unlike Voltaire, Rousseau was not an advocate of science, but
instead believed in the importance of emotions. He believed that civilization
has corrupted humans rather than making them better. Rousseau was a pioneer
of the romantic movement. His book, The Soctal Contract, remains influential
today.
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no right to enslave a conquered people.

These ideas, and those of John Locke, were reaffirmed in 1776 by the American Decla-
ration of Independence: “We hold these truths to be self-evident: That all men are created
equal. That they are endowed by their Creator with certain inaliable rights, and the among
these are the rights to life, liberty and the pursuit of happiness; and that to pursue these
rights, governments are instituted among men, deriving their just powers from the consent
of the governed.”

Today, in an era of government tyranny and subversion of democracy, we need to
remember that the just powers of any government are not derived from the government’s
ability to use of force, but exclusively from the consent of the governed.
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Chapter 8

THE BERNOULLI’S AND EULER

8.1 The Bernoullis and Euler

Among the followers of Leibniz was an extraordinary family of mathematicians called
Bernoulli. They were descended from a wealthy merchant family in Basel, Switzerland.
The head of the family, Nicolas Bernoulli the Elder, tried to force his three sons, James
(1654-1705), Nicolas II (1662-1716) and John (1667-1748) to follow him in carrying on the
family business. However, the eldest son, James, had taught himself the Leibnizian form
of calculus, and instead became Professor of Mathematics at the University of Basel. His
motto was “Invicto patre sidera verso” (“Against my father’s will, I study the stars”).

Nicolas II and John soon caught their brother’s enthusiasm, and they learned calculus
from him. John became Professor of Mathematics in Gréningen and Nicolas II joined the
faculty of the newly-formed Academy of St. Petersburg. John Bernoulli had three sons,
Nicolas III (1695-1726), Daniel (1700-1782) and John II (1710-1790), all of whom made
notable contributions to mathematics and physics. In fact, the family of Nicolas Bernoulli
the Elder produced a total of nine famous mathematicians in three generations!

Daniel Bernoulli’s brilliance made him stand out even among the other members of
his gifted family. He became professor of mathematics at the Academy of Sciences in St.
Petersburg when he was twenty-five. After eight Russian winters however, he returned to
his native Basel. Since the chair in mathematics was already occupied by his father, he
was given a vacant chair, first in anatomy, then in botany, and finally in physics. In spite
of the variety of his titles, however, Daniel’s main work was in applied mathematics, and
he has been called the father of mathematical physics.

One of the good friends of Daniel Bernoulli and his brothers was a young man named
Leonhard Euler (1707-1783). He came to their house once a week to take private lessons
from their father, John Bernoulli. Euler was destined to become the most prolific math-
ematician in history, and the Bernoullis were quick to recognize his great ability. They
persuaded Euler’s father not to force him into a theological career, but instead to allow
him to go with Nicolas III and Daniel to work at the Academy in St. Petersburg.

Euler married the daughter of a Swiss painter and settled down to a life of quiet
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work, producing a large family and an unparalleled output of papers. A recent edition
of Euler’'s works contains 70 quarto volumes of published research and 14 volumes of
manuscripts and letters. His books and papers are mainly devoted to algebra, the theory
of numbers, analysis, mechanics, optics, the calculus of variations (invented by Euler),
geometry, trigonometry and astronomy; but they also include contributions to shipbuilding
science, architecture, philosophy and musical theory!

Euler achieved this enormous output by means of a calm and happy disposition, an
extraordinary memory and remarkable powers of concentration, which allowed him to work
even in the midst of the noise of his large family. His friend Thiébault described Euler as
sitting “..with a cat on his shoulder and a child on his knee - that was how he wrote his
immortal works”.

In 1771, Euler became totally blind. Nevertheless, aided by his sons and his devoted
scientific assistants, he continued to produce work of fundamental importance. It was his
habit to make calculations with chalk on a board for the benefit of his assistants, although
he himself could not see what he was writing. Appropriately, Euler was making such
computations on the day of his death. On September 18, 1783, Euler gave a mathematics
lesson to one of his grandchildren, and made some calculations on the motions of balloons.
He then spent the afternoon discussing the newly-discovered planet Uranus with two of his
assistants. At five o’clock, he suffered a cerebral hemorrhage, lost consciousness, and died
soon afterwards. As one of his biographers put it, “The chalk fell from his hand; Euler
ceased to calculate, and to live”.

In the eighteenth century it was customary for the French Academy of Sciences to
propose a mathematical topic each year, and to award a prize for the best paper dealing
with the problem. Léonard Euler and Daniel Bernoulli each won the Paris prize more
than ten times, and they share the distinction of being the only men ever to do so. John
Bernoulli is said to have thrown his son out of the house for winning the Paris prize in a
year when he himself had competed for it.

Euler and the Bernoullis did more than anyone else to develop the Leibnizian form of
calculus into a workable tool and to spread it throughout Europe. They applied it to a
great variety of problems, from the shape of ships’ sails to the kinetic theory of gasses. An
example of the sort of problem which they considered is the vibrating string.

In 1727, John Bernoulli in Basel, corresponding with his son Daniel in St. Petersburg,
developed an approximate set of equations for the motion of a vibrating string by consid-
ering it to be a row of point masses, joined together by weightless springs. Then Daniel
boldly passed over to the continuum limit, where the masses became infinitely numerous
and small.

The result was Daniel Bernoulli’s famous wave equation, which is what we would now
call a partial differential equation. He showed that the wave equation has sinusoidal so-
lutions, and that the sum of any two solutions is also a solution. This last result, his
superposition principle, is a mathematical proof of a property of wave motion noticed
by Huygens. The fact that many waves can propagate simultaneously through the same
medium without interacting was one of the reasons for Huygens’ belief that light is wave-
like, since he knew that many rays of light from various directions can cross a given space
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simultaneously without interacting. Because of their work with partial differential equa-
tions, Daniel Bernoulli and Léonard Euler are considered to be the founders of modern
theoretical physics.

8.2 Linear ordinary differential equations

Leonhard Euler and all the members of the Bernoulli family were very much interested
in differential equations, i.e., in equations relating the differentials of functions to the
functions themselves. The simplest example of this type of relationship is the equation:

daf
i kf (8.1)
where k is some constant. Equation (8.1) states that the rate of change of some function
f(t) is proportional to the function itself. This equation might (for example) describe the
rate of growth of money that we have put into the bank, where k is the interest rate.
It might also describe the increase or decrease of a population, where k represents the
difference between the birth rate and the death rate. In both cases, the rate of change
of f is proportional to the amount of f present at a given time. We can try to solve the
equation by assuming that the solution can be represented by a series of the form

f= Z ant™ = ag + ait + ast® + ast® + aqgt* + - (8.2)
n=0

where the a,,’s are constants that we have to determine. Then the first derivative of the
function f with respect to ¢t will be given by

d o0
d_J; = ;nantnl = ay + 2ast + 3ast® + daytd + - - - (8.3)
Substituting equations (8.2) and (8.3) into (8.1), we obtain:

a1 + 2ast + 3ast® + dagt® + - - = kag + kait + kaot® + kast® + kagt* + - - - (8.4)

In order for (8.4) to hold for all values of t, we need the following relationships between
the constant coefficients a,,:

a; = kao
2&2 = kCLl
3(13 = kCLQ
4(14 = k’a,g <8 5)

5@5 = ]{3&4
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This set of equations can be solved to give all of the higher coefficients in terms of ag:

k2
a; = iao
k’2
Ay = 5@0
]{72
@ = g (8.6)
k2
ay, = Zao
2
a, = mao

Substituting these values of the coefficients back into (8.2) and remembering Napier’s series
definition of e, we obtain

f=ao (1 + kt + (kt)’ + (kt)° 4 (kt)" +) _ _kt

91 3] A1 = (8.7)

In other words, when we differentiate e* with respect to ¢, we obtain the same function
again, multiplied by k.

8.3 Second-order differential equations

Equation (8.1) is called a “first-order ordinary differential equation” - first-order because it
involves only the function itself and its first derivative with no higher derivatives appearing;
ordinary because it involves only one variable, . We will now go on to discuss an example of
a second-order ordinary differential equation, where we will see that there are two constants
that must be determined by the boundary conditions of the problem.

The harmonic oscillator

As an example of a second-order ordinary differential equation, let us consider the rela-
tionship

d*f
We can solve this equation by assuming that the function f can be represented by the

series shown in equation (8.2), so that its first derivative with respect to t is given by (8.3).
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Then, differentiating a second time with respect to ¢, we have

Ef _d (& . . o
priaier (Z nant 1) = Zn(n —Dat"? = —wj Zant (8.9)
n=0 n=0

n=0

The requirement that (8.9) must hold for all values of ¢ gives us a set of equations relating
the higher even coefficients to ag:

W,
Ao = —2—(!)(10
2
w
a, = —4—(')(12
' (8.10)
2
W
ag — —6—(!)a4
and another set of equations relating the higher odd coefficients to a;
2
W,
as = —3—(!)a1
2
w
as = —5—(')(13
' (8.11)
2
W
a; = —7—(!)615

Thus the solution can be written in the form

f=a (wot _ (ol ot ) +aq <1 G0 ) (8.12)

3! 5! 2! 4!
Euler recognized this as being the same as
f = ay sin(wot) + ag cos(wot) (8.13)

since series representations of the sine and cosine functions were well known at the time
when he was working. He was also able to solve the harmonic oscillator equation in an
alternative way by letting

f = et (8.14)
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where i2 = —1. This gave Euler two linearly independent solutions, one with the plus
sign, and one with the minus sign. Comparing these solutions to the series solutions just
discussed, he was led to the formula

e = cos(x) + isin(x) (8.15)
and to the identity ‘
e"+1=0 (8.16)

8.4 Partial differentiation; Daniel Bernoulli’s wave equa-
tion

Having discussed differential equations involving only a single variable (ordinary differential
equations), let us now turn to differential equations involving several variables. These
are called “partial differential equations”. The most important pioneer of this branch of
mathematics was Daniel Bernoulli.

In 1727, John Bernoulli in Basel, corresponding with his son Daniel in St. Petersburg,
developed an approximate set of equations for the motion of a vibrating string by consid-
ering it to be a row of point masses, joined together by weightless springs. Then Daniel
boldly passed over to the continuum limit, where the masses became infinitely numerous
and small.

The result was Daniel Bernoulli’s famous wave equation, which is what we would now
call a partial differential equation. But what is a partial differential equation? What is
partial differentiation?

