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INTRODUCTION1

I hope that this book will be of interest to students of mathematics and
other disciplines related to mathematics, such as theoretical physics and the-
oretical chemistry.

An apology

I must apologize for the fact that the level of the book is uneven. Chapters
1-8, as well as Appendices A and B, are suitable for students who would like
to learn calculus and differential equations. However, the remainder of the
book is more demanding, and is suitable for more advanced students.

Human history as cultural history

We need to reform our teaching of history so that the emphasis will be placed
on the gradual growth of human culture and knowledge, a growth to which
all nations and ethnic groups have contributed.

This book is part of a series on cultural history. Here is a list of the other
books in the series that have, until now, been completed:

• Lives in Exploration
• Lives in Education
• Lives in Poetry
• Lives in Painting
• Lives in Engineering
• Lives in Astronomy
• Lives in Chemistry
• Lives in Medicine
• Lives in Ecology
• Lives in Physics
• Lives in Economics

1This book makes use of chapters and appendices that I have previously written, but
most of the material in the book’s 19 chapters is new. My son, Associate Professor James
Emil Avery of the Niels Bohr Institute, University of Copenhagen, is the co-author of
Appendices D, E, F and G. I am extremely grateful to the renouned Iranian scientist
and author, Hassan Fattahi for much help in writing the chapters on Emmy Noether and
Marayam Mirzakhani



• Lives in the Peace Movement

The pdf files of these books may be freely downloaded and circulated
from the following web addresses:

https://www.johnavery.info/

http://eacpe.org/about-john-scales-avery/

https://wsimag.com/authors/716-john-scales-avery
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Chapter 1

PYTHAGORAS

1.1 The Pythagorean brotherhood

Pythagoras, a student of Anaximander, first became famous as a leader and reformer of
the Orphic religion. He was born on the island of Samos, near the Asian mainland, and
like other early Ionian philosophers, he is said to have travelled extensively in Egypt and
Mesopotamia. In 529 B.C., he left Samos for Croton, a large Greek colony in southern
Italy. When he arrived in Croton, his reputation had preceded him, and a great crowd
of people came out of the city to meet him. After Pythagoras had spoken to this crowd,
six hundred of them left their homes to join the Pythagorean brotherhood without even
saying goodbye to their families.

For a period of about twenty years, the Pythagoreans gained political power in Croton,
and they also had political influence in the other Greek colonies of the western Mediter-
ranean. However, when Pythagoras was an old man, the brotherhood which he founded
fell from power, their temples at Croton were burned, and Pythagoras himself moved to
Metapontion, another Greek city in southern Italy. Although it was never again politically
influential, the Pythagorean brotherhood survived for more than a hundred years.

The Pythagorean brotherhood admitted women on equal terms, and all its members
held their property in common. Even the scientific discoveries of the brotherhood were
considered to have been made in common by all its members.

1.2 Pythagorean harmony

The Pythagoreans practiced medicine, and also a form of psychotherapy. According to
Aristoxenius, a philosopher who studied under the Pythagoreans, “They used medicine
to purge the body, and music to purge the soul”. Music was of great importance to the
Pythagoreans, as it was also to the original followers of Dionysus and Orpheus.

Both in music and in medicine, the concept of harmony was very important. Here
Pythagoras made a remarkable discovery which united music and mathematics. He dis-
covered that the harmonics which are pleasing to the human ear can be produced by
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12 LIVES IN MATHEMATICS

dividing a lyre string into lengths which are expressible as simple ratios of whole numbers.
For example, if we divide the string in half by clamping it at the center, (keeping the
tension constant), the pitch of its note rises by an octave. If the length is reduced to 2/3 of
the basic length, then the note is raised from the fundamental tone by the musical interval
which we call a major fifth, and so on. The discovery that harmonious musical tones could
be related by rational numbers1 made the Pythagoreans think that rational numbers are
the key to understanding nature, and this belief became a part of their religion.

Having discovered that musical harmonics are governed by mathematics, Pythagoras
fitted this discovery into the framework of Orphism. According to the Orphic religion,
the soul may be reincarnated in a succession of bodies. In a similar way (according to
Pythagoras), the “soul” of the music is the mathematical structure of its harmony, and
the “body” through which it is expressed is the gross physical instrument. Just as the soul
can be reincarnated in many bodies, the mathematical idea of the music can be expressed
through many particular instruments; and just as the soul is immortal, the idea of the
music exists eternally, although the instruments through which it is expressed may decay.

In distinguishing very clearly between mathematical ideas and their physical expression,
Pythagoras was building on the earlier work of Thales, who thought of geometry as dealing
with dimensionless points and lines of perfect straightness, rather than with real physical
objects. The teachings of Pythagoras and his followers served in turn as an inspiration for
Plato’s idealistic philosophy.

Having found mathematical harmony in the world of sound, and having searched for it in
astronomy, Pythagoras tried to find mathematical relationships in the visual world. Among
other things, he discovered the five possible regular polyhedra. However, his greatest
contribution to geometry is the famous Pythagorean theorem, which is considered to be
the most important single theorem in the whole of mathematics.

The Mesopotamians and the Egyptians knew that for many special right triangles, the
sum of the squares formed on the two shorter sides is equal to the square formed on the
long side. For example, Egyptian surveyors used a triangle with sides of lengths 3, 4 and
5 units. They knew that between the two shorter sides, a right angle is formed, and that
for this particular right triangle, the sum of the squares of the two shorter sides is equal
to the square of the longer side. Pythagoras proved that this relationship holds for every
right triangle.

In exploring the consequences of his great theorem, Pythagoras and his followers dis-
covered that the square root of 2 is an irrational number. (In other words, it cannot be
expressed as the ratio of two integers.) The discovery of irrationals upset them so much
that they abandoned algebra. They concentrated entirely on geometry, and for the next
two thousand years geometrical ideas dominated science and philosophy.

1i-e-. numbers that can be expressed as a ratio of two integers
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Figure 1.1: Pythagoras (569 B.C. - 475 B.C.) discovered that the musical har-
monics that are pleasing to the human ear can be produced by clamping a lyre
string of constant tension at points that are related by rational numbers. In
the figure the octave and the major fifth above the octave correspond to the
ratios 1/2 and 1/3.
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Figure 1.2: Pythagoras founded a brotherhood that lasted about a hundred
years and greatly influenced the development of mathematics and science. The
Pythagorean theorem, which he discovered, is considered to be the most im-
portant single theorem in mathematics.
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Figure 1.3: This figure can be used to prove the famous theorem of Pythagoras
concerning squares constructed on the sides of a right triangle (i.e. a trian-
gle where two of the sides are perpendicular to each other). It shows a right
triangle whose sides, in order of increasing length, are a, b and c. Four iden-
tical copies of this triangle, with total area 2ab, are inscribed inside a square
constructed on the long side.
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1.3 Geometry as a part of religion

The classical Greek geometers, most of whom were Pythagoreans, discovered many ge-
ometrical theorems. They believed that the contemplation of eternal geometrical truths
was a way of finding release from the suffering of human existence, and geometry was a
part of their religion. There were certain rules that had to be followed in geometrical
constructions: only a compass and a straight ruler could be used. The theorems of the
geometers of classical Greece were collected and put into a logical order by Euclid, who
lived in Alexandria, the capital city of Egypt founded by Alexander of Macedon.
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Chapter 2

EUCLID

2.1 Alexandria

Alexander of Macedon’s brief conquest of the entire known world had the effect of blending
the ancient cultures of Greece, Persia, India and Egypt, and producing a world culture.
The era associated with this culture is usually called the Hellenistic Era (323 B.C. - 146
B.C.). Although the Hellenistic culture was a mixture of all the great cultures of the
ancient world, it had a decidedly Greek flavor, and during this period the language of
educated people throughout the known world was Greek.

Nowhere was the cosmopolitan character of the Hellenistic Era more apparent than
at Alexandria in Egypt. No city in history has ever boasted a greater variety of people.
Ideally located at the crossroads of world trading routes, Alexandria became the capital of
the world - not the political capital, but the cultural and intellectual capital.

Miletus in its prime had a population of 25,000; Athens in the age of Pericles had about
100,000 people; but Alexandria was the first city in history to reach a population of over
a million!

Strangers arriving in Alexandria were impressed by the marvels of the city - machines
which sprinkled holy water automatically when a five-drachma coin was inserted, water-
driven organs, guns powered by compressed air, and even moving statues, powered by
water or steam!

2.2 The Museum and the Great Library of Alexandria

For scholars, the chief marvels of Alexandria were the great library and the Museum
established by Ptolemy I. Credit for making Alexandria the intellectual capital of the
world must go to Ptolemy I and his successors (all of whom were named Ptolemy except
the last of the line, the famous queen, Cleopatra). Realizing the importance of the schools
which had been founded by Pythagoras, Plato and Aristotle, Ptolemy I established a school
at Alexandria. This school was called the Museum, because it was dedicated to the muses.

Near to the Museum, Ptolemy built a great library for the preservation of important

19
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manuscripts. The collection of manuscripts which Aristotle had built up at the Lyceum in
Athens became the nucleus of this great library. The library at Alexandria was open to the
general public, and at its height it was said to contain 750,000 volumes. Besides preserving
important manuscripts, the library became a center for copying and distributing books.

The material which the Alexandrian scribes used for making books was papyrus, which
was relatively inexpensive. The Ptolemys were anxious that Egypt should keep its near-
monopoly on book production, and they refused to permit the export of papyrus. Perga-
mum, a rival Hellenistic city in Asia Minor, also boasted a library, second in size only to
the great library at Alexandria. The scribes at Pergamum, unable to obtain papyrus from
Egypt, tried to improve the preparation of the skins traditionally used for writing in Asia.
The resulting material was called membranum pergamentum, and in English, this name
has become “parchment”.

2.3 Euclid is called to the Museum

One of the first scholars to be called to the newly-established Museum was Euclid. He
was born in 325 B.C. and was probably educated at Plato’s Academy in Athens. While
in Alexandria, Euclid wrote the most successful text-book of all time, the Elements of
Geometry. The theorems in this splendid book were not, for the most part, originated by
Euclid. They were the work of many generations of classical Greek geometers. Euclid’s
contribution was to take the theorems of the classical period and to arrange them in an
order which is so logical and elegant that it almost defies improvement. One of Euclid’s
great merits is that he reduces the number of axioms to a minimum, and he does not
conceal the dubiousness of certain axioms.

Euclid’s axiom concerning parallel lines has an interesting history: This axiom states
that “Through a given point not on a given line, one and only one line can be drawn
parallel to a given line”. At first, mathematicians doubted that it was necessary to have
such an axiom. They suspected that it could be proved by means of Euclid’s other more
simple axioms. After much thought, however, they decided that the axiom is indeed one of
the necessary foundations of classical geometry. They then began to wonder whether there
could be another kind of geometry where the postulate concerning parallels is discarded.
These ideas were developed in the 18th and 19th centuries by Lobachevsky, Bolyai, Gauss
and Riemann, and in the 20th century by Levi-Civita. In 1915, the mathematical theory of
non-Euclidean geometry finally became the basis for Einstein’s general theory of relativity.

Besides classical geometry, Euclid’s book also contains some topics in number theory.
For example, he discusses irrational numbers, and he proves that the number of primes is
infinite. He also discusses geometrical optics.

Euclid’s Elements has gone through more than 1,000 editions since the invention of
printing - more than any other book, with the exception of the Bible. Its influence has
been immense. For more than two thousand years, Euclid’s Elements of Geometry has
served as a model for rational thought.
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Figure 2.1: Euclid, detail from “The School of Athens”, a painting by Raphael.
It is not proven that this is Euclid. Some references point this person out as
Archimedes.

Figure 2.2: One of the oldest surviving fragments of Euclid’s Elements, found at
Oxyrhynchus and dated to circa AD 100 (P. Oxy. 29). The diagram accompa-
nies Book II, Proposition 5.
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2.4 The eight books of Euclid’s Elements

Here are the titles of the eight books of Euclid’s Elements of Geometry:1

1. Book I, On basic plane geometry

2. Book II, On geometric algebra

3. Book III, On circles and angles

4. Book IV, On construction of regular polygons

5. Book V, On Eudoxes’ of abstract theory of ratio proportions, abstract
algebra

6. Book VI, On similar figures and geometric proportions

7. Book VII, On basic number theory

8. Book VIII, On continurs proportions (geometric progressions) in number
theory

2.5 Euclid’s Book I, On basic plane geometry

Definitions

1. A point is that which has no part.

2. A line is breadthless length.

3. The ends of a line are points.

4. A straight line is a line which lies evenly with the points on itself.

5. A surface is that which has length and breadth only.

6. The edges of a surface are lines.

7. A plane surface is a surface which lies evenly with the straight lines on
itself.

8. A plane angle is the inclination to one another of two lines in a plane
which meet one another and do not lie in a straight line.

9. And when the lines containing the angle are straight, the angle is called
rectilinear.

1https://mathcs.clarku.edu/ djoyce/elements/trip.html
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10. When a straight line standing on a straight line makes the adjacent angles
equal to one another, each of the equal angles is right, and the straight
line standing on the other is called a perpendicular to that on which it
stands.

11. An obtuse angle is an angle greater than a right angle.

12. An acute angle is an angle less than a right angle.

13. A boundary is that which is an extremity of anything.

14. A figure is that which is contained by any boundary or boundaries.

15. A circle is a plane figure contained by one line such that all the straight
lines falling upon it from one point among those lying within the figure
equal one another.

16. And the point is called the center of the circle.

17. A diameter of the circle is any straight line drawn through the center and
terminated in both directions by the circumference of the circle, and such
a straight line also bisects the circle.

18. A semicircle is the figure contained by the diameter and the circumference
cut off by it. And the center of the semicircle is the same as that of the
circle.

19. Rectilinear figures are those which are contained by straight lines, trilat-
eral figures being those contained by three, quadrilateral those contained
by four, and multilateral those contained by more than four straight lines.

20. Of trilateral figures, an equilateral triangle is that which has its three sides
equal, an isosceles triangle that which has two of its sides alone equal, and
a scalene triangle that which has its three sides unequal.

21. Further, of trilateral figures, a right-angled triangle is that which has a
right angle, an obtuse-angled triangle that which has an obtuse angle, and
an acute-angled triangle that which has its three angles acute.

22. Of quadrilateral figures, a square is that which is both equilateral and
right-angled; an oblong that which is right-angled but not equilateral; a
rhombus that which is equilateral but not right-angled; and a rhomboid
that which has its opposite sides and angles equal to one another but is
neither equilateral nor right-angled. And let quadrilaterals other than
these be called trapezia.
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Figure 2.3: Circumscribed circle, C, and circumcenter, O, of a cyclic polygon, P.

23. Parallel straight lines are straight lines which, being in the same plane and
being produced indefinitely in both directions, do not meet one another
in either direction.
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Figure 2.4: Construction of the circumcircle and the circumcenter.

Figure 2.5: The circumcenter of an acute triangle is inside the triangle.



26 LIVES IN MATHEMATICS

Figure 2.6: The circumcenter of a right triangle is at the midpoint of the hy-
potenuse.

Figure 2.7: The circumcenter of an obtuse triangle is outside the triangle.
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Figure 2.8: A diagram of the angles in a cirumcircle of a triangle, showing the
alternate angle theorem.

Figure 2.9: Cyclic quadrilaterals.
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Figure 2.10: A sequence of circumscribed polygons and circles.

Figure 2.11: Straightedge and compass, the only tools that classical geometers
were allowed to use.
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Figure 2.12: The intercept theorem.

Figure 2.13: Another form of the intercept theorem.
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Figure 2.14: Equilateral triangle with angles.

Figure 2.15: Square with angles.
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Figure 2.16: Regular pentagon with angles.

Figure 2.17: Regular hexagon with angles.
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Figure 2.18: Regular heptagon with angles.

Figure 2.19: Regular octagon with angles.
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Figure 2.20: Regular nonagon with angles.
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Chapter 3

ARCHIMEDES

3.1 Heiron’s crown

Archimedes was the greatest mathematician of the Hellenistic Era. In fact, together with
Newton and Gauss, he is considered to be one of the greatest mathematicians of all time.

Archimedes was born in Syracuse in Sicily in 287 B.C.. He was the son of an astronomer,
and he was also a close relative of Hieron II, the king of Syracuse. Like most scientists
of his time, Archimedes was educated at the Museum in Alexandria, but unlike most, he
did not stay in Alexandria. He returned to Syracuse, probably because of his kinship with
Hieron II. Being a wealthy aristocrat, Archimedes had no need for the patronage of the
Ptolemys.