Daniel Bernoulli developed his wave equation to describe the motion of a vibrating
string, for example a violin string, and in this problem there are two variables: z, which
represents the distance along the string, and ¢, which represents time. The displacement
of the string from its equilibrium position is represented by f(z,t). In other words, the
displacement is a function of two variables, position and time. To deal with this problem,
Daniel Bernoulli defined partial differentials in much the same way that Isaac Newton
defined ordinary differentials. He introduced the definitions:

of _ limit [f(z+Ax,t)— f(z,0)
or ~ Az —0 I Ax } (8.17)
and of _ limit [ f(a,t+ At) — f(z,t)
_ limit z, — J\&,
ot~ At—0 | At ] (8.18)

The rules for partial differentiation are the same as for ordinary differentiation, except that
we must add an extra rule: When performing partial differentiation with respect to one
variable, all other variables must be regarded as constants. Second partial derivatives are
defined similarly. For example, to find

(8.19)
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and similarly

0%f  a [of
2o [0 o

ot | ot
It is also possible to define mixed partial derivatives, and it turns out that in the mixed

second partial derivative the order of differentiation does not matter.

0*f 0 [6’]‘} 0 [8]‘1

oxdt — Ox | Ot Oz

ot

(8.21)

In the notation that we have been discussing, Daniel Bernoulli’s wave equation has the
form

where ¢ is a constant. Bernoulli was able to show that in the case of a vibrating string,

{82 1 02

CcC =

T
m (8.23)

where 7' is the tension in the string and where p is the mass per unit length. Daniel
Bernoulli solved his wave equation by assuming that a solution could be written in the
form

f(z,t) = ¢(x) [cos(wt) + ay sin(wt)] (8.24)

where the constant a; is determined by the initial conditions of the problem. Then, since

1 02 : 2 :
~ 5@ [cos(wt) + ay sin(wt)] = —w” [cos(wt) + aj sin(wt)] (8:25)

The z-dependent part of the solution had to satisfy

a2 2 82
(e D)= (Eerm)anso
where )
w

Daniel Bernoulli showed that (8.26) has sinusoidal solutions of the form
¢(x) = Ay sin(kx) + Ay cos(kx) (8.28)

where the constants A; and Ay as well as the value of k are determined by the boundary
conditions. For example, if the vibrating string is clamped at the positions x = 0 and
x = L, then we know that A; = 0 (since cos(0) = 0), and that

¢(L) = sin(kL) = 0 (8.29)



126 LIVES IN MATHEMATICS

The boundary condition shown in equation (8.29) determines the allowed values of k; they
must such that kL is an integral multiple of 7, and thus the only allowed values are

k=" —1.234,... (8.30)

L
Only positive integers need be considered, because although the negative integers would
satisfy the boundary conditions, they do not yield any new independent solutions. Thus
Daniel Bernoulli’s wave equation, with the boundary conditions f (0, t) = 0 and f (L, t) =
0, can be satisfied by any function of the form
nm

folz,t) = Ay sin(kx) [cos(kct) + a, sin(kct)] k= A (8.31)

where n is an integer.

8.5 Daniel Bernoulli’s superposition principle

Daniel Bernoulli realized that the sum of any two solutions to his wave equation is also a
solution. This is easy to prove: We know that if f,(x,t) has the form shown in equation
(8.31), then
0? 1 02
—— — ———| fulz,t) =0 8.32
L‘?xz c2 0752] Inl,1) ( )

Then a function of the form

O(x,t) =Y fula,t) (8.33)

will also be a solution, since
0? 1 0? 0? 1 02
[W B ?aﬁ} le,t) = Zﬂ laﬂ - Eaﬁ} ful®,8) =0 (8:34)

Daniel Bernoulli’s superposition principle is a mathematical proof of a property of wave
motion noticed by Huygens. The fact that many waves can propagate simultaneously
through the same medium without interacting was one of the reasons for Huygens’ belief
that light is wavelike, since he knew that many rays of light from various directions can
cross a given space simultaneously without interacting.

8.6 The argument between Bernoulli and Euler

Leonhard Euler and Daniel Bernoulli were both such great mathematicians and great
friends that it is strange to think that there could ever have been a disagreement between
them. Nevertheless, a long argument between these two geniuses began as a result of
their independent solutions to the wave equation. The argument was by no means sterile,
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however, and eventually it led to the foundation of a new branch of mathematics - Fourier
analysis.

We have just seen Bernoulli’s solution to the wave equation. Leonhard Euler also
solved it, and in a completely different way. Euler showed that if /' and G are any two
well-behaved functions of a single variable, then

[0 1 0%]

and -2 L2
For example, when
F(z + ct) = (z + ct)? = 2% + 2xct + A (8.37)
then
0” 0 2 2,2
while
1 0% 1 0? 9 9,9

Adding (10-38) to (8.39) yields (8.35). Notice that in carrying out the partial differentia-
tions with respect to x, we regard t as a constant, while when we differentiate with respect
to t, we hold x constant.

Leonhard Euler was able to show that if F' is a function of some variable w, then

0 b\ OF dw 0 s OF 0w

a: W) = 500 2l W = 50 (8.40)

and using these relationships he was able to prove that equations (8.35) and (8.36) hold in
general, no matter what the functions F' and G might be.

Meanwhile, Daniel Bernoulli had derived his own solutions to the wave equation, the
ones shown in equation (8.31), and he had also shown that if these solutions are added
together, with various values of the constants A, and a, , the result is also a solution.
Euler and Bernoulli wrote letters to each other about their work on the wave equation,
and being great mathematicians, they were able draw the logical conclusion that followed
from their results: If they were both right, it had to follow that by choosing the constants
A, in the right way it would be possible to construct series such that

fla) = gAn sin ("—zx) n=1234,- (8.41)

regardless of the form of f(z), the only restriction being that f should be single-valued,
continuous and differentiable and that it should obey the boundary conditions f(0) = 0
and f(L) = 0. Euler found this hard to believe, and to the end of his life he continued to
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think that there must be something wrong. Fuler believed the he himself had found the
most general solutions to the wave equation, and that his friend Daniel’s set of solutions
was somehow incomplete - not sufficiently general. This famous argument between the two
great mathematicians led to a whole new branch of mathematics - Fourier analysis.

Together with Joseph-Louis Lagrange (1736-1813), Leonhard Euler pioneered another
new branch of matematics, variational calculus, which we will discuss in detail in the
chapter on Lagrange.
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Chapter 9

FOURIER

9.1 A poor taylor’s son becomes Napoleon’s friend

The controversy about the completeness of Bernoulli’s solutions was still raging when
Jean-Baptiste Joseph Fourier (1768-1830) arrived on the scene. Although he began life
as the orphaned son of a poor tailor, Fourier later achieved distinction as Professor of
Mathematics at Napoleon’s Ecole Normale, and he even became a personal friend of the
emperor.

Fourier was orphaned at the age of nine, but through a recommendation to the Bishop
of Auxerre, he was educated by the Benedictine Order of the Convent of St. Mark, where
he soon exhibited many signs of genius. After graduating, Fourier became a military
lecturer in mathematics. During the French Revolution, he played a prominent role in his
own district, serving on the Revolutionary Committee. He was imprisoned briefly during
Robespierre’s Terror. After his release, Joseph Fourier was appointed to the Ecole Normale,
and afterwards, he rose to become the successor to Joseph-Louis Lagrange at the Ecole
Polytechnique.

Fourier followed Napoleon to Egypt, where he helped to set up the Egyptian Institute,
and where he made estimates of the ages of the pyramids and other monuments. Napoleon
finally appointed Fourier as the Prefect of a district in southern France in the vicinity
of Grenoble. Fourier worked hard at this job, supervising (for example) the draining of
swamps to eliminate malaria. Nevertheless, he continued his mathematical research, and
during his time in Grenoble he composed a monumental study of heat conduction, his
Mémoir sur la Chaleur. In this work, he made use of a method that later became known
as Fourier analysis.

9.2 Fourier’s studies of heat

The diffusion equation, which governs heat flow, is similar to the wave equation except
that it involves only first-order differentiation with respect to time. For the case of heat
flow in a metal rod, the equation for the temperature as a function of both position and
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time has the form )

0 0

Here T is the temperature, = and ¢ are position and time respectively and C'is a constant
which depends on the material.. To simplify the problem, we have considered only one
space dimension. Equation (9.1) might, for example, describe heat flow in an iron bar.

9.3 Fourier analysis

Fourier was able to use a slightly modified version of Daniel Bernoulli’s methods to find
solutions to the diffusion equation, and given the initial temperature distribution, he was
able to calculate the temperature distribution at any future time. To do this, he needed to
determine the constants A,, in series such as the one shown in equation (10.41). (Today,
this type of series is called a Fourier series.) One of the equations that Fourier used to
determine these constants had the form

%/OL dx sin (?) sin <m2ra:> = pnm (9.2)

lifn=m

where both n and m are integers. From equation (9.2) it follows that

%/OL dzx sin (n_z:c) flx) = %/OL dx sin (?) miO:OAm sin <m2x> = A, (9:3)

Fourier was able to substitute the A,,’s calculated from (9.3) back into the series for f (x).
For example, suppose that

1if o < L2

flx) = (9.4)
0if x> L/2

/OL dz sin (”—Zx) f(z)
/OL/2 dx sin <ﬂLx> (9.5)

)

When Fourier submitted his Mémoir sur la Chaleur to the Academy of Sciences in
Paris, it was severely criticized and it failed to win the annual prize set by the Academy.

Then

e~ o

1o
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Figure 9.1: Engraved portrait of French mathematician Jean Baptiste Joseph
Fourier (1768-1830). He founded a branch of mathematics now known as
Fourier analysis. Its generalizations have great importance for many branches
of theoretical science and engineering.
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Figure 9.2: Bust of Fourier in Grenoble.
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Figure 9.3: This figure shows the Fourier series representation of the function
defined by equation (9.4) compared with the function itself. The slowly con-
vergent series has been truncated after 50 terms, and thus it fails to represent
the function with complete accuracy. However, if an infinite number of terms
had been included, the Fourier series would be completely accurate. “Square
waves” of the kind shown here are sometimes used to test high fidelity electronic
amplifiers, because very high frequencies are needed to accurately reproduce
the sharp corners of the square wave.