Many stories are told about Archimedes: For example, he is supposed to have been so
absent-minded that he often could not remember whether he had eaten. Another (perhaps
apocryphal) story has to do with the discovery of “Archimedes Principle” in hydrostatics.
According to the story, Hieron had purchased a golden crown of complex shape, and he
had begun to suspect that the goldsmith had cheated him by mixing silver with gold. Since
Hieron knew that his bright relative, Archimedes, was an expert in calculating the volumes
of complex shapes, he took the crown to Archimedes and asked him to determine whether
it was made of pure gold (by calculating its specific gravity). However, the crown was too
irregularly shaped, and even Archimedes could not calculate its volume.

While he was sitting in his bath worrying about this problem, Archimedes reflected on
the fact that his body seemed less heavy when it was in the water. Suddenly, in a flash of
intuition, he saw that the amount by which his weight was reduced was equal to the weight
of the displaced water. He leaped out of his bath shouting “Eureka! Eureka!” (“I’ve found
it!”) and ran stark naked through the streets of Syracuse to the palace of Hieron to tell
him of the discovery.

The story of Hieron’s crown illustrates the difference between the Hellenistic period
and the classical period. In the classical period, geometry was a branch of religion and
philosophy. For aesthetic reasons, the tools which a classical geometer was allowed too use
were restricted to a compass and a straight-edge. Within these restrictions, many problems
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Figure 3.1: A statue of Archimedes (287 BC - 212 BC. He invented both differential
and integral calculus almost two millennia before Newton, but he was unable to teach his
methods to his contemporaries.
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are insoluble. For example, within the restrictions of classical geometry, it is impossible to
solve the problem of trisecting an angle. In the story of Hieron’s crown, Archimedes breaks
free from the classical restrictions and shows himself willing to use every conceivable means
to achieve his purpose.

One is reminded of Alexander of Macedon who, when confronted with the Gordian
Knot, is supposed to have drawn his sword and cut the knot in two! In a book On Method,
which he sent to his friend Eratosthenes, Archimedes even confesses to cutting out figures
from paper and weighing them as a means of obtaining intuition about areas and centers
of gravity. Of course, having done this, he then derived the areas and centers of gravity by
more rigorous methods.

3.2 Invention of differential and integral calculus

One of Archimedes’ great contributions to mathematics was his development of methods
for finding the areas of plane figures bounded by curves, as well as methods for finding the
areas and volumes of solid figures bounded by curved surfaces. To do this, he employed
the “doctrine of limits”. For example, to find the area of a circle, he began by inscribing
a square inside the circle. The area of the square was a first approximation to the area of
the circle. Next, he inscribed a regular octagon and calculated its area, which was a closer
approximation to the area of the circle. This was followed by a figure with 16 sides, and
then 32 sides, and so on. Each increase in the number of sides brought him closer to the
true area of the circle.

Archimedes also circumscribed polygons about the circle, and thus he obtained an
upper limit for the area, as well as a lower limit. The true area was trapped between the
two limits. In this way, Archimedes showed that the value of pi lies between 223/71 and
220/70.

Sometimes Archimedes’ use of the doctrine of limits led to exact results. For example,
he was able to show that the ratio between the volume of a sphere inscribed in a cylinder
to the volume of the cylinder is 2/3, and that the area of the sphere is 2/3 the area of the
cylinder. He was so pleased with this result that he asked that a sphere and a cylinder be
engraved on his tomb, together with the ratio, 2/3.

Another problem which Archimedes was able to solve exactly was the problem of calcu-
lating the area of a plane figure bounded by a parabola. In his book On method, Archimedes
says that it was his habit to begin working on a problem by thinking of a plane figure as
being composed of a very large number of narrow strips, or, in the case of a solid, he
thought of it as being built up from a very large number of slices. This is exactly the
approach which is used in integral calculus .

Archimedes must really be credited with the invention of both differential and integral
calculus. He used what amounts to integral calculus to find the volumes and areas not only
of spheres, cylinders and cones, but also of spherical segments, spheroids, hyperboloids and
paraboloids of revolution; and his method for constructing tangents anticipates differential
calculus.
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Figure 3.2: This figure illustrates one of the ways in which Archimedes used his
doctrine of limits to calculate the area of a circle. He first inscribed a square
within the circle, then an octagon, then a figure with 16 sides, and so on. As
the number of sides became very large, the area of these figures (which he
could calculate) approached the true area of the circle.
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Figure 3.3: Here we see another way in which Archimedes used his doctrine of
limits. He could calculate the areas of figures bounded by curves by dividing
up these areas into a large number of narrow strips. As the number of strips
became very large, their total area approached the true area of the figure.
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Unfortunately, Archimedes was unable to transmit his invention of the calculus to the
other mathematicians of his time. The difficulty was that there was not yet any such thing
as algebraic geometry. The Pythagoreans had never recovered from the shock of discovering
irrational numbers, and they had therefore abandoned algebra in favor of geometry. The
union of algebra and geometry, and the development of a calculus which even non-geniuses
could use, had to wait for Descartes, Fermat, Newton and Leibniz.

3.3 Statics and hydrostatics

Archimedes was the father of statics (as well as of hydrostatics). He calculated the centers
of gravity of many kinds of figures, and he made a systematic, quantitative study of the
properties of levers. He is supposed to have said: “Give me a place to stand on, and I can
move the world!” This brings us to another of the stories about Archimedes: According to
the story, Hieron was a bit sceptical, and he challenged Archimedes to prove his statement
by moving something rather enormous, although not necessarily as large as the world.
Archimedes good-humoredly accepted the challenge, hooked up a system of pulleys to a
fully-loaded ship in the harbor, seated himself comfortably, and without excessive effort he
singlehandedly pulled the ship out of the water and onto the shore.

Archimedes had a very compact notation for expressing large numbers. Essentially
his system was the same as our own exponential notation, and it allowed him to handle
very large numbers with great ease. In a curious little book called The Sand Reckoner, he
used this notation to calculate the number of grains of sand which would be needed to fill
the universe. (Of course, he had to make a crude guess about the size of the universe.)
Archimedes wrote this little book to clarify the distinction between things which are very
large but finite and things which are infinite. He wanted to show that nothing finite - not
even the number of grains of sand needed to fill the universe - is too large to be measured
and expressed in numbers. The Sand Reckoner is important as an historical document,
because in it Archimedes incidentally mentions the revolutionary heliocentric model of
Aristarchus, which does not occur in the one surviving book by Aristarchus himself.

In addition to his mathematical genius, Archimedes showed a superb mechanical intu-
ition, similar to that of Leonardo da Vinci. Among his inventions are a planetarium and
an elegant pump in the form of a helical tube. This type of pump is called the “screw of
Archimedes”, and it is still in use in Egypt. The helix is held at an angle to the surface
of the water, with its lower end half-immersed. When the helical tube is rotated about its
long axis, the water is forced to flow uphill!
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Figure 3.4: Archimedes’ screw, the helical pump which he invented, is still in
use today.

3.4 Don’t disturb my circles!

His humanity and his towering intellect brought Archimedes universal respect, both during
his own lifetime and ever since. However, he was not allowed to live out his life in peace;
and the story of his death is both dramatic and symbolic:

In c. 212 B.C., Syracuse was attacked by a Roman fleet. The city would have fallen
quickly if Archimedes had not put his mind to work to think of ways to defend his coun-
trymen. He devised systems of mirrors which focused the sun’s rays on the attacking ships
and set them on fire, and cranes which plucked the ships from the water and overturned
them.

In the end, the Romans hardly dared to approach the walls of Syracuse. However, after
several years of siege, the city fell to a surprise attack. Roman soldiers rushed through the
streets, looting, burning and killing. One of them found Archimedes seated calmly in front
of diagrams sketched in the sand, working on a mathematical problem. When the soldier
ordered him to come along, the great mathematician is supposed to have looked up from
his work and replied: “Don’t disturb my circles.” The soldier immediately killed him.

The death of Archimedes and the destruction of the Hellenistic civilization illustrate the
fragility of civilization. It was only a short step from Archimedes to Galileo and Newton;
only a short step from Eratosthenes to Columbus, from Aristarchus to Copernicus, from
Aristotle to Darwin or from Hippocrates to Pasteur. These steps in the cultural evolution of
mankind had to wait nearly two thousand years, because the brilliant Hellenistic civilization
was destroyed, and Europe was plunged back into the dark ages.
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Figure 3.5: Machines used by Archimedes to defend Syracuse against the Roman
attack.

Figure 3.6: “The death of Archimedes”, a painting by Thomas Degeorge.
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Figure 3.7: The Great Library of Alexandria was partially burned during an
attack by Julius Caesar in 48 BC. Much of the library survived, but during the
Roman period which followed, it declined through neglect. With the destruc-
tion of the advanced Hellenistic civilization, much knowledge was lost. Had
it survived, the history of human culture and science would have been very
different.
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Chapter 4

AL-KHWARIZMI

Wikipedia says of him:
“Muhammad ibn Musa al-Khwarizmi (c.780-c.850), Arabized as al-Khwarizmi

and formerly Latinized as Algorithmi, was a Persian polymath who produced
vastly influential works in mathematics, astronomy, and geography. Around
820 CE he was appointed as the astronomer and head of the library of the
House of Wisdom in Baghdad.

“Al-Khwarizmi’s popularizing treatise on algebra (The Compendious Book
on Calculation by Completion and Balancing, c. 813-833 CE) presented the
first systematic solution of linear and quadratic equations. One of his princi-
pal achievements in algebra was his demonstration of how to solve quadratic
equations by completing the square, for which he provided geometric justifica-
tions. Because he was the first to treat algebra as an independent discipline
and introduced the methods of ‘reduction’ and ‘balancing’ (the transposition
of subtracted terms to the other side of an equation, that is, the cancellation
of like terms on opposite sides of the equation), he has been described as the
father or founder of algebra. The term algebra itself comes from the title of his
book (the word al-jabr meaning ‘completion’ or ‘rejoining’). His name gave rise
to the terms algorism and algorithm, as well as Spanish and Portuguese terms
algoritmo, and Spanish guarismo and Portuguese algarismo meaning ‘digit’.

“In the 12th century, Latin translations of his textbook on arithmetic (Al-
gorithmo de Numero Indorum) which codified the various Indian numerals,
introduced the decimal positional number system to the Western world. The
Compendious Book on Calculation by Completion and Balancing, translated
into Latin by Robert of Chester in 1145, was used until the sixteenth century
as the principal mathematical text-book of European universities.

“In addition to his best-known works, he revised Ptolemy’s Geography, list-
ing the longitudes and latitudes of various cities and localities. He further
produced a set of astronomical tables and wrote about calendaric works, as
well as the astrolabe and the sundial. He also made important contributions
to trigonometry, producing accurate sine and cosine tables...”
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Figure 4.1: Statue of al-Khwarizmi in front of the Faculty of Mathematics of
Amirkabir University of Technology in Tehran. Iran.
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Figure 4.2: A stamp issued September 6, 1983 in the Soviet Union, commemo-
rating al-Khwarizmi’s (approximate) 1200th birthday.
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Figure 4.3: Statue of Al-Khwarizmi in Uzbekistan.



AL-KHWARIZMI 49

Figure 4.4: This map shows Khwarazm, the place of Al-Khwarizmi’s birth. It
lies to the east of the Caspian Sea.
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Figure 4.5: Scholars at the library of the House of Wisdom in Baghdad. Illus-
tration by Yahyá al-Wasiti, 1237.
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4.1 Al-Khwarizmi’s life

Muhammad ibn Musa al-Khwarizmi (c.780-c.850) was born in the Persian province of
Khwarazm, shown on the map in Figure 4.4. During his lifetime, Muslim conquests made
Baghdad the most important intellectual center, and scholars from as far away as China
were attracted to the Arab capitol. Al-Khwarizmi also traveled to Baghdad, where he
worked at the “House of Wisdom”, which had been established by Caliph al-Ma’mun. Here
he was able to study both Greek and Sanskrit manuscripts on science and mathematics,
and to carry out his highly influential original work.

4.2 The father of algebra

Al-Khwarizmi has been called “the father of algebra”. J. J. O’Connor and E. F. Robertson
wrote in the MacTutor History of Mathematics archive:

“Perhaps one of the most significant advances made by Arabic mathematics
began at this time with the work of al-Khwarizmi, namely the beginnings of
algebra. It is important to understand just how significant this new idea was. It
was a revolutionary move away from the Greek concept of mathematics which
was essentially geometry. Algebra was a unifying theory which allowed rational
numbers, irrational numbers, geometrical magnitudes, etc., to all be treated
as ‘algebraic objects’. It gave mathematics a whole new development path
so much broader in concept to that which had existed before, and provided a
vehicle for future development of the subject. Another important aspect of the
introduction of algebraic ideas was that it allowed mathematics to be applied
to itself in a way which had not happened before.”

In modern terms, one of the methods introduced by al-Khwarizmi corresponds to mov-
ing terms in an equation freely to the right or left of the equal sign in an equation, with
a change of sign. He also introduced a systematic method for solving quadratic equations.
However, modern notation had not been invented at the time, and al-Khwarizmi described
all of the operations for solving a problem in words, even using words rather than symbols
for numbers. He introduced the decimal positional number system to the west. When we
speak of “Arabic numerals”, it is because of his work. However, positional number systems
had long been in use, both in Mesopotamia and in India.

Wikipedia states that:

“Al-Khwarizmi’s work on arithmetic was responsible for introducing the
Arabic numerals, based on the Hindu-Arabic numeral system developed in In-
dian mathematics, to the Western world. The term ‘algorithm’ is derived from
the algorism, the technique of performing arithmetic with Hindu-Arabic nu-
merals developed by al-Khwarizmi. Both ‘algorithm’ and ‘algorism’ are derived
from the Latinized forms of al-Khwarizmi’s name, Algoritmi and Algorismi, re-
spectively.”
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In 1145. Al-Khwarizmi’s book Compendious Book on Calculation by Completion and
Balancing, was translated into Latin by Robert of Chester, and for many centuries it was
the principle book on mathematics used at European universities.

4.3 Contributions to astronomy

Al-Khwarizmi’s book on astronomy, Zij al-Sindhind, consisted of approximately 37 chapters
on calendars and calculations. and 116 tables. The tables give the values of trigonometric
functions and calculated locations of the sun, moon and the five planets that were known
at the time. The fact that al-Khwarizmi performed original calculations of these positions
marked a turning point in Islamic astronomy. The original manuscript has been lost, but
copies of a Latin translation, thought to be by Adalard of Bath, exist in four European
libraries, in Chartres, Paris, Madrid and Oxford.

4.4 Contributions to geography
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Chapter 5

OMAR KHAYYAM

5.1 Omar’s family and education

Omar Khayyam (1048-1131) was born in the city of Nishapur, which is located in the
northern part of Persia, or present-day Iran. His father was a wealthy physician, who
paid a tutor to give his son Omar an excellent education. The tutor, Bahmanyar bin
Marzban, was a Zoroastrian, and had been a student of the great physician, scientist,
and philosopher Avicenna. Thus Omar Khayyam received an unusually good education in
science, philosophy and mathematics.

In 1066, Omar’s father died, and his tutor also died soon afterwards. Two years later, in
1068, Omar joined a caravan for a three-month journey to Samarkand, then a great center
of learning in Uzbekistan. He arrived there at the age of 20, and introduced himself to the
governor of the city, Abe Tapir, an old friend of his father. Tahir soon recognized Omar’s
extraordinary mathematical ability and have him a job in his office. Soon afterwards,
Omar was promoted to a job in the king’s treasury.

Two years later, in 1070, Omar Khayyam published one of his greatest mathemati-
cal works, Treatise on Demonstration of Problems of Algebra and Balancing. This book
contains a discussion of cubic equations, and it shows that they may have more than one
root. Like other Islamic mathematicians, Omar did not consider negative roots. The book
established Omar’s reputation as a mathematician, and his fame spread throughout Persia,

5.2 Invited to Isfahan

In 1073, the young but already famous Omar received an invitation to come to Persia’s
capitol city, Isfahan. The invitation came from the two most powerful men of the Seljuk
Empire, Malik Shah, Sultan of the empire, and Nizam al-Mulk, his vizier. Omar’s job
was to produce a calendar that would be valid over a long period, without the need for
adjustment. He was given an enormous salary, and the means to hire many assistants. With
these ample means, he recruited many talented scientists and founded an astronomical
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observatory.
Omar measured the length of the tropical year with extraordinary accuracy. His value,

365.2422 days. is extremely close to the currently-accepted value.