The jury consisted of three of the most eminent mathematicians of the period, Joseph-
Louis Lagrange (1736-1813), Pierre-Simon Laplace (1749-1827) and Adrien-Marie Legendre
(1749-1827). Lagrange, Laplace and Legendre objected that although Fourier’s methods
worked extremely well in practice, he had not really overcome Euler’s objections, i.e. he
had not really shown that every continuous, single-valued and differentiable function f (x)
obeying the boundary conditions f(0) = 0 and f(L) = 0 can be represented by the series
shown in equation (10.41). (This property of the set of functions in the series is called
“completeness”, and it was not proved until much later.) Undeterred by the criticism,
Fourier published his book without any changes. Both parties were right. Fourier was
right in believing his set of functions to be complete, and the jury was right in pointing out
that he had not proved it. The generalizations of Fourier’s methods are extremely powerful,
and they form the basis for many branches of theoretical science and engineering.

9.4 Fourier transforms

Notation and basic properties

Let us introduce the abbreviated notation:

/_del/_deQ---/_ded f(xl,xg,...,xd)z/dx F(x) (9.6)
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and

el (Prz1tpazat-tpara) — iPX (9.7)

Then the d-dimensional Fourier transform of the function f(x) is given by

t 1 —1ip-xX
fip) = Tl /dx e X f(x) (9.8)
while the inverse transform is
1 ipx gt
109 = Gy [ o e 1) (9.9

We would like to show that the scalar product of two functions in direct space is equal to
the scalar product of their Fourier transforms in reciprocal space. From (9.9) we have

* 1 1—iplx t( I\*

9(x) :W/dp ™ g'(p) (9.10)

so that

/dX g(x)*f(x) = (2717_)d /dp/dp' gt(p/)*ft(p)/dx 6i(p—p’)-x
(9.11)
However,

(271T)d /dX ei(P—P/).x _ 5([) o p/) (912)

so that

/ dx g(x)" f(x) = / dp ¢ (p)" f(p) (9.13)

Equation ((9.13)) implies that if we have an orthonormal set of functions {¢;(x)} in direct
space, so that

[ x 30905(x) = 5, (9.14)
then their Fourier transforms form an orthonormal set in reciprocal space:

[ v 615 0) =5 (9.15)
From it also follows that

/ dx ¢ ()V (%) (x) = / dp 6% (p)(V6;)'(p) (9.16)
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where
t — 1 —ip-X
V6, (9) = i [ dx e V)0 (9.17)
Also, from and we have
[ v () Boie) =~ [ db () 1764(p) (9.18)
where
p2 =p-p (9.19)

Expansion of a plane wave

Suppose that we have a complete set of orthonormal functions {¢;(x)} in a d-dimensional
space. The completeness condition (in the sense of distributions) can be written in the
form

D 6 (x)¢;(x) = 6(x — x) (9.20)
J
Multiplying both sides of 1} by e~®* and integrating over dx’, we obtain:

¢;(X) dX, e*ip-x’ (bj (X’) = dX/ e*ip'xl (S(X . X/) _ €7ip‘x
Lo f /

(9.21)
so that
e = Y5 [dx e o)
:(%MZ@MWW 9.22)
Then J
f'(p) = W / dx e P> f(x)
= Y6 [ ax o0 (9.23)
and j
fx) = (%—gd/z / dp P> f!(p)

= D 4% / dp ¢;(p)f"(p) (9.24)

J
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It follows from that if the set of functions {¢;(x)} is chosen in such a way that
they are basis functions of irreducible representations of a group G, and if I7 is the set
of indices j such that ¢;(x) transforms like the vth basis function of the yth irreducible
representation of G, then

Py [e7P] = 2m)"2 ) " ¢5(x)}(p) (9.25)

JEIY

If we multiply on the left by e > and integrate over dz, we obtain
[x e~ om S [ax o501 (p)
J
= (@m)*)_¢}'(0)¢5(p) (9-26)
J
so that (in the sense of distributions)
> ¢ (p)el(p) = d(p — P (9.27)
J

Let us now try to make the meaning of completeness relations like (9.20) and (9.27)) a
little more precise: Suppose that there exists a Hilbert space H with an orthonormal basis
{¢;(x)}. Then, for any f € H, we can write

F00 = Y 05(x) [ i 636) ) (9.23)

But we could equally well have written

f(x) = /dx’ f(x") 6(x —x) (9.29)

Thus we can see that the sum on the left-hand side of is acting like a Dirac delta
function; but the relationship is only known to hold within H. Similar considerations
hold for (9.27). In the discussion above, we imagined the set of functions {¢;(x)} to
be symmetry-adapted, and we let [V stand for a domain within which all the functions
transform like the vth basis function of the yth irreducible representation of the symmetry
group G. Then if

PYIf(x)] =) (%) / dx' ¢j(x') f(x) = f(x) (9.30)

jEIy

we can conclude that f(x) lies entirely within the domain ! and that it transforms like
the vth basis function of the yth irreducible representation of G. What about its Fourier
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transform, ff(x)?. From (9.23)),
fip) = S olle) [ dx o) f )
J

= Y e [ dx i) ) 0:31)

JEIL

The second line of follows from the fact the the dx’ integral vanishes unless ¢7(x’)
lies within the domain I%. Thus, if f,(x) lies within the domain I, then f}(p) will lie
within the corresponding domain in reciprocal space. One can express this by saying that
symmetry properties are preserved under Fourier transformation.

9.5 The Fourier convolution theorem

Let
1 1oip’x gt/
109 = gy [ '€ ) (9.32)
and
1 "
o) = i [ o o) (9.33)

Then we can write

dx e f(x)g(x)

—

— 1 ’ "ot N b N Ao 4pp)x
= (27r)d/dp/dpf(p)g(p)/dXeP+p p
— /dp//dp//ft(p/)gt(p//) 5(p/+p,,_p) (934)

so that
[ ix 090 = [ apt 109’0 - p) (9.35)

Thus we see that in a d-dimensional space, the Fourier convolution theorem has exactly
the same form as in 3 dimensions. In a similar way, it is easy to show that

/ dp P> f1(p)g!(p) = / dx' F(x)g(x — ') (9.36)
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9.6 Harmonic analysis for non-Euclidean spaces

It is interesting to ask whether something analogous to Fourier transform theory can be
developed for spaces whose metric is non-Euclidean. For example, we might think of the
surface of a very large hypersphere of hyperradius r, embedded in a d-dimensional space.
Since the hyperradius is very large, the surface is locally almost flat, but nevertheless it
has a slight curvature. On this surface, the unit vector u = x/r plays the role which x
would play in a Euclidean space. Just as we can write

109 = i [ o @ 1) (9.87
where
t o 1 —ip'X
F'(0) = s [ dx e £ (9.35)

in a Euclidean space, so, on our very large hypersphere, we can write

Fu) =) "Yau(u) ar, (9.39)
Ap
where. from the orthonormality of the hyperspherical harmonics, we have

on= [ 40 Y5, () () (9.40)

Provided that f(u) can be expanded as a polynomial, our general hyperangular integration
theorem can be used to carry out the integration in[9.40 More generally, we can try to find
the set of hyperspherical harmonics appropriate for any non-Euclidean space, and these
can be used as a plane-wave-like basis for an analogue to Fourier transform theory.

9.7 Fourier’s discovery of the greenhouse effect

Fourier calculated that an object the size of the earth at the earthA s distance from the
sun ought to be considerably cooler than the earth’s actual temperature. Among the
possible explanations that he proposed for this anomaly, was what we now call the “green-
house effect”. Fourier realized that the earth’s atmosphere could contribute to the planet’s
anomalously high temperature. In a paper proposing this idea, published in 1827, he re-
ferred to the experiments of Horace Bénédict de Saussure (1740-1799), who demonstrated
the effect using a vase under sheets of glass, and lined with blackened cork.

Suggestions for further reading
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Chapter 10
JOSEPH-LOUIS LAGRANGE

10.1 A professor at the age of 19!

Joseph-Louis Lagrange (1736-1813) was born in Turin, Italy and baptized with his Italian
name, Giuseppe Lodovico Lagrangia. His father was the Treasurer in the Office of Public
Works, and his mother was the daughter of a physician.

Lagrange was originally educated at the College of Turin with the intention that he
should become a lawyer. However, after reading Edmond Halley’s book on the use of
algebra in optics, he became interested in mathematics.

Working by himself, and largely self-taught. Lagrange began to develop the field of
mathematics that we now call variational calculus. He applied this to the problem of
finding the tautochrone, the curve an object sliding without friction would always reach
the bottom after the same interval of time, regardless of the object’s starting point. In
1755, he sent this calculations to Euler, who was then in Berlin. Euler was extremely
impressed by the work of the young Italian mathematician, and although he was only 19
years old, Lagrange was appointed Professor of Mathematics at the Royal Artillery School
in Turin.

10.2 Successor to Euler at the Berlin Academy

In 1756, Lagrange sent to Fuler a set of calculations in which he applied the calculus
of variations to mechanics. Euler recognized these calculations as a generalization of the
results that he himself had obtained. Full of admiration for the young mathematical genius,
Euler consulted with his colleague Maupertius, and then invited Lagrange to accept a
position at the Academy in Berlin. However, afraid of being distracted from his work by the
move, Lagrange initially refused. Instead he became a founding member of the Academy
if Sciences of Turin, and began the publication of a journal in French and Latin entitled
Meélanges de Turin. Much of this journal was devoted to Lagrange’s own mathematical
papers.

Finally, in 1766, Fuler returned to St. Petersburg in Russia, and the King of Prussia
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Frederick II (Frederick the Great) himself offered Lagrange the post of Director of Math-
ematics at the Berlin Academy, at a very generous salary. This time, Lagrange accepted
the invitation to Berlin, and he remained there for twenty years as Euler’s successor, pro-
ducing a monumental volume of work on mechanics, variational calculus, number theory
and many other topics. Some of his work on the roots of equations anticipated the work
of Galois which led to group theory.

10.3 Lagrange is called to Paris

In 1786, Lagrange’s great patron, Frederick II died. and Lagrange’s position in Berlin
became less happy. He then accepted an invitation to come to Paris, where he became a
member of the French Academy, and part of a committee to go over to the metric system
and the decimal system for weights and measures. Lagrange survived during the dangerous
times of the French Revolution by conforming to whatever regulations were current. While
his great friend, Lavoisier, was guillotined in Robespierre’s Terror, Lagrange not only
survived but was made a Senator.

Napoleon named Lagrange to the Legion of Honour and Count of the Empire in 1808.
On 3 April 1813, a week before his death, he was awarded the Grand Croix of the Ordre
Impérial de la Réunion.

10.4 The calculus of variations

In a typical problem of the calculus of variations, one considers an integral of the form

dz' dz? dz?
0S8 =6 | L{at 2?2 — — ... )dt=0 10.1
[ttt S ) (10.1)

L is some function of the coordinates, z!,---,z% and their ¢t-derivatives. The problem is
to find the coordinates as functions of ¢ which will give a minimum or maximum value
to the integral S. For example, the principle of Pierre Fermat (1601-1665) states that in
geometrical optics, the actual path of a ray of light is the one that takes the least time. The
infinitesimal time dt required for the light signal to move an infinitesimal distance dl along
its path is

n(x)

dt =

dl (10.2)

C

where c is the velocity of light in a vacuum and n(x) is the index of refraction. From the
Pythagorean Theorem we have

dl = +/de?+dy+dz? = Vdx - dx

dx dx dx dx
E-Edl—m-mdl (10.3)
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Figure 10.1: Portrait of Lagrange.
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Figure 10.2: Another portrait of Joseph-Louis Lagrange.
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Figure 10.3: A commemorative French Stamp.
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Figure 10.4: Lagrange’s patron during his twenty-year stay in Berlin, Frederick
the Great of Prussia. The portrait shows him at the age of 68. His court and
Academy featured many of the leading intellectuals of the time.
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Thus we can write Fermat’s principle in the form:

dz dy d
S = /L (x,y,z, d—?, d_gl/’ d—;) dl = minimum (10.4)
where
dx dx

A similar principle was discovered by the great Irish mathematician Sir William Rowan
Hamilton (1805-1865). In 1835, he showed that for a system of particles whose state in
Newtonian mechanics is specified at a given time by the coordinates z', 22, - -, 2%, and the
velocities dz'/dt,dx?/dt, - - -, dx?/dt. the integral

S:/Ldt:/(T—V)dt (10.6)

is an extremum, where 7" is the kinetic energy

d d

=32 2 Mgy = g 2 2 |

i=1 j=1 i=1 j=1

and where V(2! 2% --- 2%) is the potential energy. Leonhard Euler (1707-1783) and
Joseph-Louis Lagrange (1736-1813), who developed the calculus of variations, had shown
that if the coordinates and their time derivatives obey the differential equations

doL oL
oL 98 1.2, 10.
Gior om0 t=bh2eed (10.8)

Then the integral S = [ L dt will be an extremum, and vice versa. The way that they
showed this was as follows: Suppose that we have found the true path, z(t), for which
S = f L dt is an extremum. Now consider what happens to S when we wander slightly
away from the true path. The situation is analogous to calculating the change of a function
as we move very slightly away from one of its maxima or minima. If we are at the top of
a mountain, or at the bottom of a valley, then taking a very slight step in any direction
will not change our altitude, since at that point the ground is level. In the same way, if we
alter the path by an amount ', the resulting alteration in [ L dt will be zero:

6/Ldt:/6Ldt:O (10.9)

The variation of the Lagrangian function L resulting directly from the variation of the
coordinates, or indirectly through the consequent variation of the velocities is

d
OL ., OLd _,
oL = Z [axiéa: + 5 (0 )} (10.10)

=1
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We next integrate by parts using the relationship

b b
/ u dv = [uv]’ — / v du (10.11)
This give us the relationship

oL d d OL
/ 6% dt o) dt = L 836’ ] / dt 8m’5 dt

Since the slightly altered path must still reach the end points a and b, the variation from
the true path must vanish at those points, and therefore

<or 1
x| = 10.1
L1 aﬁax] 0 (10.13)

(10.12)

Finally, combining equations ((10.10]), (10.12)) and ([10.13]). we obtain

b b d
d OL oL
I _ E:_ = 10.14
/aé o /aizl{dtajfl }5 =0 (1014)

To ensure that the integral in ((10.14]) will vanish for an arbitrary slight variation of path
dz', it is necessary that

i oL B oL
dt 0zt Ozt

=0 i=12---,d (10.15)

Therefore the Euler-Lagrange equations ((10.8)) are a consequence of action principle (10.1).

10.5 Cyclic coordinates

The Lagrangian formalism allows us to obtain conservation laws with great ease. As an
example, we can think of a single particle moving in a central potential, V(r). This is a
case where it is convenient to express the particle’s Lagrangian in terms of spherical polar
coordinates. Let

x = rsinfcos¢
= rsinfsin¢
z = rcost (10.16)

In Cartesian coordinates, the element of length is given by

dli*> = da® + dy* + dz* (10.17)
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Combining ((10.16]) and ((10.17)) we find that in spherical polar coordinates, the element of
length is

dI* = dr* + r*df* + r*sin® 0 d¢? (10.18)

We can now write down the Lagrangian of the particle in terms of r, 8 and ¢:

1 ar\> ,(doN\? ., [do\’
L= 5™ [(E) +r (%) + r”sin“ 0 (E) —V(r) (10.19)

The Euler-Lagrange equations of the particle then become

doL 0L d’r o .99 OV

prir Tl — mﬁ:mrﬁ + mrsin® ¢ 5

doL 0L d AN 5

Zio6 90 — 7 (mr dt) = mr~sinf cos ¢

doL 0L d 9 . 9 ,d0

== - 0— | =0 10.20

oy 06 dt (W T (10.20)

The second and third of the equations in this array are conservation laws. In fact, if the
coordinate system is chosen in such a way that ® = 0, the second equation is Kepler’s second
law. When a coordinate does not appear in the Lagrangian, but only its time derivative,
that coordinate is said to be cyclic. For each cyclic coordinate, there is a conservation law.
The momentum conjugate to a coordinate is defined to be the partial derivative of the
Lagrangian with respect to the time derivative of that coordinate. In the example which
we are considering here, the momenta conjugate to the coordinates r, 6 and ¢ are

_oL_ dr
Pr="or ="
_ 0L adf
L
D = % = mr? SiHQH% (10.21)

We can see from this example that the momenta which are conjugate to cyclic coordinates
are conserved. The Euler-Lagrange equations ensure that this is true in general. We can
also see that transformation to coordinates, as many as possible of which are cyclic, is a
big step towards solving the equations of motion of a system.

As a second example of a transformation to coordinates, some of which are cyclic, we
can think of a two particles interacting through a potential which depends only on the
distance between them. In that case, the Lagrangian, expressed in Cartesian coordinates,
is given by

1 Xm Xm 1 dX2 dX2
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The Lagrangian formulation allows us to introduce a new set of coordinates which are
much more convenient. Let

miX; + MaXa
Xc.m. —

my + 1My
X12 = X1 —Xo (1023)

In terms of the center of mass coordinates X..,, and the relative position coordinates X,
the Lagrangian of the system becomes:

1 chm chm 1 mi1me Xmg dX12
L = - . _ .
p(ma - ma) =, a2 (m1 n m2> atdt
= V([X2|) (10.24)

Since the Lagrangian does not depend on X.,,, the center of mass coordinates are cyclic,
and the momenta conjugate to them are conserved:

d d (0L d Xem \

Since the potential energy does not depend on the orientation of the vector Xio, but only
on its magnitude, we could complete our transformation to cyclic coordinates by expressing
X2 in terms of spherical polar coordinates. Then the only non-cyclic coordinate would be
ri2 = |Xia|. It is a general rule that if the Lagrangian is independent of some generalized
coordinate X*#, i.e if

oL
axn (10.26)
then the momentum conjugate to it is conserved:
oL
= —— = constant 10.27
Pu= o (10.27)

Suggestions for further reading

1. Penrose, Roger (2007). The Road to Reality. Vintage books.

2. Landau, L. D.; Lifshitz, E. M. (15 January 1976). Mechanics (3rd ed.). Butterworth

Heinemann. p. 134.

Landau, Lev; Lifshitz, Evgeny (1975). The Classical Theory of Fields. Elsevier Ltd.

4. Hand, L. N.; Finch, J. D. (13 November 1998). Analytical Mechanics (2nd ed.).
Cambridge University Press. p. 23.

5. Louis N. Hand; Janet D. Finch (1998). Analytical mechanics. Cambridge University
Press. pp. 140-141.

6. Saletan, E. J.; JosA@©, J. V. (1998). Classical Dynamics: A Contemporary Approach.
Cambridge University Press.

Bl



10.5.

10.

11.

12.
13.

14.
15.

16.

17.

18.

19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

29.

CYCLIC COORDINATES 155

Kibble, T. W. B.; Berkshire, F. H. (2004). Classical Mechanics (5th ed.). Imperial
College Press. p. 236.

Goldstein, Herbert (1980). Classical Mechanics (2nd ed.). San Francisco, CA: Addi-
son Wesley.

Goldstein, Herbert; Poole, Charles P., Jr.; Safko, John L. (2002). Classical Mechanics
(3rd ed.). San Francisco, CA: Addison Wesley.

Lanczos, Cornelius (1986). The variational principles of mechanics (Reprint of Uni-
versity of Toronto 1970 4th ed.). Courier Dover. p. 43.

Fetter, A. L.; Walecka, J. D. (1980). Theoretical Mechanics of Particles and Con-
tinua. Dover. pp. 53-57.

Feynman, R., The Principle of Least Action.

Dvorak, R.; Freistetter, Florian (2005). A§ 3.2 Lagrange equations of the first kind.
Chaos and stability in planetary systems. Birkhauser. p. 24.

Haken, H (2006). Information and self-organization (3rd ed.). Springer. p. 61.
Henry Zatzkis (1960). A§].4 Lagrange equations of the second kind. In DH Menzel
(ed.). Fundamental formulas of physics. 1 (2nd ed.). Courier Dover. p. 160.
Francis Begnaud Hildebrand (1992). Methods of applied mathematics (Reprint of
Prentice-Hall 1965 2nd ed.). Courier Dover. p. 156.

Michail Zak; Joseph P. Zbilut; Ronald E. Meyers (1997). From instability to intelli-
gence. Springer. p. 202.

Ahmed A. Shabana (2008). Computational continuum mechanics. Cambridge Uni-
versity Press. pp. 118-119.

John Robert Taylor (2005). Classical mechanics. University Science Books. p. 297.
Padmanabhan, Thanu (2000). /i§232 Motion in a rotating frame. Theoretical
Astrophysics: Astrophysical processes (3rd ed.). Cambridge University Press. p. 48.
Doughty, Noel A. (1990). Lagrangian Interaction. Addison-Wesley Publishers Ltd.
Kosyakov, B. P. (2007). Introduction to the classical theory of particles and fields.
Berlin, Germany: Springer.