5.3 Linking algebra and geometry

The Pythagoreans had abandoned algebra when they discovered irrational numbers, such
as
√

2, since their religion was based on the idea rationality both in mathematics and in
the social sphere. Ancient Greek mathematics concentrated on geometry.

The union of geometry and algebra was pioneered in the western world by Pierre de
Fermat and René Descartes. However, both Fermat and Descartes were preceded in the
Islamic world by Omar Khayyam, whose mathematical work united algebra and geometry.

5.4 Omar Khayyam anticipates non-Euclidean geom-

etry

Throughout history, many authors have doubted that Euclid’s fifth postulate concerning
parallel lines was necessary. Many, including Khayyam, have tried to prove the fifth pos-
tulate from the first four. Omar’s attempt is particularly interesting because in it we can
see the first glimmerings on non-Euclidean geometry, later developed in Europe by Gauss
and Riemann. One of Omar’s diagrams is shown in Figure 5.6.

5.5 The Rubáiyát

translated by Edward Fitzgerald. Only the first few verses are shown here

Awake! for Morning in the Bowl of Night
Has flung the Stone that puts the Stars to Flight:
And Lo! the Hunter of the East has caught
The Sultan’s Turret in a Noose of Light.

Dreaming when Dawn’s Left Hand was in the Sky
I heard a voice within the Tavern cry,
“Awake, my Little ones, and fill the Cup
Before Life’s Liquor in its Cup be dry.”

And, as the Cock crew, those who stood before
The Tavern shouted – “Open then the Door!
You know how little while we have to stay,
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And, once departed, may return no more.”

Now the New Year reviving old Desires,
The thoughtful Soul to Solitude retires,
Where the White Hand of Moses on the Bough
Puts out, and Jesus from the Ground suspires.

Iram indeed is gone with all its Rose,
And Jamshyd’s Sev’n-ring’d Cup where no one Knows;
But still the Vine her ancient ruby yields,
And still a Garden by the Water blows.

And David’s Lips are lock’t; but in divine
High piping Pehlevi, with “Wine! Wine! Wine!
Red Wine!” – the Nightingale cries to the Rose
That yellow Cheek of hers to incarnadine.

Come, fill the Cup, and in the Fire of Spring
The Winter Garment of Repentance fling:
The Bird of Time has but a little way
To fly – and Lo! the Bird is on the Wing.

Whether at Naishapur or Babylon,
Whether the Cup with sweet or bitter run,
The Wine of Life keeps oozing drop by drop,
The Leaves of Life kep falling one by one.

Morning a thousand Roses brings, you say;
Yes, but where leaves the Rose of Yesterday?
And this first Summer month that brings the Rose
Shall take Jamshyd and Kaikobad away.

But come with old Khayyam, and leave the Lot
Of Kaikobad and Kaikhosru forgot:
Let Rustum lay about him as he will,
Or Hatim Tai cry Supper – heed them not.

With me along the strip of Herbage strown
That just divides the desert from the sown,
Where name of Slave and Sultan is forgot –
And Peace is Mahmud on his Golden Throne!

A Book of Verses underneath the Bough,
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A Jug of Wine, a Loaf of Bread, – and Thou
Beside me singing in the Wilderness –
Oh, Wilderness were Paradise enow!

Some for the Glories of This World; and some
Sigh for the Prophet’s Paradise to come;
Ah, take the Cash, and let the Promise go,
Nor heed the rumble of a distant Drum!

Were it not Folly, Spider-like to spin
The Thread of present Life away to win –
What? for ourselves, who know not if we shall
Breathe out the very Breath we now breathe in!

Look to the Rose that blows about us – “Lo,
Laughing,” she says, “into the World I blow:
At once the silken Tassel of my Purse
Tear, and its Treasure on the Garden throw.”

The Worldly Hope men set their Hearts upon
Turns Ashes – or it prospers; and anon,
Like Snow upon the Desert’s dusty Face
Lighting a little Hour or two – is gone.

And those who husbanded the Golden Grain,
And those who flung it to the Winds like Rain,
Alike to no such aureate Earth are turn’d
As, buried once, Men want dug up again.

Think, in this batter’d Caravanserai
Whose Doorways are alternate Night and Day,
How Sultan after Sultan with his Pomp
Abode his Hour or two and went his way.

They say the Lion and the Lizard keep
The Courts where Jamshyd gloried and drank deep:
And Bahram, that great Hunter – the Wild Ass
Stamps o’er his Head, but cannot break his Sleep.

I sometimes think that never blows so red
The Rose as where some buried Caesar bled;
That every Hyacinth the Garden wears
Dropt in its Lap from some once lovely Head.
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And this delightful Herb whose tender Green
Fledges the River’s Lip on which we lean –
Ah, lean upon it lightly! for who knows
From what once lovely Lip it springs unseen!

Ah, my Beloved, fill the Cup that clears
To-day of past Regrets and future Fears –
To-morrow? – Why, To-morrow I may be
Myself with Yesterday’s Sev’n Thousand Years.

Lo! some we loved, the loveliest and best
That Time and Fate of all their Vintage prest,
Have drunk their Cup a Round or two before,
And one by one crept silently to Rest.

And we, that now make merry in the Room
They left, and Summer dresses in new Bloom,
Ourselves must we beneath the Couch of Earth
Descend, ourselves to make a Couch – for whom?

Ah, make the most of what we may yet spend,
Before we too into the Dust descend;
Dust into Dust, and under Dust, to lie;
Sans Wine, sans Song, sans Singer, and – sans End!

Alike for those who for To-day prepare,
And those that after some To-morrow stare,
A Muezzin from the Tower of Darkness cries
“Fools! Your Reward is neither Here nor There!”

Why, all the Saints and Sages who discuss’d
Of the Two Worlds so learnedly, are thrust
Like foolish Prophets forth; their Works to Scorn
Are scatter’d, and their Mouths are stopt with Dust.

Oh, come with old Khayyam, and leave the Wise
To talk; one thing is certain, that Life flies;
One thing is certain, and the Rest is Lies;
The Flower that once has blown forever dies.

Myself when young did eagerly frequent
Doctor and Saint, and heard great Argument
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About it and about; but evermore
Came out by the same Door as in I went.

With them the Seed of Wisdom did I sow,
And with my own hand labour’d it to grow:
And this was all the Harvest that I reap’d –
“I came like Water and like Wind I go.”

Into this Universe, and Why not knowing,
Nor Whence, like Water willy-nilly flowing:
And out of it, as Wind along the Waste,
I know not Whither, willy-nilly blowing.

Up from Earth’s Centre through the Seventh Gate
I rose, and on the Throne of Saturn sate,
And many Knots unravel’d by the Road;
But not the Master-Knot of Human Fate.

There was the Door to which I found no Key:
There was the Veil through which I could not see:
Some little talk awhile of Me and Thee
There was – and then no more of Thee and Me.
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Figure 5.1: Omar Khayyam was a Persian mathematician, astronomer and poet.
His work in mathematics was notable for his solutions to cubic equations,
his understanding of the binomial theorem, and his discussions of the axioms
of Euclid. As an astronomer, he directed the building of an observatory to
reform the Persian calendar. Omar Khayyam’s long poem, Rubaiyat, is known
to western readers through Edward Fitzgerald’s brilliant translation.
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Figure 5.2: Omar Khayyam.
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Figure 5.3: “Cubic equation and intersection of conic sections” the first page of
a two-chaptered manuscript kept in Tehran University.
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Figure 5.4: Omar Khayyam’s construction of a solution to the cubic equation
x3+2x = 2x2+2. The intersection point produced by the circle and the hyperbola
determine the desired segment.
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Figure 5.5: In the language of modern mathematics, Khayyam’s solution to the
equation x3 + a2x = b features a parabola of equation x2 = ay, a circle with
diameter b/a2, and a vertical line through the intersection point. The solution
is given by the distance on the x-axis between the origin and the (red) vertical
line. Image by Pieter Kuiper.
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Figure 5.6: In Omar Khayyam’s discussion of Euclid’s postulate concerning par-
allel lines, we see the first glimmering of non-Euclidean geometry. The figure
shows one of Khayyam’s diagrams. Lines which are locally parallel at one point
meet at another point when they are drawn on curved surfaces.
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Figure 5.7: Statue of Omar Khayyam in Bucharest.
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Figure 5.8: “At the Tomb of Omar Khayyam” by Jay Hambidge (1911).
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Figure 5.9: The statue of Khayyam in United Nations Office in Vienna as a part
of Persian Scholars Pavilion donated by Iran.
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Chapter 6

RENÉ DESCARTES

6.1 Uniting geometry and algebra

Until the night of November 10, 1619, algebra and geometry were separate disciplines. On
that autumn evening, the troops of the Elector of Bavaria were celebrating the Feast of
Saint Martin at the village of Neuberg in Bohemia. With them was a young Frenchman
named René Descartes (1596-1659), who had enlisted in the army of the Elector in order
to escape from Parisian society. During that night, Descartes had a series of dreams which,
as he said later, filled him with enthusiasm, converted him to a life of philosophy, and put
him in possession of a wonderful key with which to unlock the secrets of nature.

The program of natural philosophy on which Descartes embarked as a result of his
dreams led him to the discovery of analytic geometry, the combination of algebra and
geometry. Essentially, Descartes’ method amounted to labeling each point in a plane with
two numbers, x and y. These numbers represented the distance between the point and two
perpendicular fixed lines, (the coordinate axes). Then every algebraic equation relating x
and y generated a curve in the plane.

Descartes realized the power of using algebra to generate and study geometrical fig-
ures; and he developed his method in an important book, which was among the books that
Newton studied at Cambridge. Descartes’ pioneering work in analytic geometry paved the
way for the invention of differential and integral calculus by Fermat, Newton and Leibniz.
(Besides taking some steps towards the invention of calculus, the great French mathemati-
cian, Pierre de Fermat (1601-1665), also discovered analytic geometry independently, but
he did not publish this work.)

Analytic geometry made it possible to treat with ease the elliptical orbits which Kepler
had introduced into astronomy, as well as the parabolic trajectories which Galileo had
calculated for projectiles.

Descartes also worked on a theory which explained planetary motion by means of
“vortices”; but this theory was by no means so successful as his analytic geometry, and
eventually it had to be abandoned.
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Figure 6.1: Portrait of René Descartes, after Frans Hals.
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Figure 6.2: Queen Christina (at the table on the right) in discussion with French
philosopher René Descartes. (Romanticized painting by Nils Forsberg (1842-
1934), after Pierre Louis Dumesnil.
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Figure 6.3: Queen Christina of Sweden in a portrait by Sébastien Bourdon.
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Figure 6.4: This figure shows the parabola f = t2 plotted using the method
of Descartes. Values of f are measured on the vertical axis, while values of
t are measured along the horizontal axis. The curve tells us the value of f
corresponding to every value of t. For example, when t = 1, f = 1, while
when t = 2, f = 4. If we want to know the value of f = t2 corresponding to a
particular value of t, we go vertically up to the curve from the horizontal axis,
and then horizontally left from the curve to the vertical axis.
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Figure 6.5: The slope of a curve at a given point t is defined as the limit of the
ratio df/dt, when dt becomes infinitesimally small.
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Figure 6.6: This figure shows the trigonometric functions f = sin(t) and f =
cos(t) plotted as functions of t using the method of Descartes. The functions
were first tabulated by the Egyptian astronomer Hipparchus.

6.2 Descartes’ work on Optics, physiology and philos-

ophy

Descartes did important work in optics, physiology and philosophy. In philosophy, he is
the author of the famous phrase “Cogito, ergo sum”, “I think; therefore I exist”, which is
the starting point for his theory of knowledge. He resolved to doubt everything which it
was possible to doubt; and finally he was reduced to knowledge of his own existence as the
only real certainty.

René Descartes died tragically through the combination of two evils which he had
always tried to avoid: cold weather and early rising. Even as a student, he spent a large
portion of his time in bed. He was able to indulge in this taste for a womblike existence
because his father had left him some estates in Brittany. Descartes sold these estates and
invested the money, from which he obtained an ample income. He never married, and he
succeeded in avoiding responsibilities of every kind.

6.3 Descartes’ tragic death

Descartes might have been able to live happily in this way to a ripe old age if only he
had been able to resist a flattering invitation sent to him by Queen Christina of Sweden.
Christina, the intellectual and strong-willed daughter of King Gustav Adolf, was deter-
mined to bring culture to Sweden, much to the disgust of the Swedish noblemen, who
considered that money from the royal treasury ought to be spent exclusively on guns and
fortifications. Unfortunately for Descartes, he had become so famous that Queen Christina
wished to take lessons in philosophy from him; and she sent a warship to fetch him from
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Holland, where he was staying. Descartes, unable to resist this flattering attention from a
royal patron, left his sanctuary in Holland and sailed to the frozen north.

The only time Christina could spare for her lessons was at five o’clock in the morning,
three times a week. Poor Descartes was forced to get up in the utter darkness of the bitterly
cold Swedish winter nights to give Christina her lessons in a draughty castle library; but
his strength was by no means equal to that of the queen, and before the winter was over
he had died of pneumonia.
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Chapter 7

NEWTON

7.1 Newton’s early life

On Christmas day in 1642 (the year in which Galileo died), a recently widowed woman
named Hannah Newton gave birth to a premature baby at the manor house of Woolsthorpe,
a small village in Lincolnshire, England. Her baby was so small that, as she said later,
“he could have been put into a quart mug”, and he was not expected to live. He did live,
however, and lived to achieve a great scientific synthesis, uniting the work of Copernicus,
Brahe, Kepler, Galileo and Descartes.

When Isaac Newton was four years old, his mother married again and went to live
with her new husband, leaving the boy to be cared for by his grandmother. This may
have caused Newton to become more solemn and introverted than he might otherwise have
been. One of his childhood friends remembered him as “a sober, silent, thinking lad, scarce
known to play with the other boys at their silly amusements”.

7.2 Newton becomes a student at Cambridge

As a boy, Newton was fond of making mechanical models, but at first he showed no special
brilliance as a scholar. He showed even less interest in running the family farm, however;
and a relative (who was a fellow of Trinity College) recommended that he be sent to
grammar school to prepare for Cambridge University.

When Newton arrived at Cambridge, he found a substitute father in the famous math-
ematician Isaac Barrow, who was his tutor. Under Barrow’s guidance, and while still a
student, Newton showed his mathematical genius by inventing the binomial theorem.

To understand Newton’s work on the binomial theorem, we can begin by thinking of
what happens when we multiply the quantity a + b by itself. The result is a2 + 2ab + b2.
Now suppose that we continue the process and multiply a2 + 2ab+ b2 by a+ b. The result
of this second multiplication is a3 + 3a2b+ 3ab2 + b3 , which can also be written as (a+ b)3

79
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. Continuing in this way we can obtain higher powers of a + b:

(a+ b)1 = a+ b
(a+ b)2 = a2 + 2ab+ b2

(a+ b)3 = a3 + 3ab + 3b2a+ b3

(a+ b)4 = a4 + 4a3b+ 6a2b2 + 4ab3 + b4

(7.1)

and so on. Newton realized that in general, an integral power of a + b can be expressed
in the form:

(a+ b)n = an +
n

1!
an−1b+

n(n− 1)

2!
an−2b2 +

n(n− 1)(n− 2)

3!
an−3b3 + · · · (7.2)

where
0! ≡ 1
1! ≡ 1
2! ≡ 2× 1 = 2
3! ≡ 3× 2× 1 = 6
4! ≡ 4× 3× 2× 1 = 24
...

...
...

(7.3)

From the definition of n!, it follows that

n =
n!

(n− 1)!

n(n− 1) =
n!

(n− 2)!

n(n− 1)(n− 3) =
n!

(n− 3)!