Galley, Chad R. (2013). Classical Mechanics of Nonconservative Systems. Physical
Review Letters. 110 (17):

Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (2014). Radiation reaction at the level
of the action. International Journal of Modern Physics A. 29 (24):

Birnholtz, Ofek; Hadar, Shahar; Kol, Barak (2013). Theory of post-Newtonian radi-
ation and reaction. Physical Review D. 88 (10):

Roger F Gans (2013). Engineering Dynamics: From the Lagrangian to Simulation.
New York: Springer.

Terry Gannon (2006). Moonshine beyond the monster: the bridge connecting algebra,
modular forms and physics. Cambridge University Press. p. 267.

Torby, Bruce (1984). ”Energy Methods”. Advanced Dynamics for Engineers. HRW
Series in Mechanical Engineering. United States of America: CBS College Publishing.
Foster, J; Nightingale, J.D. (1995). A Short Course in General Relativity (2nd ed.).
Springer.



156 LIVES IN MATHEMATICS

30. Gupta, Kiran Chandra, Classical mechanics of particles and rigid bodies (Wiley,
1988).

31. Cassel, Kevin (2013). Variational methods with applications in science and engineer-
ing. Cambridge: Cambridge University Press.

32. Goldstein, Herbert, et al. Classical Mechanics. 3rd ed., Pearson, 2002.

33. M. P. Hobson; G. P. Efstathiou; A. N. Lasenby (2006). General Relativity: An
Introduction for Physicists. Cambridge University Press. pp. 79-80.



Chapter 11

CONDORCET

In France the Marquis de Condorcet had written an equally optimistic book, Esquisse d’un
Tableau Historique des Progrées de I’Esprit Humain. Condorcet’s optimism was unaffected
even by the fact that at the time when he was writing he was in hiding, under sentence
of death by Robespierre’s government. Like Godwin’s Political Justice, this book offers
an optimistic vision of of how human society can be improved. Together, the two books
provoked Malthus to write his book on population.

11.1 Condorcet becomes a mathematician

Marie-Jean-Antoine-Nicolas Caritat, Marquis de Condorcet, was born in 1743 in the town
of Ribemont in southern France. He was born into an ancient and noble family of the
principality of Orange but there was nothing in his background to suggest that he might
one day become a famous scientist and social philosopher. In fact, for several generations
before, most of the men in the family had followed military or ecclesiastical careers and
none were scholars.

After an initial education received at home from his mother, Condorcet was sent to
his uncle, the Bishop of Lisieux, who provided a Jesuit tutor for the boy. In 1758 Con-
dorcet continued his studies with the Jesuits at the College of Navarre. After he graduated
from the College, Condorcet’s powerful and independent intelligence suddenly asserted it-
self. He announced that he intended to study mathematics. His family was unanimously
and violently opposed to this idea. The privileges of the nobility were based on heredi-
tary power and on a static society. Science, with its emphasis on individual talent and
on progress, undermined both these principles. The opposition of Condorcet’s family is
therefore understandable but he persisted until they gave in.

From 1765 to 1774, Condorcet focused on science. In 1765, he published his first work
on mathematics entitled Fssai sur le calcul intégral, which was well received, launching his
career as a mathematician. He would go on to publish many more papers, and in 1769, at
the age of 26, he was elected to the Academie royale des Sciences (French Royal Academy
of Sciences)

157
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Condorcet worked with Leonhard Euler and Benjamin Franklin. He soon became an
honorary member of many foreign academies and philosophic societies including the Royal
Swedish Academy of Sciences (1785), Foreign Honorary Member of the American Academy
of Arts and Sciences (1792), and also in Prussia and Russia.

11.2 Human rights and scientific sociology

In 1774, at the age of 31, Condorcet was appointed Inspector-General of the Paris Mint by
his friend, the economist Turgot. From this point on, Condorcet shifted his focus from the
purely mathematical to philosophy and political matters. In the following years, he took up
the defense of human rights in general, and of women’s and blacks’ rights in particular (an
abolitionist, he became active in the Society of the Friends of the Blacks in the 1780s). He
supported the ideals embodied by the newly formed United States, and proposed projects
of political, administrative and economic reforms intended to transform France.

The year 1785 saw the publication of Condorcet’s highly original mathematical work,
Essai sur Uapplication de l'analyse a la probabilité des décisions rendues a la pluralité
des voiz, in which he pioneered the application of the theory of probability in the social
sciences. A later, much enlarged, edition of this book extended the applications to games
of chance. Through these highly original works, Condorcet became a pioneer of scientific
sociology.

In 1786, Condorcet married one of the most beautiful women of the time, Sophie de
Grouchy (1764-1822). Condorcet’s position as Inspector-General of the Mint meant that
they lived at the Hotel des Monnaies. Mme Condorcet’s salon there was famous.
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Figure 11.1: The Marquis de Condorcet.
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Figure 11.2: A commerative French stamp.
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Figure 11.3: Condorcet’s wife, Sophie de Gauchy.
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Figure 11.4: The French economist Turgot was Condorcet’s mentor and friend.
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Figure 11.5: The frontpage of Condorcet’s famous book, in which he defined the
idea of human progress, and anticipated Darwin’s theory of evolution.



164 LIVES IN MATHEMATICS

11.3 The French Revolution

Ever since the age of 17, Condorcet had thought about questions of justice and virtue and
especially about how it is in our own interest to be both just and virtuous. Very early in
his life he had been occupied with the idea of human perfectibility. He was convinced that
the primary duty of every person is to contribute as much as possible to the development
of mankind, and that by making such a contribution, one can also achieve the greatest
possible personal happiness. When the French Revolution broke out in 1789 he saw it as
an unprecedented opportunity to do his part in the cause of progress and he entered the
arena wholeheartedly.

Condorcet was first elected as a member of the Municipality of Paris; and then, in
1791, he became one of the six Commissioners of the Treasury. Soon afterwards he was
elected to the Legislative Assembly, of which he became first the Secretary and finally the
President. In 1792, Condorcet proposed to the Assembly that all patents of nobility should
be burned. The motion was carried unanimously; and on 19 June his own documents were
thrown on a fire with the others at the foot of a statue of Louis XIV.

Condorcet was one of the chief authors of the proclamation which declared France to
be a republic and which summoned a National Convention. As he remained above the
personal political quarrels that were raging at the time, Condorcet was elected to the
National Convention by five different constituencies. When the Convention brought Louis
XVI to trial, Condorcet maintained that, according to the constitution, the monarch was
inviolable and that the Convention therefore had no legal right to try the King. When the
King was tried despite these protests, Condorcet voted in favor of an appeal to the people.

11.4 Drafting a new constitution for France

In October 1792, when the Convention set up a Committee of Nine to draft a new consti-
tution for France, Condorcet sat on this committee as did the Englishman, Thomas Paine.
Under sentence of death in England for publishing his pamphlet The Rights of Man, Paine
had fled to France and had become a French citizen. He and Condorcet were the chief
authors of a moderate (Gerondist) draft of the constitution. However, the Jacobin leader,
Robespierre, bitterly resented being excluded from the Committee of Nine and, when the
Convention then gave the responsibility for drafting the new constitution to the Committee
for Public Safety, which was enlarged for this purpose by five additional members. The
result was a hastily produced document with many glaring defects. When it was presented
to the Convention, however, it was accepted almost without discussion. This was too
much for Condorcet to stomach and he published anonymously a letter entitled Advice
to the French on the New Constitution, in which he exposed the defects of the Jacobin
constitution and urged all Frenchmen to reject it.
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11.5 Hiding from Robespierre’s Terror

Condorcet’s authorship of this letter was discovered and treated as an act of treason. On
8 July 1793, Condorcet was denounced in the Convention; and an order was sent out for
his arrest. The officers tried to find him, first at his town house and then at his house in
the country but, warned by a friend, Condorcet had gone into hiding.

The house where Condorcet took refuge was at Rue Servandoni, a small street in Paris
leading down to the Luxembourg Gardens, and it was owned by Madame Vernet, the
widow of a sculptor. Madame Vernet, who sometimes kept lodgings for students, had been
asked by Condorcet’s friends whether she would be willing to shelter a proscribed man. ‘Is
he a good man?’, she had asked; and when assured that this was the case, she had said,
‘Then let him come at once. You can tell me his name later. Don’t waste even a moment.
While we are speaking, he may be arrested.” She did not hesitate, although she knew that
she risked death, the penalty imposed by the Convention for sheltering a proscribed man.

11.6 Condorcet writes the Esquisse

Although Robespierre’s agents had been unable to arrest him, Condorcet was sentenced
to the guillotine in absentia. He knew that in all probability he had only a few weeks
or months to live and he began to write his last thoughts, racing against time. Hidden
in the house at Rue Servandoni, and cared for by Madame Vernet, Condorcet returned
to a project which he had begun in 1772, a history of the progress of human thought,
stretching from the remote past to the distant future. Guessing that he would not have
time to complete the full-scale work he had once planned, he began a sketch or outline:
Esquisse d’un Tableau Historique des progrés de I’Esprit Humain.

Condorcet’s Esquisse, is an enthusiastic endorsement of the idea of infinite human per-
fectibility which was current among the philosophers of the 18th century, and in this book,
Condorcet anticipated many of the evolutionary ideas of Charles Darwin. He compared
humans with animals, and found many common traits. Condorcet believed that animals
are able to think, and even to think rationally, although their thoughts are extremely sim-
ple compared with those of humans. He also asserted that humans historically began their
existence on the same level as animals and gradually developed to their present state.

Since this evolution took place historically, he reasoned, it is probable, or even in-
evitable, that a similar evolution in the future will bring mankind to a level of physical,
mental and moral development which will be as superior to our own present state as we
are now superior to animals.

In his Fsquisse, Condorcet called attention to the unusually long period of dependency
which characterize the growth and education of human offspring. This prolonged childhood
is unique among living beings. It is needed for the high level of mental development of the
human species; but it requires a stable family structure to protect the young during their
long upbringing. Thus, according to Condorcet, biological evolution brought into existence
a moral precept, the sanctity of the family.
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Similarly, Condorcet maintained, larger associations of humans would have been impos-
sible without some degree of altruism and sensitivity to the suffering of others incorporated
into human behavior, either as instincts or as moral precepts or both; and thus the evolu-
tion of organized society entailed the development of sensibility and morality.

Condorcet believed that ignorance and error are responsible for vice; and he listed what
he regarded as the main mistakes of civilization: hereditary transmission of power, inequal-
ity between men and women, religious bigotry, disease, war, slavery, economic inequality,
and the division of humanity into mutually exclusive linguistic groups.

Condorcet believed the hereditary transmission of power to be the source of much of
the tyranny under which humans suffer; and he looked forward to an era when republican
governments would be established throughout the world. Turning to the inequality between
men and women, Condorcet wrote that he could see no moral, physical or intellectual basis
for it. He called for complete social, legal, and educational equality between the sexes.

Condorcet predicted that the progress of medical science would free humans from the
worst ravages of disease. Furthermore, he maintained that since perfectibility (i.e. evolu-
tion) operates throughout the biological world, there is no reason why mankind’s physical
structure might not gradually improve, with the result that human life in the remote future
could be greatly prolonged. Condorcet believed that the intellectual and moral facilities of
man are capable of continuous and steady improvement; and he thought that one of the
most important results of this improvement will be the abolition of war.

At the end of his Fsquisse, Condorcet said that any person who has contributed to the
progress of mankind to the best of his ability becomes immune to personal disaster and
suffering. He knows that human progress is inevitable and can take comfort and courage
from his inner picture of the epic march of mankind, through history, towards a better
future.

Shortly after Condorcet completed the Esquisse, he received a mysterious warning that
soldiers of the Convention were on their way to inspect Madame Vernet’s house. Wishing
to spare his generous hostess from danger, he disguised himself as well as he could and
slipped past the portress. However, Condorcet had only gone a few steps outside the house
when he was recognized by Madame Verdet’s cousin, who risked his life to guide Condorcet
past the sentinels at the gates of Paris, and into the open country beyond.

Condorcet wandered for several days without food or shelter, hiding himself in quarries
and thickets. Finally, on 27 March 1794, hunger forced him to enter a tavern at the village
of Clamart, where he ordered an omelette. When asked how many eggs it should contain,
the exhausted and starving philosopher replied without thinking, ‘twelve’. This reply,
together with his appearance, excited suspicion. He was asked for his papers and, when it
was found that he had none, soldiers were sent for and he was arrested. He was taken to a
prison at Bourg-la-Reine, but he was so weak that he was unable to walk there, and had
to be carried in a cart. The next morning, Condorcet was found dead on the floor of his
cell. The cause of his death is not known with certainty. It was listed in official documents
as congestion sanguine, congestion of the blood but the real cause may have been cold,
hunger, exhaustion or poison. Many historians believe that Condorcet was murdered by
Robespierre’s agents, since he was so popular that a public execution would have been
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impossible.

After Condorcet’s death the currents of revolutionary politics shifted direction. Robe-
spierre, the leader of the Terror, was himself soon arrested. The execution of Robespierre
took place on 25 July 1794, only a few months after the death of Condorcet.

Condorcet’s Esquisse d’un Tableau Historique des Progres de I’Esprit Humain was pub-
lished posthumously in 1795. In the post-Thermidor reconstruction, the Convention voted
funds to have it printed in a large edition and distributed throughout France, thus adopt-
ing the Esquisse as its official manifesto. Condorcet’s name will always be linked with this
small prophetic book. It was destined to establish the form in which the eighteenth-century
idea of progress was incorporated into Western thought.
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Chapter 12

HAMILTON

Sir William Rowan Hamilton (1805-1865) made many extremely important contributions
both to mathematics and to physics. He was a remarkable child prodigy. At the age of
three, he was given to his uncle, James Hamilton, to be educated. His uncle was a linguist,
and by the time William was thirteen years old, he had acquired as many languages as
he had years of age. Besides all the classical and modern European languages, these
included Persian, Arabic, Hindustani, Sanskrit, and even Marathi and Malay. In those
days, Hamilton slept in a room next to his uncle with a string tied to the back of his
nightshirt. The string went through a hole in the wall to his uncle’s room. When the uncle
thought that it was time for his nephew to wake up and work, he pulled the string.
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Figure 12.1: Sir William Rowan Hamilton (1805-1865).

Figure 12.2: Irish commemorative coin celebrating the 200th Anniversary of
Hamilton’s birth.
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Figure 12.3: This figure shows a system of particle trajectories of the kind visual-
ized by Hamilton. Here the system might be produced by the fragments of an
exploding sky-rocket, assuming that they are all of equal mass and are thrown
out with equal velocities. At various times after the explosion, the fragments
will reach points given by spheres drawn around the falling center of mass.

=15

Figure 12.4: This figure shows surfaces corresponding to constant values of
Hamilton’s characteristic function S. These surfaces are everywhere perpen-
dicular to the trajectories discussed in the previous figure.
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12.1 Uniting optics and mechanics

Hamilton retained his knowledge of languages until the end of his life, and often read books
in Persian and Arabic for pleasure. Fortunately, however, this orgy of linguistics was not
continued and Hamilton became strongly interested in mathematics. At the age of 18, he
submitted a Memoir on Systems of Rays for publication. It caused the Astronomer Royal
of Ireland to exclaim, “This young man, I do not say will be but s the first mathematician
of his age!”

With remarkable intuition, Hamilton anticipated both quantum theory and the gen-
eral theory of relativity. He saw the close analogy between geometrical optics and the
classical trajectories of Newtonian mechanics. In geometrical optics, the rays of light are
perpendicular to wave fronts. Hamilton introduced a function that yielded wave fronts for
mechanics, thus anticipating wave mechanics, a field that lay a century ahead in time. His
reformulation of Newtonian mechanics also anticipated general relativity by showing that
the trajectories of objects can be viewed as the shortest paths in a space with a special
metric. The Hamiltonian reformulation of Newtonian mechanics has proved to be the a
key to the development of modern physics.

12.2 Professor of Astronomy at the age of 21

Hamilton entered Trinity College, Dublin, where his scholastic record was remarkable. At
the age of 21, while still an undergraduate, he was appointed to be Andrews Professor of
Astronomy and Royal Astronomer of Ireland. He then moved into Dunsink Observatory,
where he spent the remainder of his life. He married a clergyman’s daughter, and they had
three children together, but she could not stand the strain of living with him and returned
to live with her parents.

Hamilton was the close friend of the poets Coleridge and Wordsworth, and his life had
a profligate poetic quality. His lectures on astronomy attracted many scholars and poets,
and even ladies, which at that time was unusual. One of his lectures inspired the poet
Felicia Hermans to write The Prayer of a Lonely Student.

Hamilton drank a great deal, and the heaps of papers in his study were in a state of
disorder. During the last part of his life, he was often alone, cared for by the house-keeper
of the observatory. He had no regular meals, but from time to time, the house-keeper would
hand him a mutton chop, which he would accept without a word, and without looking up
from his work. After Hamilton’s death, dozens of partly-eaten mutton chops were found
among his mounds of papers.

12.3 Hamilton’s unified formulation

As we mentioned above, the work of Sir William Rowan Hamilton (1805-1865) contains
some remarkably modern insights, foreshadowing quantum mechanics and relativity the-
ory. His treatment of mechanics and optics unified the two disciplines in a manner that
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foreshadows wave mechanics. In his first paper on systems of rays in geometrical optics,
he considered rays coming from a point source which flashes on at a certain instant of
time. If the light is propagating in a uniform medium, the rays will form system of straight
lines, pointing outward from the point source of the light. Perpendicular to these lines,
will be a set of concentric spherical surfaces, which represent the maximum distance that
can be reached at any given time. In a non-uniform medium, the system of rays will not be
straight lines, and surfaces will not be spheres, but nevertheless, the lines representing rays
will always be perpendicular to the surfaces representing wave fronts. Hamilton introduced
the integral

S(x) :/dt: %/n(x) i (12.1)

This integral, taken along the path of a ray, gives the time needed for the wave front of
a flash to reach a particular point x. Hamilton called S(x) the eikonal function, taking
the name from the Greek word for “image”, and he showed that it satisfies the differential

equation
mr |(32) + (&) (%) ] = 122

Equation ((12.2) follows from Fermat’s principle, which states that the actual path of a ray
of light is the one that takes the least time:

1 1 dx dx .
S(x) = /dt = E/H(X) dl = E/n(X)W > dl = minimum
(12.3)
The Euler-Lagrange equations corresponding to ([12.3)) are
d oL oL
TN\ a57a | T aa T (12.4)
i |0 (% )] ox
so that
L L L
O O di |0 (W) d ( dl )
dx dx
L = nx)—r-—r (12.5)
Thus
0S dz’ ‘
ort Qn(x) dl 1=1,2,3 (12.6)
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Figure 12.5: This figure shows a system of parallel light rays entering a medium
with a different index of refraction. The rays of light are perpendicular to the
wave fronts at all points in space. The wave fronts correspond to surfaces with
constant values of Hamilton’s eikonal function.

By combining ((12.6) with the relation

dx dx

o a 1 (12.7)
we obtain Hamilton’s eikonal equation, . With remarkable intuition, Hamilton saw
the analogy between the rays of geometrical optics and the trajectories of point masses
in classical mechanics. His next step was to put mechanics on the same footing as optics
by defining what he called the characteristic function for a system of trajectories. We
can obtain an understanding of Hamilton’s characteristic function by thinking of the frag-
ments of an exploding skyrocket. If all of the fragments leave the point of the explosion
with equal velocity, then they will form the sort of system which Hamilton studied. The
upward-moving fragments are decelerated by gravity, while the downward-moving ones are
accelerated. The positions of the fragments at successive instants of time are on spheres
drawn around the falling center of mass of the system. Hamilton defined the characteristic
function S(x) by the relationship

S(x) = /x Lt (12.8)

0

taken along the system of trajectories. From the Euler-Lagrange equations, it follows that

as_/aL aoL . oL _ 129

or = ) o T | wos U7 g
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Hamilton used this relationship to show that his characteristic function satisfies a differ-
ential equation similar to his eikonal equation (12.2). He first defined the total energy
function (we call it the Hamiltonian) of a mechanical system as

H=> pi —L (12.10)

It follows from equation ([12.10]) that

dp; _ d (OL\ OL  OH
At~ dt (ag‘m') T oxi O (12.11)
From ((12.10)) it also follows that
0H :
=1 12.12
op  * (12.12)

Equations and are called Hamilton’s equations of motion. From these
equations, it follows that for systems where the potential energy is independent of time
and where there are no velocity-dependent forces, the Hamiltonian function is a
constant of the motion. For such conservative systems, H is a constant of the motion.

dH oOH OH dp; OH dx!
T - ot [apz. i " on dt]

i

OHOH OHOH
- Y5 ) e
Thus
H(z',p;) = E (12.14)

where FE is a constant. Hamilton then substituted 95/0x" for p;. In this way he obtained
an equation which has become known as the Hamiltonian-Jacobi equation:

AN
H (x , axi) —E (12.15)

For example, in the case where the mechanical system is a single point mass moving in the
potential V(x), the Hamiltonian of the system is

mdx dx 1
H:E%.%jq/(x): %p.erv(x) (12.16)

and the Hamilton-Jacobi equation is

(5) + () + (%)

which is analogous to Hamilton’s eikonal equation, ([12.2)).