(7.4)

so that we can rewrite the equation for (a+ b)n can be rewritten in the form

(a+ b)n =
n∑
j=0

n!

j!(n− j)!)a
n−jbj (7.5)

The large Greek letter
∑

indicates a sum. In this case, it is taken over all integral values
from 0 up to and including to n.
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Figure 7.1: Newton’s work on binomial coefficients was foreshadowed by that
of the French mathematician Blaise Pascal (1623-1662), inventor of “Pascal’s
triangle”. However, Pascal was in turn preceded by the Persian mathematician-
poet Omar Khayyam (1048-1131) and by the Chinese mathematician Yanghui,
who lived 500 years before Pascal. In the figure we see the Yanghui triangle.
The binomial coefficients in each successive row are obtained by adding together
coefficients in the previous row. The number above and slightly to the left is
added to the number above and slightly to the right, and the sum forms the
new coefficient.
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7.3 Differential calculus

In 1665, Cambridge University was closed because of an outbreak of the plague, and Newton
returned for two years to the family farm at Woolsthorpe. He was then twenty-three years
old. During the two years of isolation, Newton developed his binomial theorem into the
beginnings of differential calculus. He imagined ∆t to be an extremely small increase in the
value of a variable t. For example, t might represent time, in which case ∆t would represent
an infinitesimal increase in time - a tiny fraction of a split-second. Newton realized that
the series

(t+ ∆t)p = tp + ptp−1∆t+ +
p(p− 1)

2!
tp−2(∆t)2 + · · · (7.6)

could then be represented to a very good approximation by its first two terms, and in the
limit ∆t→ 0, he obtained the result:

limit
∆t→ 0

[
f(t+ ∆t)− f(t)

∆t

]
= ptp−1 (7.7)

Thus, in the particular case where f(t) = tp he found that

df

dt
≡ limit

∆t→ 0

[
f(t+ ∆t)− f(t)

∆t

]
= ptp−1 (7.8)

d

dt
can be thought of as an operator which one can apply to a function f (t). Today we call

this operation “differentiation”, and df/dt is called the function’s “first derivative”.
The derivative of a function can be interpreted as the slope (at a particular point t) of

a curve representing the function. Differential calculus is the branch of mathematics that
deals with differentiation, with slopes, with tangents, and with rates of change.

If we differentiate the sum of two functions, we obtain

d

dt
[f(t) + g(t)] =

limit
∆t→ 0

[
f(t+ ∆t)− f(t) + g(t+ ∆t)− g(t)

∆t

]
(7.9)

which can be rewritten as
d

dt
[f + g] =

df

dt
+
dg

dt
(7.10)

For example

if f + g = t+ t2, then
d

dt
[f + g] = 1 + 2t (7.11)

Differentiating the product of two functions yields

d

dt
[f(t)g(t)] =

limit
∆t→ 0

[
f(t+ ∆t)g(t+ ∆t)− f(t)g(t)

∆t

]
(7.12)

which can be rewritten in the form

d

dt
[fg] = g

df

dt
+ f

dg

dt
(7.13)



7.3. DIFFERENTIAL CALCULUS 83

Now suppose that g(t) = a where a is a constant, i.e. independent of t. Then from (7.13)
we find that

if a = constant, then
d

dt
[af ] = a

df

dt
(7.14)

Combining these results, we obtain

d

dt

[
a0 + a1t+ a2t

2 + a3t
3 + · · ·

]
= a1 + 2a2t+ 3a3t

2 + 4a4t
3 + · · · (7.15)

Differentiating a function gives us a new function, but this new function can also be
differentiated, and this process will yield another function, which today is called the “second
derivative”. In modern notation, the new function obtained by differentiating f(t) twice

with respect to t is represented by the symbol
d2f

dt2
, where

d2f

dt2
≡ d

dt

[
df

dt

]
(7.16)

For example

d2

dt2
[
a0 + a1t+ a2t

2 + a3t
3 + · · ·

]
= 2a2 + 6a3t+ 12a4t

2 + · · · (7.17)

We can continue and take the third derivative:

d3

dt3
[
a0 + a1t+ a2t

2 + a3t
3 + · · ·

]
= 6a3 + 24a4t+ 60a5t

2 + · · · (7.18)

Continuing to differentiate, we obtain in general

if f =
∞∑
n=0

ant
n, then

[
dnf

dtn

]
t=0

= n!an (7.19)

Finally, dividing (7.19) by n! we have

if f =
∞∑
n=0

ant
n, then an =

1

n!

[
dnf

dtn

]
t=0

(7.20)

Many examples of series obtained using equation (7.20) can be found in the tables of
Appendix A. Some important differential relationships are also shown in the tables.

We have used modern notation to go through the reasoning that Newton used to de-
velop his binomial theorem into differential calculus. The quantities that we today call
“derivatives”, he called “fluxions”, i.e. flowing quantities, perhaps because he associated
them with a water clock that he had made as a boy - a water-filled jar with a hole in the
bottom. If f(t) represents the volume of water in the jar as a function of time, then df/dt
represents the rate at which water is flowing out through the hole.
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Newton also applied his “method of fluxions” to mechanics. From the three laws of
planetary motion discovered by the German astronomer Kepler, Newton had deduced that
the force with which the sun attracts a planet must fall off as the square of the distance
between the planet and the sun. With great boldness, he guessed that this force is universal,
and that every object in the universe attracts every other object with a gravitational force
that is directly proportional to the product of the two masses, and inversely proportional
to the square of the distance between them.

Newton also guessed correctly that in attracting an object outside its surface, the earth
acts as though its mass were concentrated at its center. However, he could not construct
the proof of this theorem, since it depended on integral calculus, which did not exist in
1666. (Newton himself perfected integral calculus later in his life.)

Referring to the year 1666, Newton wrote later: “I began to think of gravity extending
to the orb of the moon; and having found out how to estimate the force with which a
globe revolving within a sphere presses the surface of the sphere, from Kepler’s rule of the
periodical times of the planets being in a sesquialternate proportion of their distances from
the centres of their orbs, I deduced that the forces which keep the planets in their orbs
must be reciprocally as the squares of the distances from the centres about which they
revolve; and thereby compared the force requisite to keep the moon in her orb with the
force of gravity at the surface of the earth, and found them to answer pretty nearly.”

“All this was in the plague years of 1665 and 1666, for in those days I was in the prime
of my age for invention, and minded mathematics and philosophy more than at any time
since.”

Galileo had studied the motion of projectiles, and Newton was able to build on this
work by thinking of the moon as a sort of projectile, dropping towards the earth, but at
the same time moving rapidly to the side. The combination of these two motions gives the
moon its nearly-circular path.

To see how Newton made this calculation, we can let x, y and z represent the Cartesian
position coordinates of a body (for example the moon, or an apple). These are functions
of time, and if we assume that the functions can be represented by polynomials in t, we
can make use of (7.20) and write

x(t) = x0 + t

[
dx

dt

]
t=0

+
t2

2!

[
d2x

dt2

]
t=0

+ · · · (7.21)

y(t) = y0 + t

[
dy

dt

]
t=0

+
t2

2!

[
d2y

dt2

]
t=0

+ · · · (7.22)

z(t) = z0 + t

[
dz

dt

]
t=0

+
t2

2!

[
d2z

dt2

]
t=0

+ · · · (7.23)

The three Cartesian coordinates of a particle can be the three components of a vector
which we can call r. or mathematical quantity that has a direction as well the velocity of
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an object is a vector, since it has a magnitude.)

r ≡ {x, y, z} (7.24)

The force acting on an object has components in the directions of the three Cartesian
coordinates, and thus the force can also be thought of as a vector:

F ≡ {Fx, Fy, Fz} (7.25)

(We use bold-face type here to denote vectors). In addition to guessing the universal law
of gravitation, Newton also postulated that the second derivative of the position vector
of a body with respect to time (i.e. its acceleration) is directly proportional to the force
acting on it, the constant of proportionality being the inverse of the body’s mass:

d2r

dt2
=

F

m
(7.26)

Equation (7.26) is Newton’s famous third law of motion. It is a vector equaion, and its
meaning is that each component of the vector on the left side is equal to the corresponding
component of the vector on the right. In other words,

d2x

dt2
=

Fx
m

d2y

dt2
=

Fy
m

d2z

dt2
=

Fz
m

(7.27)

Suppose now that the body is an apple, falling to the ground because of the earth’s
gravitational attraction. If z represents the vertical height of the apple above the earth’s
surface, while x and y measure its horizontal position on the surface, and if −mg is the
force of gravity acting on the apple, then we can write:

F ≡ {0, 0,−mg} (7.28)

Combining (7.26) and (7.28), we have[
d2r

dt2

]
t=0

≡ {0, 0,−g} (7.29)

The constant g which appears in equation (7.29) is the acceleration due to the earth’s
gravity acting on an object near to its surface, and it has the value

g = 32.174
feet

sec2
= 9.8066

meters

sec2
(7.30)
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(Newton used the English units, feet and miles. 1 meter = 3.28084 feet. 1 mile = 5280
feet.) Notice that the mass m has now disappeared! The force of gravity in Newton’s
theory is directly proportional to a body’s mass, but the acceleration produced by a force
in inversely proportional to it, and therefore the mass cancels out of the equation for
gravitational acceleration.

To make the problem of the falling apple a little more complicated, let us suppose that
a small boy has climbed the tree and that instead of just dropping the apple, he throws it
out horizontally with velocity [

dr

dt

]
t=0

≡ {vx, 0, 0} (7.31)

Then substituting the initial velocity and acceleration of the apple into the equations of
motion, and letting x0 = y0 = 0, we obtain

x = vxt

y = 0

z = z0 −
gt2

2

(7.32)

We can use the first of these equations to express t in terms of x and rewrite the equation
for z in the form:

z = z0 − g
x2

2vx
(7.33)

Thus we see that if it is thrown out horizontally from the tree, the apple will fall to the
ground following a parabolic trajectory. Equations (7.32) and (7.33) describe the motions
of projectiles and falling bodies. These were already well known to Galileo, who was the
first to study such motions experimentally.

Newton boldly postulated that the laws of motion and gravitation that can be observed
here on earth extend throughout the universe. To him it seemed that the moon resembles
an apple thrown to the side by a small boy sitting in the apple tree. The moon falls towards
the earth, but at the same time it moves to the side with the constant velocity vx. The
combination of these two motions gives the moon its nearly-circular orbit. Of course, after
it has moved a little, the force of gravitation comes from a different direction, and therefore
the moon does not follow a parabolic orbit but an approximately circular one. However, if
we consider only a very short period of time, the circle and parabola fit closely together, as
is illustrated in Figure 7.2. If we take the origin of our coordinate system to be the center
of the earth, then z0 = Rm where Rm is the radius of the moon’s orbit, and the trajectory
of the moon through a very short interval of time is given by

z = Rm − g′
x2

2vx
(7.34)

We use g′ instead of g in equation (7.34) because the moon is much more distant from
the earth’s center than the apple is, and the moon’s gravitational acceleration is much less
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Figure 7.2: The orbit of the moon is approximately circular in shape. During
a very short interval of time, the moon can be thought of as being similar to
an object moving horizontally, and at the same time being accelerated in a
vertical direction by the force of gravity. The parabolic trajectory of such an
object is approximately the same as a circle during that short interval of time,
as is shown in the figure.
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than the apple’s. Building on Kepler’s laws of planetary motion, Newton postulated that
the force of gravity exerted by the earth falls off as the reciprocal of the square of the
distance from the earth’s center. Thus g′ and g are related by

g′ = g

(
Re

Rm

)2

= g

(
3963 miles

238.600 miles

)2

= .0089
feet

sec2
(7.35)

z =
√
R : m2 − x2 ≈ Rm −

x2

2Rm

= Rm − g′
x2

2vx
(7.36)

vx =
2πRm

τ
= 3356

feet

sec.
(7.37)

where τ is the period of the moon’s orbit.
In this way, Newton “compared the force necessary to keep the moon in her orb with

the force of gravity on the earth’s surface, and found them to answer pretty nearly.”
Newton was not satisfied with this incomplete triumph, and he did not show his calcu-

lations to anyone. He not only kept his ideas on gravitation to himself, (probably because
of the missing proof), but he also refrained for many years from publishing his work on the
calculus. By the time Newton published, the calculus had been invented independently
by the great German mathematician and philosopher, Gottfried Wilhelm Leibniz (1646-
1716); and the result was a bitter quarrel over priority. However, Newton did publish his
experiments in optics, and these alone were enough to make him famous.

7.4 Optics

Newton’s famous experiments in optics also date from these years. The sensational exper-
iments of Galileo were very much discussed at the time, and Newton began to think about
ways to improve the telescope. Writing about his experiments in optics, Newton says:

“In the year 1666 (at which time I applied myself to the grinding of optic glasses of other
figures than spherical), I procured me a triangular prism, to try therewith the celebrated
phenomena of colours. And in order thereto having darkened my chamber, and made a
small hole in the window shuts to let in a convenient quantity of the sun’s light, I placed
my prism at its entrance, that it might thereby be refracted to the opposite wall.”

“It was at first a very pleasing divertisment to view the vivid and intense colours
produced thereby; but after a while, applying myself to consider them more circumspectly,
I became surprised to see them in an oblong form, which, according to the received laws
of refraction I expected should have been circular.”

Newton then describes his crucial experiment. In this experiment, the beam of sunlight
from the hole in the window shutters was refracted by two prisms in succession. The first
prism spread the light into a rainbow-like band of colors. From this spectrum, he selected
a beam of a single color, and allowed the beam to pass through a second prism; but when
light of a single color passed through the second prism, the color did not change, nor was
the image spread out into a band. No matter what Newton did to it, red light always
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remained red, once it had been completely separated from the other colors; yellow light
remained yellow, green remained green, and blue remained blue.

Newton then measured the amounts by which the beams of various colors were bent by
the second prism; and he discovered that red light was bent the least. Next in sequence
came orange, yellow, green, blue and finally violet, which was deflected the most. Newton
recombined the separated colors, and he found that together, they once again produced
white light.

Concluding the description of his experiments, Newton wrote:
“...and so the true cause of the length of the image (formed by the first prism) was

detected to be no other than that light is not similar or homogenial, but consists of deform
rays, some of which are more refrangible than others.”

“As rays of light differ in their degrees of refrangibility, so they also differ in their
disposition to exhibit this or that particular colour... To the same degree of refrangibility
ever belongs the same colour, and to the same colour ever belongs the same degree of
refrangibility.”

“...The species of colour and the degree of refrangibility belonging to any particular
sort of rays is not mutable by refraction, nor by reflection from natural bodies, nor by any
other cause that I could yet observe. When any one sort of rays hath been well parted from
those of other kinds, it hath afterwards obstinately retained its colour, notwithstanding
my utmost endeavours to change it.”
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Figure 7.3: Illustration of a dispersive prism separating white light into the
colours of the spectrum, as discovered by Newton.
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Figure 7.4: Replica of Newton’s second reflecting telescope, which he presented
to the Royal Society in 1672.
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7.5 Integral calculus

In 1669, Newton’s teacher, Isaac Barrow, generously resigned his post as Lucasian Professor
of Mathematics so that Newton could have it. Thus, at the age of 27, Newton became the
head of the mathematics department at Cambridge. He was required to give eight lectures
a year, but the rest of his time was free for research.

Newton worked at this time on developing what he called “the method of inverse
fluxions”. Today we call his method “integral calculus”. What did Newton mean by
“inverse fluxions”? By “fluxions” he meant differentials, so we must think of an operation
that is the reverse of differentiation.

Suppose that we know from our experience with differentiation that (for example)

if and only if f = tp + C then
df

dt
= ptp−1 (7.38)

where C is a constant. Then we also know that

if
df

dt
= ptp−1 then f = tp + C (7.39)

In equation (7.39), we know that C is a constant, but we do not know its value. Knowledge
of the derivative df/dt allows us to determine the original function f(t) from which it was
derived up to an additive constant that must be determined in some other way. The
operation of going backwards from the differential of a function to the function itself is
called “integration”, and the unknown constant C is called the “constant of integration”.
If we replace p by p+ 1, it follows from (7-39) that

if
df

dt
= tp then f =

tp

p+ 1
+ C p 6= −1 (7.40)

(We have to exclude p = −1 in (3.3) to avoid dividing by zero.) It is customary to write
this relationship in the form ∫

dt tp =
tp

p+ 1
+ C p 6= −1 (7.41)

Once again the constant of integration, C, is unknown and must be determined in some
other way. When p = 1, equation (7.41) becomes∫

dt t =
t2

2
+ C (7.42)

Equations (7.41) and (7.42) are called “indefinite integrals” - indefinite because the constant
of integration is unknown. One also speaks of “definite integrals”, where knowledge of
the derivative df/dt is used to find f(t2) − f(t1). If the variable t represents time, then
f(t2)−f(t1) would represent the difference between the function f(t) evaluated at the time
t = t2 minus the same function evaluated at the time t = t1 . For example,

if
df

dt
= t then f(t2)− f(t1) =

t22
2
− t21

2
(7.43)
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This relationship is written in the form∫ t2

t1

dt t =
t22
2
− t21

2
(7.44)

The integration is said to be taken between the lower limit t = t1 and the upper limit,
t = t2 . The more general indefinite integral shown in equation (7.41) has a corresponding
definite integral of the form:∫ t2

t1

dt tp =
tp+1
2

p+ 1
− tp+1

1

p+ 1
p 6= −1 (7.45)

When p = 0, this becomes ∫ t2

t1

dt = t2 − t1 (7.46)

The reason why integrals taken between two limits are called “definite integrals” is that
the unknown constant of integration C has cancelled out so no information is missing when
we go from the differential of a function to the function itself.