1

2m

+V(X) =E (12.17)




178

LIVES IN MATHEMATICS

. L\ |
10

N

\\\
\

Figure 12.6: This figure shows a system of particle trajectories of the kind visual-
ized by Hamilton. Here the system might be produced by the fragments of an
exploding sky-rocket, assuming that they are all of equal mass and are thrown
out with equal velocities. At various times after the explosion, the fragments
will reach points given by spheres drawn around the falling center of mass.
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Figure 12.7: This figure shows surfaces corresponding to constant values of
Hamilton’s characteristic function S. These surfaces are everywhere perpen-
dicular to the trajectories discussed in the previous figure.
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12.4 Quaternions

On October 16, 1843, Hamilton was walking beside a canal with his wife, He was on his
way to a meeting of the Council of the Royal Irish Academy. His wife spoke to him now
and then, but he hardly heard her because he was so deep in thought. Breaking the barrier
of tradition he proposed the introduction of non-commutative algebraic entities, to which
he gave the name “quaternions”.

Hamilton described his discovery of quaternions, hypercomplex numbers and non-
commutative algebra in the following words:

“And here there dawned on me the notion that we must admit, in some
sense, a fourth dimension of space for the purpose of calculating with triples
... An electric circuit seemed to close, and a spark flashed forth.”

He later carved the formula

it =2 =k =ijk=—1 (12.18)

on the stone of the bridge that he and his wife had passed when the discovery flashed
through his mind.

Hamilton spent the remainder of his life working on non-commutative algebra, and he
considered it to be very important, writing:

“I still must assert that this discovery appears to me to be as important for
the middle of the nineteenth century as the discovery of fluxions [the calculus]
was for the close of the seventeenth.”

The Pauli spin matrices, introduced much later in quantum theory, obey non-commutative
equations closely similar to those that Hamilton proposed for quaternions.
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Chapter 13

ABEL AND GALOIS

Niels Henrik Abel (1802-1829) and Everiste Galois (1811-1832), both mathematicians of
genius, and both tragically short-lived, contributed to the development of group theory.
both Abel and Galois were interested in the question of whether general roots could be
found for fourth-order and fifth-order polynomials. This question led them to study what
we now call the group of permutations. Today group theory, to whose foundation Abel
and Galois contributed, is of great importance in mathematics, physics and chemistry.
The political events of the time during which Abel and Galois lived greatly affected their
lives. Norway, which was Abel’s home, was then a part of Denmark, and when Denmark
was blockaded by the English during the Napoleonic Wars, Norway also suffered under
this blockade. Unable to export timber and to import grain. Norwegians suffered great
hardship during this period. Abel’s life was marked by poverty, and he died very young
from tuberculosis, which he probably would not have acquired if he had not been so poor.

The life of Galois was also marked by the political events of this period. In the case

of Galois, it was revolutionary politics which affected his life, and which led to his early
death.
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Figure 13.1: Niels Henrik Abel.
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Figure 13.2: Christine Kemp, Abel’s fiancé.
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Figure 13.3: Statue of Niels Henrik Abel in Oslo (former Christiania).
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Figure 13.4: Niels Henrik Abel memorial in Gjerstad.
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Figure 13.5: A Norwegian stamp.
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Figure 13.6: Portrait of Everiste Galois.
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Figure 13.7: Augustin-Louis Cauchy reviewed Galois’ early mathematical papers.
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Figure 13.8: Battle for the Town Hall by Jean-Victor Schnetz. Galois, as a
staunch Republican, would have wanted to participate in the July Revolution
of 1830 but was prevented by the director of the Ecole Normale.
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Figure 13.9: A drawing done in 1848 from memory by Evariste’s brother.
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Figure 13.10: A French stamp.
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13.1 Group theory

The definition of a finite group

A finite group is defined by the following conditions:

1. If any two elements belonging to the group are multiplied together, the product is
another element belonging to the group.

2. There is an identity element.
3. Each element has an inverse.
4. Multiplication of the elements is associativd] but necessarily commutative.

5. The group contains g elements, where g is a finite positive integer called the order of
the group.

As a simple example, we might think of a molecule which is symmetric with respect
to rotations through an angle of 27/3 about some axis but which has no other symmetry.
Then the set of geometrical operations that leave the molecule invariant form a group
containing 3 elements: the identity element; a rotation through an angle 27 /3 about the
axis of symmetry, and a rotation through an angle 47 /3 about the same axis. Let us denote
these operations respectively by E, Cs, and C;'. We can easily construct a multiplication
table for the group. If we do so, each element of the group will appear once and only once
in any row or column of the multiplication table. This follows from the fact that AX = B
has one and only one solution among the group elements. Since A~! and B belong to
the group, and since the product of any two elements belongs to the group, X = A~'B
is also a uniquely-defined element. Now suppose that the element B appears more than
once in the Ath row of the multiplication table. Then AX = B will have more than one
solution which is impossible. Since no element can appear more than once, each element
must appear once because there are g elements and ¢ places in the row, all of which have
to be filled.

Representations of geometrical symmetry groups

The elements of a geometrical symmetry group are linear coordinate transformations. Such
transformations have the form

) oxv . )
Xi=3" 5o+ (13.1)

where 0X'/0x? and b° are constants.

IA(BC)=(AB)C
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Now consider a set of functions @, @, ..., P5;. We can use equation (13.1) to express
®,(x) as a function of X. If we then expand the resulting function of X in terms of the
other ®,’s, we shall obtain a relation of the form

O (x) = Y P (X) Dy (13.2)

If we denote the coordinate transformation in equation (13.1) by the symbol G, we can
rewrite equations (13-1) and (13.2) in the form:

X = Gjx
D, (x) = 0,(G;'X) =G;0,(X)
— Z(I)n’(X)Dn’,n(G) (13.3)

In this sense, the coordinate transformation defines an operator G;, and D,y ,(G;) is a
matriz representing G;. Is can easily be shown that the matrices representing a set of
operators G, G,...,G 4 in a given basis, obey the same multiplication table as the operators
themselves. For example, if we know that

C3C;t=FE (13.4)
and that

CB(I)n - Z(I)n’Dn’,n(C?))
Cy'®, = > @uDwa(Cyh)

E®, = Y ®,Dy.(E) (13.5)

then it follows that:

C3C5'®y = Y C3®p Dy n(Cy)

— Y o {Z Dn,/,n,(cg)DnI,n(Og,‘l)}

n//

= E®, =Y ®uDy,(E) (13.6)

nl/

so that we must have

Dyrn(E) = Dy (C3) Dy n(Cy ) (13.7)
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Thus given any set of basis functions ®1, ®o, ..., Py which mix together under the ele-
ments of a group Gy, Ga,...,G4, we can obtain a set of matrices D,y ,,(G;) defined by the
relationships

Gi®n=> ®uDwpn(G;)  j=12..g (13.8)

These matrices will obey the same multiplication table as the operators G, Gs,...,G4, and
they are said to form a matrixz representation of the group.

Besides finite groups, there are also continuous groups, such as the group of rotations
in space, and the group of translations in space.

Group theory allows us to study symmetry in a systematic way. For this reason, it has
proved to be of great importance for modern theoretical physics and theoretical chemistry.
Both exact symmetries and approximate symmetries are extremely important in modern
particle physics. Group theory is also much used in theoretical chemistry, where it is
used to explain the observed properties of molecules. It is also used to choose optimal
basis sets in quantum chemical calculations. Group theory is also very useful in X-ray
crystallography.

An extensive discussion of the theory of finite groups can be found in Appendix C of

this book.

13.2 Abel’s family and education

Niels Henrik Abel (1802-1829) was the second son of Pastor Sgren Abel, of Gjerstad Church,
near the town of Risgr in Norway. His mother, Anne Marie Simonsen, came from a family
of well-to-do ship owners. She enjoyed arranging social events, and took little interest in
her children’s education.

Besides being a pastor, with degrees in theology and philosophy, Seren Abel had some
importance in Norwegian politics. With the coming of Norwegian independence, he was
elected to the Storting, the supreme legislature of Norway. It met in Oslo, at the Cathedral
School, and in this way, Sgren Abel’s attention was attracted to the school. Two of his
sons, Niels Henrik Abel and his elder brother Hans were sent there to study.

The Cathedral School had at one time been excellent. However, the school’s best
teachers were transferred to the University by the time that the Abel brothers arrived, and
thus the teaching was mediocre.

This situation changed with the arrival of the mathematician Bernt Michael Holmboe,
who immediately recognized Niels Henrik Abel’s outstanding abilities in mathematics, and
gave him both encouragement and private lessons. Under Holmboe’s guidance, Abel began
to study the works of Euler, Newton, Lalande, d’Alembert, Lagrange and Laplace.

Meanwhile, Sgren Abel had become involved in two controversies. The first of these
was a theological argument, which was widely reported in the Norwegian press. The second
was a scandal resulting from Sgren’s insults to Carsten Anker, the host of the Norwegian
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Constituent Assembly. Sgren Abel returned to Gjerstad in disgrace, his political career in
ruins. He began drinking heavily, and died two years later at the age of 48.

13.3 Abel’s travels in Europe

The death of Sgren Abel was a tragedy for his son Niels. There was now no money
from home to support his studies. However, Niels Henrik Abel’s mentor and friend, Bernt
Michael Holmboe, raised money to help his talented student to finish the Cathedral school
and to enter the Royal Frederick University in Oslo. By the time that he entered the
university, Abel was already the most knowlegable mathematician in Norway.

While still a student at the university, Abel wrote a paper on the solution to quintic
equations, i.e. the roots of 5th-order polynomials. He sent the paper to the mathematician
Ferdinand Degen, for publication by the Royal Society of Copenhagen. Degen asked Abel
for a numerical example, and while working to provide an example, Abel discovered a
mistake in his calculation. He later proved that the exact algebraic solution of quintic
equations equations, and equations of higher order than quintic, is impossible.