In a previous chapter, we mentioned that Archimedes invented integral calculus and
used it to determine the areas of figures bounded by curves. To see how he did this and
how Newton, many centuries later, did the same thing, let us begin by multiplying both
sides of equation (7.46) by a constant v. This gives us

v

∫ t2

t1

dt = v(t2 − t1) (7.47)

If we let t1 = 0 we have

v

∫ t2

0

dt = vt2 (7.48)

What we have done here. and in Figures 7.5 and 7.6, seems a bit like cracking a peanut
with a sledge- hammer. Why have we used such a heavy piece of mathematical hardware
to crack a problem that we could have solved in 30 seconds in our heads? However, if the
reader will be patient with the first two simple examples, which we have included for the
sake of clarity, we will soon go on to problems involving figures bounded by curves, and
these cannot be solved without the help of integral calculus.

In the next simple example, we multiply both sides of equation (7.44) with the constant
a. This will give us

a

∫ t2

t1

dt t = a

(
t22
2
− t21

2

)
(7.49)

Tables of important indefinite and definite integrals are given in Appendix A.
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Figure 7.5: This figure shows a rectangle with height v and base t2−t1 . The area
of the figure is v(t2− t1). If v represents the constant velocity of an object, then
the area of the rectangle represents distance that the object moves between
the times t1 and t2.
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Figure 7.6: We now divide the large rectangle of Figure 7.5 into five small rect-
angular strips, each with area v∆t = v(t2 − t1)/5. When we add together the
areas of the small strips, we get the same answer for the total area of the rect-
angle. Physically, v∆t can represent the distance that an object with constant
velocity v moves in a small interval of time ∆t.
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Figure 7.7: This figure illustrates the geometrical interpretation of equation
(7.48). The area under the straight line v = at between the points t = 0 and
t = t2 is given by at22/2, i.e., the height of the triangle, multiplied by half the
length of the base. Physically, the area of the triangle can represent the distance
moved by an object with constant acceleration a. It’s velocity is then given by
v = at, and the distance travelled is proportional to the square of the elapsed
time. Galileo found this law experimentally for falling bodies with constant
gravitational acceleration. He observed that the distance travelled by a falling
body is proportional to the square of the elapsed time.
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Figure 7.8: We now divide the triangle of Figure 7.7 into N small rectangular
strips. (In the figure, N = 5.) The area of the triangle is approximated by the
sum of the areas of the small strips. If we increase the number of strips, N
, the approximation will become more exact. The area of each of the narrow
strips can represent physically the approximate distance that an object with
constant acceleration a travels during the interval of time ∆t. This distance
changes with time because acceleration changes the velocity of the object.
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Figure 7.9: Equation (3.25) tells us how to find the area under the parabola
f(t) = t ∗ ∗22 between vertical lines drawn at t = t1 and t = t2 . The other
boundary of the calculation.
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7.6 Halley visits Newton

Newton’s prism experiments had led him to believe that the only possible way to avoid blur-
ring of colors in the image formed by a telescope was to avoid refraction entirely. Therefore
he designed and constructed the first reflecting telescope. In 1672, he presented a reflecting
telescope to the newly-formed Royal Society, which then elected him to membership.

Meanwhile, the problems of gravitation and planetary motion were increasingly dis-
cussed by the members of the Royal Society. In January, 1684, three members of the
Society were gathered in a London coffee house. One of them was Robert Hooke (1635-
1703), author of Micrographia and Professor of Geometry at Gresham College, a brilliant
but irritable man. He had begun his career as Robert Boyle’s assistant, and had gone on
to do important work in many fields of science. Hooke claimed that he could calculate the
motion of the planets by assuming that they were attracted to the sun by a force which
diminished as the square of the distance.

Listening to Hooke were Sir Christopher Wren (1632-1723), the designer of St. Paul’s
Cathedral, and the young astronomer, Edmund Halley (1656-1742). Wren challenged
Hooke to produce his calculations; and he offered to present Hooke with a book worth
40 shillings if he could prove his inverse square force law by means of rigorous mathemat-
ics. Hooke tried for several months, but he was unable to win Wren’s reward.

Meanwhile, in August, 1684, Halley made a journey to Cambridge to talk with Newton,
who was rumored to know very much more about the motions of the planets than he had
revealed in his published papers. According to an almost-contemporary account, what
happened then was the following:

“Without mentioning his own speculations, or those of Hooke and Wren, he (Halley)
at once indicated the object of his visit by asking Newton what would be the curve de-
scribed by the planets on the supposition that gravity diminished as the square of the
distance. Newton immediately answered: an Ellipse. Struck with joy and amazement,
Halley asked how he knew it? ‘Why’, replied he, ‘I have calculated it’; and being asked for
the calculation, he could not find it, but promised to send it to him.”

Newton soon reconstructed the calculation and sent it to Halley; and Halley, filled with
enthusiasm and admiration, urged Newton to write out in detail all of his work on motion
and gravitation. Spurred on by Halley’s encouragement and enthusiasm, Newton began to
put his research in order. He returned to the problems which had occupied him during the
plague years, and now his progress was rapid because he had invented integral calculus.
This allowed him to prove rigorously that terrestrial gravitation acts as though all the
earth’s mass were concentrated at its center. Newton also had available an improved value
for the radius of the earth, measured by the French astronomer Jean Picard (1620-1682).
This time, when he approached the problem of gravitation, everything fell into place.

By the autumn of 1684, Newton was ready to give a series of lectures on dynamics,
and he sent the notes for these lectures to Halley in the form of a small booklet entitled
On the Motion of Bodies. Halley persuaded Newton to develop these notes into a larger
book, and with great tact and patience he struggled to keep a controversy from developing
between Newton, who was neurotically sensitive, and Hooke, who was claiming his share
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Figure 7.10: Portrait of Isaac Newton (1642-1727) by Sir Godfrey Kneller.



7.6. HALLEY VISITS NEWTON 101

of recognition in very loud tones, hinting that Newton was guilty of plagiarism.
Although Newton was undoubtedly the greatest physicist of all time, he had his short-

comings as a human being; and he reacted by striking out from his book every single
reference to Robert Hooke. The Royal Society at first offered to pay for the publication
costs of Newton’s book, but because a fight between Newton and Hooke seemed possible,
the Society discretely backed out. Halley then generously offered to pay the publication
costs himself, and in 1686 Newton’s great book was printed. It is entitled Philosophae
Naturalis Principia Mathematica, (The Mathematical Principles of Natural Philosophy),
and it is divided into three sections.

The first book sets down the general principles of mechanics. In it, Newton states his
three laws of motion, and he also discusses differential and integral calculus (both invented
by himself).

In the second book, Newton applies these methods to systems of particles and to hydro-
dynamics. For example, he calculates the velocity of sound in air from the compressibility
and density of air; and he treats a great variety of other problems, such as the problem of
calculating how a body moves when its motion is slowed by a resisting medium, such as
air or water.

The third book is entitled The System of the World. In this book, Newton sets out to
derive the entire behavior of the solar system from his three laws of motion and from his
law of universal gravitation. From these, he not only derives all three of Kepler’s laws, but
he also calculates the periods of the planets and the periods of their moons; and he explains
such details as the flattened, non-spherical shape of the earth, and the slow precession of
its axis about a fixed axis in space. Newton also calculated the irregular motion of the
moon resulting from the combined attractions of the earth and the sun; and he determined
the mass of the moon from the behavior of the tides.

Newton’s Principia is generally considered to be the greatest scientific work of all time.
To present a unified theory explaining such a wide variety of phenomena with so few
assumptions was a magnificent and unprecedented achievement; and Newton’s contempo-
raries immediately recognized the importance of what he had done.

The great Dutch physicist, Christian Huygens (1629-1695), inventor of the pendulum
clock and the wave theory of light, travelled to England with the express purpose of meeting
Newton. Voltaire, who for reasons of personal safety was forced to spend three years in
England, used the time to study Newton’s Principia; and when he returned to France,
he persuaded his mistress, Madame du Chatelet, to translate the Principia into French;
and Alexander Pope, expressing the general opinion of his contemporaries, wrote a famous
couplet, which he hoped would be carved on Newton’s tombstone:

“Nature and Nature’s law lay hid in night.
God said: ‘Let Newton be!’, and all was light!”
The Newtonian synthesis was the first great achievement of a new epoch in human

thought, an epoch which came to be known as the “Age of Reason” or the “Enlightenment”.
We might ask just what it was in Newton’s work that so much impressed the intellectuals
of the 18th century. The answer is that in the Newtonian system of the world, the entire
evolution of the solar system is determined by the laws of motion and by the positions and
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velocities of the planets and their moons at a given instant of time. Knowing these, it is
possible to predict all of the future and to deduce all of the past.

The Newtonian system of the world is like an enormous clock which has to run on in
a predictable way once it is started. In this picture of the world, comets and eclipses are
no longer objects of fear and superstition. They too are part of the majestic clockwork
of the universe. The Newtonian laws are simple and mathematical in form; they have
complete generality; and they are unalterable. In this picture, although there are no
miracles or exceptions to natural law, nature itself, in its beautiful works, can be regarded
as miraculous.

Newton’s contemporaries knew that there were other laws of nature to be discovered
besides those of motion and gravitation; but they had no doubt that, given time, all of the
laws of nature would be discovered. The climate of intellectual optimism was such that
many people thought that these discoveries would be made in a few generations, or at most
in a few centuries.

In 1704, Newton published a book entitled Opticks, expanded editions of which ap-
peared in 1717 and 1721. Among the many phenomena discussed in this book are the
colors produced by thin films. For example, Newton discovered that when he pressed two
convex lenses together, the thin film of air trapped between the lenses gave rise to rings of
colors (“Newton’s rings”). The same phenomenon can be seen in the in the colors of soap
bubbles or in films of oil on water.

In order to explain these rings, Newton postulated that “..every ray of light in its
passage through any refracting surface is put into a transient constitution or state, which
in the progress of the ray returns at equal intervals, and disposes the ray at every return
to be easily transmitted through the next refracting surface and between the returns to be
easily reflected from it.”

Newton’s rings were later understood on the basis of the wave theory of light advocated
by Huygens and Hooke. Each color has a characteristic wavelength, and is easily reflected
when the ratio of the wavelength to the film thickness is such that the wave reflected from
the bottom surface of the film interferes constructively with the wave reflected from the
top surface. However, although he ascribed periodic “fits of easy reflection” and “fits of
easy transmission” to light, and although he suggested that a particular wavelength is
associated with each color, Newton rejected the wave theory of light, and believed instead
that light consists of corpuscles emitted from luminous bodies.

Newton believed in his corpuscular theory of light because he could not understand on
the basis of Huygens’ wave theory how light casts sharp shadows. This is strange, because
in his Opticks he includes the following passage:

“Grimaldo has inform’d us that if a beam of the sun’s light be let into a dark room
through a very small hole, the shadows of things in this light will be larger than they
ought to be if the rays went on by the bodies in straight lines, and that these shadows
have three parallel fringes, bands or ranks of colour’d light adjacent to them. But if the
hole be enlarg’d, the fringes grow broad and run into one another, so that they cannot be
distinguish’d”

After this mention of the discovery of diffraction by the Italian physicist, Francesco
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Figure 7.11: Newton own evaluation of his work was modest. He wrote “I do
not know what I may appear to the world, but to myself I seem to have been
only like a boy playing on the seashore, and diverting myself in now and then
finding a smoother pebble or a prettier shell than ordinary, whilst the great
ocean of truth lay all undiscovered before me.”

Marea Grimaldi (1618-1663), Newton discusses his own studies of diffraction. Thus, New-
ton must have been aware of the fact that light from a very small source does not cast
completely sharp shadows!

Newton felt that his work on optics was incomplete, and at the end of his book he
included a list of “Queries”, which he would have liked to have investigated. He hoped
that this list would help the research of others. In general, although his contemporaries
were extravagant in praising him, Newton’s own evaluation of his work was modest. “I do
not know how I may appear to the world”, he wrote, “but to myself I seem to have been
only like a boy playing on the seashore and diverting myself in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all
undiscovered before me.”

7.7 The conflict over priority between Leibniz and

Newton

In this chapter, we have used the modern notation, which is much closer to the notation
used by the great German mathematician and universal genius, Gottfried Wilhelm von
Leibniz than to that used by Newton.

Newton did not publish his work on differential and integral calculus. Slightly later,
Leibniz invented these two branches of mathematics independently. Thus a bitter dispute
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over priority was precipated, from which Leibniz suffered when his patron, the Elector of
Hanover, left Germany to become King George I of England.

Huygens and Leibniz

On the continent of Europe, mathematics and physics had been developing rapidly, stim-
ulated by the writings of René Descartes. One of the most distinguished followers of
Descartes was the Dutch physicist, Christian Huygens (1629-1695).

Huygens was the son of an important official in the Dutch government. After studying
mathematics at the University of Leiden, he published the first formal book ever written
about probability. However, he soon was diverted from pure mathematics by a growing
interest in physics.

In 1655, while working on improvements to the telescope together with his brother
and the Dutch philosopher Benedict Spinoza, Huygens invented an improved method for
grinding lenses. He used his new method to construct a twenty-three foot telescope, and
with this instrument he made a number of astronomical discoveries, including a satellite
of Saturn, the rings of Saturn, the markings on the surface of Mars and the Orion Nebula.

Huygens was the first person to estimate numerically the distance to a star. By as-
suming the star Sirius to be exactly as luminous as the sun, he calculated the distance to
Sirius, and found it to be 2.5 trillion miles. In fact, Sirius is more luminous than the sun,
and its true distance is twenty times Huygens’ estimate.

Another of Huygens’ important inventions is the pendulum clock. Improving on Galileo’s
studies, he showed that for a pendulum swinging in a circular arc, the period is not pre-
cisely independent of the amplitude of the swing. Huygens then invented a pendulum with
a modified arc, not quite circular, for which the swing was exactly isochronous. He used
this improved pendulum to regulate the turning of cog wheels, driven by a falling weight;
and thus he invented the pendulum clock, almost exactly as we know it today.

In discussing Newton’s contributions to optics, we mentioned that Huygens opposed
Newton’s corpuscular theory of light, and instead advocated a wave theory. Huygens
believed that the rapid motion of particles in a hot body, such as a candle flame, produces
a wave-like disturbance in the surrounding medium; and he believed that this wavelike
disturbance of the “ether” produces the sensation of vision by acting on the nerves at the
back of our eyes.

In 1678, while he was working in France under the patronage of Louis XIV, Huygens
composed a book entitled Traité de la Lumiere, (Treatise on Light), in which he says:

“...It is inconceivable to doubt that light consists of the motion of some sort of matter.
For if one considers its production, one sees that here upon the earth it is chiefly engendered
by fire and flame, which undoubtedly contain bodies in rapid motion, since they dissolve
and melt many other bodies, even the most solid; or if one considers its effects, one sees
that when light is collected, as by concave mirrors, it has the property of burning as fire
does, that is to say, it disunites the particles of bodies. This is assuredly the mark of
motion, at least in the true philosophy in which one conceives the causes of all natural
effects in terms of mechanical motions...”
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Figure 7.12: Christian Huygens (1629-1695).
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“Further, when one considers the extreme speed with which light spreads on every
side, and how, when it comes from different regions, even from those directly opposite, the
rays traverse one another without hindrance, one may well understand that when we see a
luminous object, it cannot be by any transport of matter coming to us from the object, in
the way in which a shot or an arrow traverses the air; for assuredly that would too greatly
impugn these two properties of light, especially the second of them. It is in some other way
that light spreads; and that which can lead us to comprehend it is the knowledge which
we have of the spreading of sound in the air.”

Huygens knew the velocity of light rather accurately from the work of the Danish
astronomer, Ole Rømer (1644-1710), who observed the moons of Jupiter from the near
and far sides of the earth’s orbit. By comparing the calculated and observed times for the
moons to reach a certain configuration, Rømer was able to calculate the time needed for
light to propagate across the diameter of the earth’s orbit. In this way, Rømer calculated
the velocity of light to be 227,000 kilometers per second. Considering the early date of this
first successful measurement of the velocity of light, it is remarkably close to the accepted
modern value of 299,792 kilometers per second. Thus Huygens knew that although the
speed of light is enormous, it is not infinite.

Huygens considered the propagation of a light wave to be analogous to the spreading
of sound, or the widening of the ripple produced when a pebble is thrown into still water.
He developed a mathematical principle for calculating the position of a light wave after a
short interval of time if the initial surface describing the wave front is known. Huygens
considered each point on the initial wave front to be the source of spherical wavelets,
moving outward with the speed of light in the medium. The surface marking the boundary
between the region outside all of the wavelets and the region inside some of them forms
the new wave front.

If one uses Huygens’ Principle to calculate the wave fronts and rays for light from a
point source propagating past a knife edge, one finds that a part of the wave enters the
shadow region. This is, in fact, precisely the effect which was observed by both Grimaldi
and Newton, and which was given the name “diffraction” by Grimaldi. In the hands of
Thomas Young (1773-1829) and Augustin Jean Fresnel (1788-1827), diffraction effects later
became a strong argument in favor of Huygens’ wave theory of light.

(You can observe diffraction effects yourself by looking at a point source of light, such
as a distant street lamp, through a piece of cloth, or through a small slit or hole. Another
type of diffraction can be seen by looking at light reflected at a grazing angle from a
phonograph record. The light will appear to be colored. This effect is caused by the fact
that each groove is a source of wavelets, in accordance with Huygens’ Principle. At certain
angles, the wavelets will interfere constructively, the angles for constructive interference
being different for each color.)

Interestingly, modern quantum theory (sometimes called wave mechanics) has shown
that both Huygens’ wave theory of light and Newton’s corpuscular theory contain aspects
of the truth! Light has both wave-like and particle-like properties. Furthermore, quantum
theory has shown that small particles of matter, such as electrons, also have wave-like
properties! For example, electrons can be diffracted by the atoms of a crystal in a manner
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Figure 7.13: Portrait of Gottfried Wilhelm Leibniz by J.F. Wentzel.

exactly analogous to the diffraction of light by the grooves of a phonograph record. Thus
the difference of opinion between Huygens and Newton concerning the nature of light is
especially interesting, since it foreshadows the wave-particle duality of modern physics.

Among the friends of Christian Huygens was the German philosopher and mathemati-
cian Gottfried Wilhelm Leibniz (1646-1716). Leibniz was a man of universal and spectac-
ular ability. In addition to being a mathematician and philosopher, he was also a lawyer,
historian and diplomat. He invented the doctrine of balance of power, attempted to unify
the Catholic and Protestant churches, founded academies of science in Berlin and St.
Petersburg, invented combinatorial analysis, introduced determinants into mathematics,
independently invented the calculus, invented a calculating machine which could multiply
and divide as well as adding and subtracting, acted as advisor to Peter the Great and orig-
inated the theory that “this is the best of all possible worlds” (later mercilessly satirized
by Voltaire in Candide).

Leibniz learned mathematics from Christian Huygens, whom he met while travelling as
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an emissary of the Elector of Mainz. Since Huygens too was a man of very wide interests,
he found the versatile Leibniz congenial, and gladly agreed to give him lessons. Leibniz
continued to correspond with Huygens and to receive encouragement from him until the
end of the older man’s life.

In 1673, Leibniz visited England, where he was elected to membership by the Royal
Society. During the same year, he began his work on calculus, which he completed and
published in 1684. Newton’s invention of differential and integral calculus had been made
much earlier than the independent work of Leibniz, but Newton did not publish his discov-
eries until 1687. This set the stage for a bitter quarrel over priority between the admirers
of Newton and those of Leibniz. The quarrel was unfortunate for everyone concerned,
especially for Leibniz himself. He had taken a position in the service of the Elector of
Hanover, which he held for forty years. However, in 1714, the Elector was called to the
throne of England as George I. Leibniz wanted to accompany the Elector to England, but
was left behind, mainly because of the quarrel with the followers of Newton. Leibniz died
two years later, neglected and forgotten, with only his secretary attending the funeral.

7.8 Political philosophy of the Enlightenment

The 16th, 17th and 18th centuries have been called the “Age of Discovery”, and the “Age
of Reason”, but they might equally well be called the “Age of Observation”. On every
side, new worlds were opening up to the human mind. The great voyages of discovery
had revealed new continents, whose peoples demonstrated alternative ways of life. The
telescopic exploration of the heavens revealed enormous depths of space, containing myriads
of previously unknown stars; and explorations with the microscope revealed a new and
marvelously intricate world of the infinitesimally small.

In the science of this period, the emphasis was on careful observation. This same
emphasis on observation can be seen in the Dutch and English painters of the period. The
great Dutch masters, such as Jan Vermeer (1632-1675), Frans Hals (1580-1666), Pieter
de Hooch (1629-1678) and Rembrandt van Rijn (1606-1669), achieved a careful realism
in their paintings and drawings which was the artistic counterpart of the observations of
the pioneers of microscopy, Anton van Leeuwenhoek and Robert Hooke. These artists
were supported by the patronage of the middle class, which had become prominent and
powerful both in England and in the Netherlands because of the extensive world trade in
which these two nations were engaged.

Members of the commercial middle class needed a clear and realistic view of the world
in order to succeed with their enterprises. (An aristocrat of the period, on the other hand,
might have been more comfortable with a somewhat romanticized and out-of-focus vision,
which would allow him to overlook the suffering and injustice upon which his privileges
were based.) The rise of the commercial middle class, with its virtues of industriousness,
common sense and realism, went hand in hand with the rise of experimental science, which
required the same virtues for its success.

In England, the House of Commons (which reflected the interests of the middle class),
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had achieved political power, and had demonstrated (in the Puritan Rebellion of 1640 and
the Glorious Revolution of 1688) that Parliament could execute or depose any monarch
who tried to rule without its consent. In France, however, the situation was very different.

After passing through a period of disorder and civil war, the French tried to achieve
order and stability by making their monarchy more absolute. The movement towards
absolute monarchy in France culminated in the long reign of Louis XIV, who became king
in 1643 and who ruled until he died in 1715.

The historical scene which we have just sketched was the background against which
the news of Newton’s scientific triumph was received. The news was received by a Europe
which was tired of religious wars; and in France, it was received by a middle class which
was searching for an ideology in its struggle against the ancien régime.

To the intellectuals of the 18th century, the orderly Newtonian cosmos, with its planets
circling the sun in obedience to natural law, became an imaginative symbol representing
rationality. In their search for a society more in accordance with human nature, 18th
century Europeans were greatly encouraged by the triumphs of science. Reason had shown
itself to be an adequate guide in natural philosophy. Could not reason and natural law
also be made the basis of moral and political philosophy? In attempting to carry out
this program, the philosophers of the Enlightenment laid the foundations of psychology,
anthropology, social science, political science and economics.

One of the earliest and most influential of these philosophers was John Locke (1632-
1705), a contemporary and friend of Newton. In his Second Treatise on Government,
published in 1690, John Locke’s aim was to refute the doctrine that kings rule by divine
right, and to replace that doctrine by an alternative theory of government, derived by
reason from the laws of nature. According to Locke’s theory, men originally lived together
without formal government:

“Men living together according to reason,” he wrote, “without a common superior on
earth with authority to judge between them, is properly the state of nature... A state
also of equality, wherein all the power and jurisdiction is reciprocal, no one having more
than another; there being nothing more evident than that creatures of the same species,
promiscuously born to all the same advantages of nature and the use of the same facilities,
should also be equal amongst one another without subordination or subjection...”

“But though this be a state of liberty, yet it is not a state of licence... The state of
nature has a law to govern it, which obliges every one; and reason, which is that law,
teaches all mankind who will but consult it, that being equal and independent, no one
ought to harm another in his life, health, liberty or possessions.”

In Locke’s view, a government is set up by means of a social contract. The government
is given its powers by the consent of the citizens in return for the services which it renders
to them, such as the protection of their lives and property. If a government fails to render
these services, or if it becomes tyrannical, then the contract has been broken, and the
citizens must set up a new government.

Locke’s influence on 18th century thought was very great. His influence can be seen,
for example, in the wording of the American Declaration of Independence. In England,
Locke’s political philosophy was accepted by almost everyone. In fact, he was only codifying
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Figure 7.14: Portrait of John Locke, by Sir Godfrey Kneller.
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ideas which were already in wide circulation and justifying a revolution which had already
occurred. In France, on the other hand, Locke’s writings had a revolutionary impact.

Credit for bringing the ideas of both Newton and Locke to France, and making them
fashionable, belongs to Francois Marie Arouet (1694-1778), better known as “Voltaire”.
Besides persuading his mistress, Madame de Chatelet, to translate Newton’s Principia
into French, Voltaire wrote an extremely readable commentary on the book; and as a
result, Newton’s ideas became highly fashionable among French intellectuals. Voltaire
lived with Madame du Chatelet until she died, producing the books which established him
as the leading writer of Europe, a prophet of the Age of Reason, and an enemy of injustice,
feudalism and superstition.

The Enlightenment in France is considered to have begun with Voltaire’s return from
England in 1729; and it reached its high point with the publication of of the Encyclopedia
between 1751 and 1780. Many authors contributed to the Encyclopedia, which was an
enormous work, designed to sum up the state of human knowledge.

Turgot and Montesquieu wrote on politics and history; Rousseau wrote on music, and
Buffon on natural history; Quesnay contributed articles on agriculture, while the Baron
d’Holbach discussed chemistry. Other articles were contributed by Condorcet, Voltaire
and d’Alembert. The whole enterprise was directed and inspired by the passionate faith
of Denis Diderot (1713-1784). The men who took part in this movement called themselves
“philosophes”. Their creed was a faith in reason, and an optimistic belief in the perfectibil-
ity of human nature and society by means of education, political reforms, and the scientific
method.

The philosophes of the Enlightenment visualized history as a long progression towards
the discovery of the scientific method. Once discovered, this method could never be lost;
and it would lead inevitably (they believed) to both the material and moral improvement
of society. The philosophes believed that science, reason, and education, together with the
principles of political liberty and equality, would inevitably lead humanity forward to a
new era of happiness. These ideas were the faith of the Enlightenment; they influenced
the French and American revolutions; and they are still the basis of liberal political belief.

7.9 Voltaire and Rousseau

Voltaire (1694-1778)

Francois-Marie Arouet, who later changed his name to Voltaire, was born in Paris. His
father was a lawyer and a minor treasury official, while his mother’s family was on the
lowest rank if the French nobility. He was educated by Jesuits at Collège Louis-le-Grande,
where he learned Latin theology and rhetoric. He later became fluent in Italian, Spanish
and English.

Despite his father’s efforts to make him study law, the young Voltaire was determined to
become a writer. He eventually became the author of more than 2,000 books and pamphlets
and more than 20,000 letters. His works include many forms of writing, including plays,
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poems, novels, essays and historical and scientific works. His writings advocated civil
liberties, and he used his satirical and witty style of writing to criticize intolerance, religious
dogma and absolute monarchy. Because of the intolerance and censorship of his day, he
was frequently in trouble and sometimes imprisoned. Nevertheless, his works were very
popular, and he eventually became extremely rich, partly through clever investment of
money gained through part ownership of a lottery.

During a period of forced exile in England, Voltaire mixed with the English aristocracy,
meeting Alexander Pope, John Gay, Jonathan Swift, Lady Mary Wortley Montague, Sarah,
Duchess of Marlborough, and many other members of the nobility and royalty. He admired
the English system of constitutional monarchy, which he considered to be far superior to
the absolutism then prevailing in France. In 1733, he published a book entitled Letters
concerning the English Nation, in London. When French translation was published in
1734, Voltaire was again in deep trouble. In order to avoid arrest, he stayed in the country
château belonging to Émilie du Châtelet and her husband, the Marquis du Châtelet.

As a result, Madame du Châtelet became his mistress and the relationship lasted for
16 years. Her tolerant husband, the Marquis, who shared their intellectual and scientific
interests, often lived together with them. Voltaire paid for improvements to the château,
and together, the Marquis and Voltaire collected more than 21,000 books, and enormous
number for that time. Madame du Châtelet translated Isaac Newton’s great book, Prin-
cipia Mathematica, into French, and her translation was destined to be the standard one
until modern times. Meanwhile, Voltaire wrote a French explanation of the ideas of the
Principia, which made these ideas accessible to a wide public in France. Together, the
Marquis, his wife and Voltaire also performed many scientific experiments, for example
experiments designed to study the nature of fire.

Voltaire’s vast literary output is available today in approximately 200 volumes, pub-
lished by the University of Oxford, where the Voltaire Foundation is now established as a
research department.

Rousseau (1712-1778)

In 1754 Rousseau wrote: “The first man who, having fenced in a piece of land, said ‘This
is mine’, and found people näıve enough to believe him, that man was the true founder
of civil society. From how many crimes, wars, and murders, from how many horrors and
misfortunes might not any one have saved mankind, by pulling up the stakes, or filling up
the ditch, and crying to his fellows: Beware of listening to this impostor; you are undone if
you once forget that the fruits of the earth belong to us all, and the earth itself to nobody.”

Later, he began his influential book The Social Contract, published in 1752, with the
dramatic words: “Man is born free, and everywhere he is in chains. Those who think
themselves the masters of others are indeed greater slaves than they.” Rousseau concludes
Chapter 3 of this book with the words: “Let us then admit that force does not create right,
and that we are obliged to obey only legitimate powers”. In other words, the ability to
coerce is not a legitimate power, and there is no rightful duty to submit to it. A state has
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Figure 7.15: Voltaire used his satirical and witty style of writing to criticize in-
tolerance, religious dogma and absolute monarchy. He wrote more than 2,000
books and pamphlets and more than 20,000 letters. His writings made a sig-
nificant contribution to the Enlightenment, and paved the way for revolutions
both in France and America.
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Figure 7.16: The frontpiece of Voltaire’s book popularizing Newton’s ideas for
French readers. Madame du Châtelet appears as a muse, reflecting Newton’s
thoughts down to Voltaire.
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Figure 7.17: Unlike Voltaire, Rousseau was not an advocate of science, but
instead believed in the importance of emotions. He believed that civilization
has corrupted humans rather than making them better. Rousseau was a pioneer
of the romantic movement. His book, The Social Contract, remains influential
today.
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no right to enslave a conquered people.
These ideas, and those of John Locke, were reaffirmed in 1776 by the American Decla-

ration of Independence: “We hold these truths to be self-evident: That all men are created
equal. That they are endowed by their Creator with certain inaliable rights, and the among
these are the rights to life, liberty and the pursuit of happiness; and that to pursue these
rights, governments are instituted among men, deriving their just powers from the consent
of the governed.”

Today, in an era of government tyranny and subversion of democracy, we need to
remember that the just powers of any government are not derived from the government’s
ability to use of force, but exclusively from the consent of the governed.

Suggestions for further reading

1. Phillip Bricker and R.I.G. Hughs, Philosophical Perspectives on Newtonian Science,
M.I.T. Press, Cambridge, Mass., (1990).

2. Zev Bechler, Newton’s Physics and the Conceptual Structure of the Scientific Revo-
lution, Kluwer, Dordrecht, (1991).

3. Zev Bechler, Contemporary Newtonian Research, Reidel, Dordrecht, (1982).

4. I. Bernard Cohen, The Newtonian Revolution, Cambridge University Press, (1980).

5. B.J.T. Dobbs, The Janus Face of Genius; The Role of Alchemy in Newton’s Thought,
Cambridge University Press, (1991).

6. Paul B. Scheurer and G. Debrock, Newton’s Scientific and Philosophical Legacy,
Kluwer, Dordrecht, (1988).

7. A. Rupert Hall, Isaac Newton, Adventurer in Thought, Blackwell, Oxford, (1992).

8. Frank Durham and Robert D. Purrington, Some Truer Method; Reflections on the
Heritage of Newton, Columbia University Press, New York, (1990).

9. John Fauvel, Let Newton Be, Oxford University Press, (1989).
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Chapter 8

THE BERNOULLI’S AND EULER

8.1 The Bernoullis and Euler

Among the followers of Leibniz was an extraordinary family of mathematicians called
Bernoulli. They were descended from a wealthy merchant family in Basel, Switzerland.
The head of the family, Nicolas Bernoulli the Elder, tried to force his three sons, James
(1654-1705), Nicolas II (1662-1716) and John (1667-1748) to follow him in carrying on the
family business. However, the eldest son, James, had taught himself the Leibnizian form
of calculus, and instead became Professor of Mathematics at the University of Basel. His
motto was “Invicto patre sidera verso” (“Against my father’s will, I study the stars”).