Degen advised Abel to turn his attention to another outstanding problem. “... whose
development would have the greatest consequences for analysis and mechanics. I refer to
elliptic integrals. A serious investigator with suitable qualifications for research of this
kind would by no means be restricted to the many beautiful properties of these most
remarkable functions, but could discover a Strait of Magellan leading into wide expanses of
a tremendous analytic ocean.” Abel later followed Degen’s advice and did important work
on elliptic integrals.

While a student at the Royal Frederick University in Oslo, Abel found another friend
and supporter in the Professor of Astronomy, Christopher Hansteen, who gave him encour-
agement, financial support, and a place to live. Hansteen’s wife cared for Abel as though
he were her own son. In 1823, the 21 year old Abel published a paper entitled Solutions
of some problems by means of definite integrals in Norway’s first scientific journal, journal,
“Magazin for Naturvidenskaberne”, which had been founded by Hansteen. Abel’s paper
contained the first solution of an integral equation.

Abel obtained a grant to visit Degen and other mathematicians in Copenhagen. While
there, he met his future fiancé, Christine Kemp. He also applied for funds to travel in
Europe to meet mathematicians such as Gauss, but because he was not fluent in French
and German, permission to travel was delayed for two years so that he could study these
languages.

Finally, in September, 1825, Abel set out for the continent of Europe together with four
friends from the university. In Copenhagen, Abel had been given a letter of introduction
to the mathematician August Crelle, and he met Crelle in Berlin. Crell was the publisher
of a journal devoted to mathematical research, and Abel began to contribute many papers
to Crelle’s journal.

Wikipedia gives the following description of Abel’s travels;



198 LIVES IN MATHEMATICS

“From Berlin Abel also followed his friends to the Alps. He went to Leipzig
and Freiberg to visit Georg Amadeus Carl Friedrich Naumann and his brother
the mathematician August Naumann. In Freiberg Abel did research in the
theory of functions, particularly, elliptic, hyperelliptic, and a new class now
known as abelian functions.

“From Freiberg they went on to Dresden, Prague, Vienna, Trieste, Venice,
Verona, Bolzano, Innsbruck, Luzern and Basel. From July 1826 Abel traveled
on his own from Basel to Paris. Abel had sent most of his work to Berlin to be
published in Crelle’s Journal, but he had saved what he regarded as his most
important work for the French Academy of Sciences, a theorem on addition
of algebraic differentials. With the help of a painter, Johan Gorbitz, he found
an apartment in Paris and continued his work on the theorem. He finished
in October 1826 and submitted it to the academy. It was to be reviewed by
Augustin-Louis Cauchy. Abel’s work was scarcely known in Paris, and his
modesty restrained him from proclaiming his research. The theorem was put
aside and forgotten until his death.

“Abel’s limited finances finally compelled him to abandon his tour in Jan-
uary 1827. He returned to Berlin, and was offered a position as editor of
Crelle’s Journal, but opted out. By May 1827 he was back in Norway. His
tour abroad was viewed as a failure.[by whom?] He had not visited Gauss in
Gottingen and he had not published anything in Paris. His scholarship was
therefore not renewed and he had to take up a private loan in Norges Bank
of 200 spesidaler. He never repaid this loan. He also started tutoring. He
continued to send most of his work to Crelle’s Journal. But in mid-1828 he
published, in rivalry with Carl Jacobi, an important work on elliptic functions
in Astronomische Nachrichten in Altona.”

Abel died of tuberculosis, which he contracted in Paris. On his way to visit his fiancé,
Christine Kemp, in Finland, at Christmas 1928, he became seriously ill. He recovered
somewhat, and the couple enjoyed the holiday together; but soon afterwards the illness
worsened severely and he died at the early age of 27.

After Abel’s death, news arrived that Crelle had succeeded in obtaining a professorship
for him in Berlin, but it was too late to help.

The Abel Prize

In 1899, the Norwegian mathematician Sophus Lie learned that no Nobel Prize would be
awarded in mathematics, and he proposed that such a prize should be awarded by Norway.
In 1902. King Oscar IT of Sweden and Norway expressed his willingness to establish and
finance such a prize. However, the establishment of the prize, which was named in honor of
Niels Henrik Abel, was delayed until 2001 by the dissolution of the political bond between
Sweden and Norway. Today the Abel Prize honors outstanding mathematicians, as well as
commemorating Abel’s life and work. A twice-yearly Abel symposium was also established.
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13.4 A list of mathematical topics to which Abel con-
tributed

Abel’s binomial theorem
Abelian variety

Abel equation

Abel equation of the first kind
Abelian extension

Abel function

Abelian group

Abel’s identity

Abel’s inequality

Abel’s irreducibility theorem
Abel-Jacobi map
Abel-Plana formula
Abel-Ruffini theorem
Abelian means

Abel’s summation formula
Abelian and tauberian theorems
Abel’s test

Abel’s theorem

Abel transform

Abel transformation
Abelian variety

Abelian variety of CM-type
Dual abelian variety

13.5 The life and work of Everiste Galois

Everiste Galois was born in 1811 in a district of Paris called Bourg-la-Reine. His father
was an important man in this community, and was elected mayor of Bourg-la-Reine.

Everiste Galois’s mother was well educated, especially in languages such as Latin and
Greek, and for his first twelve years it was she who educated her son Everiste. After this,
he entered the Lycée Louis-le-Grande. At the age of 14 he became enormously interested
in mathematics, reading books by Legendre and Lagrange as though they were novels, and
mastering them after a first reading.

After graduating from Lycée Louis-le-Grande, Galois wanted to enter the Ecole Poly-
technique, but failed his entrance examination, probably because he was awkward at ex-
plaining his thoughts to the examiners. He was forced to enter the Ecole Normale instead,
which was much less good for the study of mathematics. Nevertheless, the followin year,
Galois published a a paper on continued fractions. He soon produced two important papers
on the theory of polynomial equations, which he sent to the mathematician Augustin-Louis
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Cauchy. It seems that Cauchy considered the work to be excellent and suggested that the
two papers be combined and sent to the French Academy as an entry for the Academy’s an-
nual prize. However, for some reason, Galois’ papers were never combined and submitted.

In 1829, Galois’ father committed suicide. The parish priest had forged Mayor Galois’
name on malicious forged epigrams directed at Galois’ own relatives. Overcome by the
ensuing scandal, Mayor Galois hanged hiself. His father’s death was a terrible blow to
Everiste, who never recovered emotionally from the loss.

Evariste Galois was arrested and imprisoned for his political activities during the revo-
lutionary period in which he lived. Although eventually released from prison, he was killed
in a duel at the age of 20. The reasons for the duel are not known with certainty, but the
daughter of the prison doctor may have been involved. Galois was searching for love to
replace the loss of his beloved father.

13.6 Mathematical contributions of Galois

Galois Theory deals with the properties of mathematical fields.

Definition of a field in mathematics

Physicists and mathematicians have very different definitions of the word field. In math-
ematics, a field is defined to be a set which is mapped on itself by two binary operations
called addition and multiplication.

If a. b and c are elements in the field F', then the mathematical definition of a field
requires

e Associativity of addition and multiplication: a+ (b+c¢) = (a+b)+c¢,and a-(b-c) =
(a-b)-c.

e Commutativity of addition and multiplication: a +b=b+a, and a-b=1b- a.

e Additive and multiplicative identity: there exist two different elements 0 and 1 in F
such that a +0=a and a -1 = a.

e Additive inverses: for every a in F', there exists an element in F', denoted —a, called
the additive inverse of a, such that a + (—a) = 0.

e Multiplicative inverses: for every a # 0 in F, there exists an element in F', denoted
by a=! or 1/a, called the multiplicative inverse of a, such that a-a™! = 1.

e Distributivity of multiplication over addition: a - (b+¢) = (a-b) + (a - ¢).

Examples of fields include the rational numbers, the real numbers, and the complex
numbers.

For the rational numbers, we have
ab

=—=1 (13.9)

b
a ba

a
b
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so that an inverse exits under multiplication. The distributive requirement can also be

demonstrated:
c. e
d f

Sl s

b af ' fd df (13.10)
_alcf+ed) acf aed ac  ae
T bdfbdf b bl by
_a c a e
= E.E_}_E.?

which proves the distributive property. In general the requirements of a field can be
recognized as known properties of the rational numbers.
Everiste Galois is remembered for exploring the relationships between field theory and
group theory, (where field theory is defined in the mathematical rather than physical sense).
Fields with a finite number of elements are called Galois fields. An interesting example
of a mathematical field with only four elements is given in the following tables:
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Table 13.1: Addition

2> | of —| —
—| o| | = >
O —| | ||

Table 13.2: Multiplication

- JolT]A[B]
0J0][0]0]0
[[0/1|A|B
A[0[A[B[1I
B[0|[B |1 A
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Chapter 14

GAUSS AND RIEMANN

14.1 Gauss contributed to many fields

Johann Carl Friedrich Gauss was born in 1777 in Brunswick, now a part of Lower Saxony,
Germany. His parents were not wealthy, and his mother was illiterate, but Gauss soon
showed himself to be a child prodigy. At the age of three, he corrected an error that his
father had made in summing up his accounts.

Another story is told about the precocity of Gauss: At the age of seven, he amazed
his school teacher who was in the habit of giving his students the problem of summing all
the integers from 1 to 100. His young student Gauss almost instantly gave him the correct
answer, having realized that the sum could be expressed as 50 pairs of numbers, each with
the sum, 101.

Continuing in this way, Gauss made important mathematical discoveries as a teenager.
His great ability attracted the attention of the Duke of Brunswick, who arranged for Gauss
to be sent to the Collegium Carolinium, today known as the Braunschweig University
of Technology.Later, the Duke also supported the studies of Gauss at the University of
Gottingen.

While still a student at Gottingen, Gauss discovered how to construct a seventeen-sided
polygon with a compass and ruler. He was so pleased with this discovery that he decided
to make mathematics his career, instead of his previous choice, philosophy.

Gauss returned from Goéttingen to Brunswick, where he received a degree. The Duke
of Brunswick agreed to continue his stipend, and he requested that Gauss should submit
a doctoral dissertation to the University of Helmstedt. The dissertation which Gauss
submitted discussed the fundamental theorem of algebra.

Supported by the Duke of Brunswick’s stipend, Gauss was able to devote himself com-
pletely to research. In 1801, at the age of 24, he published an important book entitled
Disquisitiones 