Nicolas II and John soon caught their brother’s enthusiasm, and they learned calculus
from him. John became Professor of Mathematics in Gröningen and Nicolas II joined the
faculty of the newly-formed Academy of St. Petersburg. John Bernoulli had three sons,
Nicolas III (1695-1726), Daniel (1700-1782) and John II (1710-1790), all of whom made
notable contributions to mathematics and physics. In fact, the family of Nicolas Bernoulli
the Elder produced a total of nine famous mathematicians in three generations!

Daniel Bernoulli’s brilliance made him stand out even among the other members of
his gifted family. He became professor of mathematics at the Academy of Sciences in St.
Petersburg when he was twenty-five. After eight Russian winters however, he returned to
his native Basel. Since the chair in mathematics was already occupied by his father, he
was given a vacant chair, first in anatomy, then in botany, and finally in physics. In spite
of the variety of his titles, however, Daniel’s main work was in applied mathematics, and
he has been called the father of mathematical physics.

One of the good friends of Daniel Bernoulli and his brothers was a young man named
Leonhard Euler (1707-1783). He came to their house once a week to take private lessons
from their father, John Bernoulli. Euler was destined to become the most prolific math-
ematician in history, and the Bernoullis were quick to recognize his great ability. They
persuaded Euler’s father not to force him into a theological career, but instead to allow
him to go with Nicolas III and Daniel to work at the Academy in St. Petersburg.

Euler married the daughter of a Swiss painter and settled down to a life of quiet

119
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work, producing a large family and an unparalleled output of papers. A recent edition
of Euler’s works contains 70 quarto volumes of published research and 14 volumes of
manuscripts and letters. His books and papers are mainly devoted to algebra, the theory
of numbers, analysis, mechanics, optics, the calculus of variations (invented by Euler),
geometry, trigonometry and astronomy; but they also include contributions to shipbuilding
science, architecture, philosophy and musical theory!

Euler achieved this enormous output by means of a calm and happy disposition, an
extraordinary memory and remarkable powers of concentration, which allowed him to work
even in the midst of the noise of his large family. His friend Thiébault described Euler as
sitting “..with a cat on his shoulder and a child on his knee - that was how he wrote his
immortal works”.

In 1771, Euler became totally blind. Nevertheless, aided by his sons and his devoted
scientific assistants, he continued to produce work of fundamental importance. It was his
habit to make calculations with chalk on a board for the benefit of his assistants, although
he himself could not see what he was writing. Appropriately, Euler was making such
computations on the day of his death. On September 18, 1783, Euler gave a mathematics
lesson to one of his grandchildren, and made some calculations on the motions of balloons.
He then spent the afternoon discussing the newly-discovered planet Uranus with two of his
assistants. At five o’clock, he suffered a cerebral hemorrhage, lost consciousness, and died
soon afterwards. As one of his biographers put it, “The chalk fell from his hand; Euler
ceased to calculate, and to live”.

In the eighteenth century it was customary for the French Academy of Sciences to
propose a mathematical topic each year, and to award a prize for the best paper dealing
with the problem. Léonard Euler and Daniel Bernoulli each won the Paris prize more
than ten times, and they share the distinction of being the only men ever to do so. John
Bernoulli is said to have thrown his son out of the house for winning the Paris prize in a
year when he himself had competed for it.

Euler and the Bernoullis did more than anyone else to develop the Leibnizian form of
calculus into a workable tool and to spread it throughout Europe. They applied it to a
great variety of problems, from the shape of ships’ sails to the kinetic theory of gasses. An
example of the sort of problem which they considered is the vibrating string.

In 1727, John Bernoulli in Basel, corresponding with his son Daniel in St. Petersburg,
developed an approximate set of equations for the motion of a vibrating string by consid-
ering it to be a row of point masses, joined together by weightless springs. Then Daniel
boldly passed over to the continuum limit, where the masses became infinitely numerous
and small.

The result was Daniel Bernoulli’s famous wave equation, which is what we would now
call a partial differential equation. He showed that the wave equation has sinusoidal so-
lutions, and that the sum of any two solutions is also a solution. This last result, his
superposition principle, is a mathematical proof of a property of wave motion noticed
by Huygens. The fact that many waves can propagate simultaneously through the same
medium without interacting was one of the reasons for Huygens’ belief that light is wave-
like, since he knew that many rays of light from various directions can cross a given space
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simultaneously without interacting. Because of their work with partial differential equa-
tions, Daniel Bernoulli and Léonard Euler are considered to be the founders of modern
theoretical physics.

8.2 Linear ordinary differential equations

Leonhard Euler and all the members of the Bernoulli family were very much interested
in differential equations, i.e., in equations relating the differentials of functions to the
functions themselves. The simplest example of this type of relationship is the equation:

df

dt
= kf (8.1)

where k is some constant. Equation (8.1) states that the rate of change of some function
f(t) is proportional to the function itself. This equation might (for example) describe the
rate of growth of money that we have put into the bank, where k is the interest rate.
It might also describe the increase or decrease of a population, where k represents the
difference between the birth rate and the death rate. In both cases, the rate of change
of f is proportional to the amount of f present at a given time. We can try to solve the
equation by assuming that the solution can be represented by a series of the form

f =
∞∑
n=0

ant
n = a0 + a1t+ a2t

2 + a3t
3 + a4t

4 + · · · (8.2)

where the an’s are constants that we have to determine. Then the first derivative of the
function f with respect to t will be given by

df

dt
=
∞∑
n=0

nant
n−1 = a1 + 2a2t+ 3a3t

2 + 4a4t
3 + · · · (8.3)

Substituting equations (8.2) and (8.3) into (8.1), we obtain:

a1 + 2a2t+ 3a3t
2 + 4a4t

3 + · · · = ka0 + ka1t+ ka2t
2 + ka3t

3 + ka4t
4 + · · · (8.4)

In order for (8.4) to hold for all values of t, we need the following relationships between
the constant coefficients an:

a1 = ka0

2a2 = ka1

3a3 = ka2

4a4 = ka3

5a5 = ka4
...

...
...

(8.5)
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This set of equations can be solved to give all of the higher coefficients in terms of a0:

a1 =
k2

1!
a0

a2 =
k2

2!
a0

a3 =
k2

3!
a0

a4 =
k2

4!
a0

...
...

...

an =
k2

n!
a0

(8.6)

Substituting these values of the coefficients back into (8.2) and remembering Napier’s series
definition of e, we obtain

f = a0

(
1 + kt+

(kt)2

2!
+

(kt)3

3!
+

(kt)4

4!
+ · · ·

)
≡ ekt (8.7)

In other words, when we differentiate ekt with respect to t, we obtain the same function
again, multiplied by k.

8.3 Second-order differential equations

Equation (8.1) is called a “first-order ordinary differential equation” - first-order because it
involves only the function itself and its first derivative with no higher derivatives appearing;
ordinary because it involves only one variable, t. We will now go on to discuss an example of
a second-order ordinary differential equation, where we will see that there are two constants
that must be determined by the boundary conditions of the problem.

The harmonic oscillator

As an example of a second-order ordinary differential equation, let us consider the rela-
tionship

d2f

dt2
= −ω2

0f (8.8)

We can solve this equation by assuming that the function f can be represented by the
series shown in equation (8.2), so that its first derivative with respect to t is given by (8.3).
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Then, differentiating a second time with respect to t, we have

d2f

dt2
=

d

dt

(
∞∑
n=0

nant
n−1

)
=
∞∑
n=0

n(n− 1)ant
n−2 = −ω2

0

∞∑
n=0

ant
n (8.9)

The requirement that (8.9) must hold for all values of t gives us a set of equations relating
the higher even coefficients to a0:

a2 = −ω
2
0

2!
a0

a4 = −ω
2
0

4!
a2

a6 = −ω
2
0

6!
a4

...
...

...

(8.10)

and another set of equations relating the higher odd coefficients to a1:

a3 = −ω
2
0

3!
a1

a5 = −ω
2
0

5!
a3

a7 = −ω
2
0

7!
a5

...
...

...

(8.11)

Thus the solution can be written in the form

f = a1

(
ω0t−

(ω0t)
3

3!
+

(ω0t)
5

5!
− · · ·

)
+ a0

(
1− (ω0t)

2

2!
+

(ω0t)
4

4!
− · · ·

)
(8.12)

Euler recognized this as being the same as

f = a1 sin(ω0t) + a0 cos(ω0t) (8.13)

since series representations of the sine and cosine functions were well known at the time
when he was working. He was also able to solve the harmonic oscillator equation in an
alternative way by letting

f = e±iω0t (8.14)
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where i2 ≡ −1. This gave Euler two linearly independent solutions, one with the plus
sign, and one with the minus sign. Comparing these solutions to the series solutions just
discussed, he was led to the formula

eix = cos(x) + i sin(x) (8.15)

and to the identity
eiπ + 1 = 0 (8.16)

8.4 Partial differentiation; Daniel Bernoulli’s wave equa-

tion

Having discussed differential equations involving only a single variable (ordinary differential
equations), let us now turn to differential equations involving several variables. These
are called “partial differential equations”. The most important pioneer of this branch of
mathematics was Daniel Bernoulli.

In 1727, John Bernoulli in Basel, corresponding with his son Daniel in St. Petersburg,
developed an approximate set of equations for the motion of a vibrating string by consid-
ering it to be a row of point masses, joined together by weightless springs. Then Daniel
boldly passed over to the continuum limit, where the masses became infinitely numerous
and small.

The result was Daniel Bernoulli’s famous wave equation, which is what we would now
call a partial differential equation. But what is a partial differential equation? What is
partial differentiation?

Daniel Bernoulli developed his wave equation to describe the motion of a vibrating
string, for example a violin string, and in this problem there are two variables: x, which
represents the distance along the string, and t, which represents time. The displacement
of the string from its equilibrium position is represented by f(x, t). In other words, the
displacement is a function of two variables, position and time. To deal with this problem,
Daniel Bernoulli defined partial differentials in much the same way that Isaac Newton
defined ordinary differentials. He introduced the definitions:

∂f

∂x
≡ limit

∆x→ 0

[
f(x+ ∆x, t)− f(x, t)

∆x

]
(8.17)

and
∂f

∂t
≡ limit

∆t→ 0

[
f(x, t+ ∆t)− f(x, t)

∆t

]
(8.18)

The rules for partial differentiation are the same as for ordinary differentiation, except that
we must add an extra rule: When performing partial differentiation with respect to one
variable, all other variables must be regarded as constants. Second partial derivatives are
defined similarly. For example, to find

∂2f

∂x2
≡ ∂

∂x

[
∂f

∂x

]
(8.19)
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and similarly
∂2f

∂t2
≡ ∂

∂t

[
∂f

∂t

]
(8.20)

It is also possible to define mixed partial derivatives, and it turns out that in the mixed
second partial derivative the order of differentiation does not matter.

∂2f

∂x∂t
≡ ∂

∂x

[
∂f

∂t

]
=

∂

∂t

[
∂f

∂x

]
(8.21)

In the notation that we have been discussing, Daniel Bernoulli’s wave equation has the
form [

∂2

∂x2
− 1

c2

∂2

∂t2

]
f(x, t) = 0 (8.22)

where c is a constant. Bernoulli was able to show that in the case of a vibrating string,

c =

√
T

µ
(8.23)

where T is the tension in the string and where µ is the mass per unit length. Daniel
Bernoulli solved his wave equation by assuming that a solution could be written in the
form

f(x, t) = φ(x) [cos(ωt) + a1 sin(ωt)] (8.24)

where the constant a1 is determined by the initial conditions of the problem. Then, since

− 1

c2

∂2

∂t2
[cos(ωt) + a1 sin(ωt)] = −ω2 [cos(ωt) + a1 sin(ωt)] (8.25)

The x-dependent part of the solution had to satisfy(
∂2

∂x2
+
ω2

c2

)
φ(x) =

(
∂2

∂x2
+ k2

)
φ(x) = 0 (8.26)

where

k2 ≡ ω2

c2
(8.27)

Daniel Bernoulli showed that (8.26) has sinusoidal solutions of the form

φ(x) = A1 sin(kx) + A2 cos(kx) (8.28)

where the constants A1 and A2 as well as the value of k are determined by the boundary
conditions. For example, if the vibrating string is clamped at the positions x = 0 and
x = L, then we know that A2 = 0 (since cos(0) = 0), and that

φ(L) = sin(kL) = 0 (8.29)
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The boundary condition shown in equation (8.29) determines the allowed values of k; they
must such that kL is an integral multiple of π, and thus the only allowed values are

k =
nπ

L
n = 1, 2, 3, 4, · · · (8.30)

Only positive integers need be considered, because although the negative integers would
satisfy the boundary conditions, they do not yield any new independent solutions. Thus
Daniel Bernoulli’s wave equation, with the boundary conditions f (0, t) = 0 and f (L, t) =
0, can be satisfied by any function of the form

fn(x, t) = An sin(kx) [cos(kct) + an sin(kct)] k =
nπ

L
(8.31)

where n is an integer.

8.5 Daniel Bernoulli’s superposition principle

Daniel Bernoulli realized that the sum of any two solutions to his wave equation is also a
solution. This is easy to prove: We know that if fn(x, t) has the form shown in equation
(8.31), then [

∂2

∂x2
− 1

c2

∂2

∂t2

]
fn(x, t) = 0 (8.32)

Then a function of the form
Φ(x, t) =

∑
n

fn(x, t) (8.33)

will also be a solution, since[
∂2

∂x2
− 1

c2

∂2

∂t2

]
Φ(x, t) =

∑
n

[
∂2

∂x2
− 1

c2

∂2

∂t2

]
fn(x, t) = 0 (8.34)

Daniel Bernoulli’s superposition principle is a mathematical proof of a property of wave
motion noticed by Huygens. The fact that many waves can propagate simultaneously
through the same medium without interacting was one of the reasons for Huygens’ belief
that light is wavelike, since he knew that many rays of light from various directions can
cross a given space simultaneously without interacting.

8.6 The argument between Bernoulli and Euler

Leonhard Euler and Daniel Bernoulli were both such great mathematicians and great
friends that it is strange to think that there could ever have been a disagreement between
them. Nevertheless, a long argument between these two geniuses began as a result of
their independent solutions to the wave equation. The argument was by no means sterile,
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however, and eventually it led to the foundation of a new branch of mathematics - Fourier
analysis.

We have just seen Bernoulli’s solution to the wave equation. Leonhard Euler also
solved it, and in a completely different way. Euler showed that if F and G are any two
well-behaved functions of a single variable, then[

∂2

∂x2
− 1

c2

∂2

∂t2

]
F (x+ ct) = 0 (8.35)

and [
∂2

∂x2
− 1

c2

∂2

∂t2

]
G(x− ct) = 0 (8.36)

For example, when
F (x+ ct) = (x+ ct)2 = x2 + 2xct+ c2t2 (8.37)

then
∂2

∂x2
F (x+ ct) =

∂2

∂x2

[
x2 + 2xct+ c2t2

]
= 2 (8.38)

while

− 1

c2

∂2

∂t2
F (x+ ct) = − 1

c2

∂2

∂t2
[
x2 + 2xct+ c2t2

]
= −2 (8.39)

Adding (10-38) to (8.39) yields (8.35). Notice that in carrying out the partial differentia-
tions with respect to x, we regard t as a constant, while when we differentiate with respect
to t, we hold x constant.

Leonhard Euler was able to show that if F is a function of some variable w, then

∂

∂x
F (w) =

∂F

∂w

∂w

∂x

∂

∂t
F (w) =

∂F

∂w

∂w

∂t
(8.40)

and using these relationships he was able to prove that equations (8.35) and (8.36) hold in
general, no matter what the functions F and G might be.

Meanwhile, Daniel Bernoulli had derived his own solutions to the wave equation, the
ones shown in equation (8.31), and he had also shown that if these solutions are added
together, with various values of the constants An and an , the result is also a solution.
Euler and Bernoulli wrote letters to each other about their work on the wave equation,
and being great mathematicians, they were able draw the logical conclusion that followed
from their results: If they were both right, it had to follow that by choosing the constants
An in the right way it would be possible to construct series such that

f(x) =
∞∑
n=0

An sin
(nπx
L

)
n = 1, 2, 3, 4, · · · (8.41)

regardless of the form of f(x), the only restriction being that f should be single-valued,
continuous and differentiable and that it should obey the boundary conditions f(0) = 0
and f(L) = 0. Euler found this hard to believe, and to the end of his life he continued to
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think that there must be something wrong. Euler believed the he himself had found the
most general solutions to the wave equation, and that his friend Daniel’s set of solutions
was somehow incomplete - not sufficiently general. This famous argument between the two
great mathematicians led to a whole new branch of mathematics - Fourier analysis.

Together with Joseph-Louis Lagrange (1736-1813), Leonhard Euler pioneered another
new branch of matematics, variational calculus, which we will discuss in detail in the
chapter on Lagrange.
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action entre mathématiques et métaphysique. Maupertuis et Euler, 1740-1751, Rev.
Histoire Sci. 48 (4) (1995), 435-520.

82. H Pieper, On Euler’s contributions to the four-squares theorem, Historia Math. 20
(1) (1993), 12-18.
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Chapter 9

FOURIER

9.1 A poor taylor’s son becomes Napoleon’s friend

The controversy about the completeness of Bernoulli’s solutions was still raging when
Jean-Baptiste Joseph Fourier (1768-1830) arrived on the scene. Although he began life
as the orphaned son of a poor tailor, Fourier later achieved distinction as Professor of
Mathematics at Napoleon’s École Normale, and he even became a personal friend of the
emperor.

Fourier was orphaned at the age of nine, but through a recommendation to the Bishop
of Auxerre, he was educated by the Benedictine Order of the Convent of St. Mark, where
he soon exhibited many signs of genius. After graduating, Fourier became a military
lecturer in mathematics. During the French Revolution, he played a prominent role in his
own district, serving on the Revolutionary Committee. He was imprisoned briefly during
Robespierre’s Terror. After his release, Joseph Fourier was appointed to the École Normale,
and afterwards, he rose to become the successor to Joseph-Louis Lagrange at the École
Polytechnique.

Fourier followed Napoleon to Egypt, where he helped to set up the Egyptian Institute,
and where he made estimates of the ages of the pyramids and other monuments. Napoleon
finally appointed Fourier as the Prefect of a district in southern France in the vicinity
of Grenoble. Fourier worked hard at this job, supervising (for example) the draining of
swamps to eliminate malaria. Nevertheless, he continued his mathematical research, and
during his time in Grenoble he composed a monumental study of heat conduction, his
Mémoir sur la Chaleur. In this work, he made use of a method that later became known
as Fourier analysis.

9.2 Fourier’s studies of heat

The diffusion equation, which governs heat flow, is similar to the wave equation except
that it involves only first-order differentiation with respect to time. For the case of heat
flow in a metal rod, the equation for the temperature as a function of both position and
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time has the form
∂

∂t
T (x, t) = C

∂2

∂x2
T (x, t) (9.1)

Here T is the temperature, x and t are position and time respectively and C is a constant
which depends on the material.. To simplify the problem, we have considered only one
space dimension. Equation (9.1) might, for example, describe heat flow in an iron bar.

9.3 Fourier analysis

Fourier was able to use a slightly modified version of Daniel Bernoulli’s methods to find
solutions to the diffusion equation, and given the initial temperature distribution, he was
able to calculate the temperature distribution at any future time. To do this, he needed to
determine the constants An in series such as the one shown in equation (10.41). (Today,
this type of series is called a Fourier series.) One of the equations that Fourier used to
determine these constants had the form

2

L

∫ L

0

dx sin
(nπx
L

)
sin
(mπx

L

)
=


0 if n 6= m

1 if n = m
(9.2)

where both n and m are integers. From equation (9.2) it follows that

2

L

∫ L

0

dx sin
(nπx
L

)
f(x) =

2

L

∫ L

0

dx sin
(nπx
L

) ∞∑
m=0

Am sin
(mπx

L

)
= An (9.3)

Fourier was able to substitute the An’s calculated from (9.3) back into the series for f (x).
For example, suppose that

f(x) =


1 if x < L/2

0 if x > L/2
(9.4)

Then

An =
2

L

∫ L

0

dx sin
(nπx
L

)
f(x)

=
2

L

∫ L/2

0

dx sin
(nπx
L

)
=

2

nπ

[
1− cos

(nπx
L

)]
(9.5)

When Fourier submitted his Mémoir sur la Chaleur to the Academy of Sciences in
Paris, it was severely criticized and it failed to win the annual prize set by the Academy.
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Figure 9.1: Engraved portrait of French mathematician Jean Baptiste Joseph
Fourier (1768-1830). He founded a branch of mathematics now known as
Fourier analysis. Its generalizations have great importance for many branches
of theoretical science and engineering.
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Figure 9.2: Bust of Fourier in Grenoble.
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Figure 9.3: This figure shows the Fourier series representation of the function
defined by equation (9.4) compared with the function itself. The slowly con-
vergent series has been truncated after 50 terms, and thus it fails to represent
the function with complete accuracy. However, if an infinite number of terms
had been included, the Fourier series would be completely accurate. “Square
waves” of the kind shown here are sometimes used to test high fidelity electronic
amplifiers, because very high frequencies are needed to accurately reproduce
the sharp corners of the square wave.

The jury consisted of three of the most eminent mathematicians of the period, Joseph-
Louis Lagrange (1736-1813), Pierre-Simon Laplace (1749-1827) and Adrien-Marie Legendre
(1749-1827). Lagrange, Laplace and Legendre objected that although Fourier’s methods
worked extremely well in practice, he had not really overcome Euler’s objections, i.e. he
had not really shown that every continuous, single-valued and differentiable function f (x)
obeying the boundary conditions f(0) = 0 and f(L) = 0 can be represented by the series
shown in equation (10.41). (This property of the set of functions in the series is called
“completeness”, and it was not proved until much later.) Undeterred by the criticism,
Fourier published his book without any changes. Both parties were right. Fourier was
right in believing his set of functions to be complete, and the jury was right in pointing out
that he had not proved it. The generalizations of Fourier’s methods are extremely powerful,
and they form the basis for many branches of theoretical science and engineering.

9.4 Fourier transforms

Notation and basic properties

Let us introduce the abbreviated notation:∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 · · ·
∫ ∞
−∞

dxd f(x1, x2, . . . , xd) ≡
∫
dx f(x) (9.6)
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and

ei(p1x1+p2x2+···+pdxd) ≡ eip·x (9.7)

Then the d-dimensional Fourier transform of the function f(x) is given by

f t(p) =
1

(2π)d/2

∫
dx e−ip·x f(x) (9.8)

while the inverse transform is

f(x) =
1

(2π)d/2

∫
dp eip·x f t(p) (9.9)

We would like to show that the scalar product of two functions in direct space is equal to
the scalar product of their Fourier transforms in reciprocal space. From (9.9) we have

g(x)∗ =
1

(2π)d/2

∫
dp′ e−ip

′·x gt(p′)∗ (9.10)

so that ∫
dx g(x)∗f(x) =

1

(2π)d

∫
dp

∫
dp′ gt(p′)∗f t(p)

∫
dx ei(p−p

′)·x

(9.11)

However,

1

(2π)d

∫
dx ei(p−p

′)·x = δ(p− p′) (9.12)

so that ∫
dx g(x)∗f(x) =

∫
dp gt(p)∗f t(p) (9.13)

Equation (9.13) implies that if we have an orthonormal set of functions {φj(x)} in direct
space, so that ∫

dx φ∗j′(x)φj(x) = δj′,j (9.14)

then their Fourier transforms form an orthonormal set in reciprocal space:∫
dp φt∗j′ (p)φtj(p) = δj′,j (9.15)

From (9.13) it also follows that∫
dx φ∗j′(x)V (x)φj(x) =

∫
dp φt∗j′ (p)(V φj)

t(p) (9.16)
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where

(V φj)
t(p) ≡ 1

(2π)d/2

∫
dx e−ip·x V (x)φj(x) (9.17)

Also, from (9.9) and (9.13) we have∫
dp φt∗j′ (p) ∆φtj(p) = −

∫
dp φt∗j′ (p) p2φtj(p) (9.18)

where

p2 ≡ p · p (9.19)

Expansion of a plane wave

Suppose that we have a complete set of orthonormal functions {φj(x)} in a d-dimensional
space. The completeness condition (in the sense of distributions) can be written in the
form ∑

j

φ∗j(x)φj(x
′) = δ(x− x′) (9.20)

Multiplying both sides of (9.20) by e−ip·x
′

and integrating over dx′, we obtain:∑
j

φ∗j(x)

∫
dx′ e−ip·x

′
φj(x

′) =

∫
dx′ e−ip·x

′
δ(x− x′) = e−ip·x

(9.21)

so that

e−ip·x =
∑
j

φ∗j(x)

∫
dx′ e−ip·x

′
φj(x

′)

= (2π)d/2
∑
j

φ∗j(x)φtj(p) (9.22)

Then

f t(p) =
1

(2π)d/2

∫
dx e−ip·xf(x)

=
∑
j

φtj(p)

∫
dx φ∗j(x)f(x) (9.23)

and

f(x) =
1

(2π)d/2

∫
dp eip·xf t(p)

=
∑
j

φj(x)

∫
dp φ∗j(p)f t(p) (9.24)
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It follows from (9.22) that if the set of functions {φj(x)} is chosen in such a way that
they are basis functions of irreducible representations of a group G, and if Iνγ is the set
of indices j such that φj(x) transforms like the νth basis function of the γth irreducible
representation of G, then

P ν
γ

[
e−ip·x

]
= (2π)d/2

∑
j∈Iνγ

φ∗j(x)φtj(p) (9.25)

If we multiply (9.22) on the left by eip
′·x and integrate over dx, we obtain∫

dx ei(p
′−p)·x = (2π)d/2

∑
j

∫
dx eip

′·xφ∗j(x)φtj(p)

= (2π)d
∑
j

φ∗tj (p′)φtj(p) (9.26)

so that (in the sense of distributions)∑
j

φ∗tj (p′)φtj(p) = δ(p− p′) (9.27)

Let us now try to make the meaning of completeness relations like (9.20) and (9.27) a
little more precise: Suppose that there exists a Hilbert space H with an orthonormal basis
{φj(x)}. Then, for any f ∈ H, we can write

f(x) =
∑
j

φj(x)

∫
dx′ φ∗j(x

′)f(x′) (9.28)

But we could equally well have written

f(x) =

∫
dx′ f(x′) δ(x− x′) (9.29)

Thus we can see that the sum on the left-hand side of (9.20) is acting like a Dirac delta
function; but the relationship is only known to hold within H. Similar considerations
hold for (9.27). In the discussion above, we imagined the set of functions {φj(x)} to
be symmetry-adapted, and we let Iνγ stand for a domain within which all the functions
transform like the νth basis function of the γth irreducible representation of the symmetry
group G. Then if

P ν
γ [f(x)] =

∑
j∈Iνγ

φj(x)

∫
dx′ φ∗j(x

′)f(x′) = f(x) (9.30)

we can conclude that f(x) lies entirely within the domain Iνγ and that it transforms like
the νth basis function of the γth irreducible representation of G. What about its Fourier
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transform, f tn(x)?. From (9.23),

f tn(p) =
∑
j

φtj(p)

∫
dx′ φ∗j(x

′)fn(x′)

=
∑
j∈Iνγ

φtj(p)

∫
dx′ φ∗j(x

′)fn(x′) (9.31)

The second line of (9.31) follows from the fact the the dx′ integral vanishes unless φ∗j(x
′)

lies within the domain Iνγ . Thus, if fn(x) lies within the domain Iνγ , then f tn(p) will lie
within the corresponding domain in reciprocal space. One can express this by saying that
symmetry properties are preserved under Fourier transformation.

9.5 The Fourier convolution theorem

Let

f(x) =
1

(2π)d/2

∫
dp′ eip

′·x f t(p′) (9.32)

and

g(x) =
1

(2π)d/2

∫
dp′′ eip

′′·x gt(p′′) (9.33)

Then we can write ∫
dx e−ip·xf(x)g(x)

=
1

(2π)d

∫
dp′
∫
dp′′f t(p′)gt(p′′)

∫
dx ei(p

′+p′′−p)·x

=

∫
dp′
∫
dp′′f t(p′)gt(p′′) δ(p′ + p′′ − p) (9.34)

so that ∫
dx e−ip·xf(x)g(x) =

∫
dp′ f t(p′)gt(p− p′) (9.35)

Thus we see that in a d-dimensional space, the Fourier convolution theorem has exactly
the same form as in 3 dimensions. In a similar way, it is easy to show that∫

dp eip·xf t(p)gt(p) =

∫
dx′ f(x′)g(x− x′) (9.36)
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9.6 Harmonic analysis for non-Euclidean spaces

It is interesting to ask whether something analogous to Fourier transform theory can be
developed for spaces whose metric is non-Euclidean. For example, we might think of the
surface of a very large hypersphere of hyperradius r, embedded in a d-dimensional space.
Since the hyperradius is very large, the surface is locally almost flat, but nevertheless it
has a slight curvature. On this surface, the unit vector u ≡ x/r plays the role which x
would play in a Euclidean space. Just as we can write

f(x) =
1

(2π)d/2

∫
dp eip·x f t(p) (9.37)

where

f t(p) =
1

(2π)d/2

∫
dx e−ip·x f(x) (9.38)

in a Euclidean space, so, on our very large hypersphere, we can write

f(u) =
∑
λ,µ

Yλ,µ(u) aλ,µ (9.39)

where. from the orthonormality of the hyperspherical harmonics, we have

aλ,µ =

∫
dΩd Y

∗
λ,µ(u)f(u) (9.40)

Provided that f(u) can be expanded as a polynomial, our general hyperangular integration
theorem can be used to carry out the integration in 9.40. More generally, we can try to find
the set of hyperspherical harmonics appropriate for any non-Euclidean space, and these
can be used as a plane-wave-like basis for an analogue to Fourier transform theory.

9.7 Fourier’s discovery of the greenhouse effect

Fourier calculated that an object the size of the earth at the earthÃ¸s distance from the
sun ought to be considerably cooler than the earth’s actual temperature. Among the
possible explanations that he proposed for this anomaly, was what we now call the “green-
house effect”. Fourier realized that the earth’s atmosphere could contribute to the planet’s
anomalously high temperature. In a paper proposing this idea, published in 1827, he re-
ferred to the experiments of Horace Bénédict de Saussure (1740-1799), who demonstrated
the effect using a vase under sheets of glass, and lined with blackened cork.

Suggestions for further reading

1. Fourier, Joseph. (1822). Theorie Analytique de la Chaleur. Firmin Didot (reissued
by Cambridge University Press, 2009.



9.7. FOURIER’S DISCOVERY OF THE GREENHOUSE EFFECT 143

2. Fourier, Joseph. (1878). The Analytical Theory of Heat. Cambridge University Press
(reissued by Cambridge University Press, 2009.
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5. Elias Stein and Guido Weiss, Introduction to Fourier Analysis on Euclidean Spaces,
Princeton University Press, 1971.

6. Elias Stein with Timothy S. Murphy, Harmonic Analysis: Real-Variable Methods,
Orthogonality, and Oscillatory Integrals, Princeton University Press, 1993.

7. Elias Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory,
Princeton University Press, 1970.

8. Yitzhak Katznelson, An introduction to harmonic analysis, Third edition. Cambridge
University Press, 2004.

9. Terence Tao, Fourier Transform. (Introduces the decomposition of functions into
odd + even parts as a harmonic decomposition over Z2)

10. Yurii I. Lyubich. Introduction to the Theory of Banach Representations of Groups.
Translated from the 1985 Russian-language edition (Kharkov, Ukraine). Birkhäuser
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Chapter 10

JOSEPH-LOUIS LAGRANGE

10.1 A professor at the age of 19!

Joseph-Louis Lagrange (1736-1813) was born in Turin, Italy and baptized with his Italian
name, Giuseppe Lodovico Lagrangia. His father was the Treasurer in the Office of Public
Works, and his mother was the daughter of a physician.

Lagrange was originally educated at the College of Turin with the intention that he
should become a lawyer. However, after reading Edmond Halley’s book on the use of
algebra in optics, he became interested in mathematics.

Working by himself, and largely self-taught. Lagrange began to develop the field of
mathematics that we now call variational calculus. He applied this to the problem of
finding the tautochrone, the curve an object sliding without friction would always reach
the bottom after the same interval of time, regardless of the object’s starting point. In
1755, he sent this calculations to Euler, who was then in Berlin. Euler was extremely
impressed by the work of the young Italian mathematician, and although he was only 19
years old, Lagrange was appointed Professor of Mathematics at the Royal Artillery School
in Turin.

10.2 Successor to Euler at the Berlin Academy

In 1756, Lagrange sent to Euler a set of calculations in which he applied the calculus
of variations to mechanics. Euler recognized these calculations as a generalization of the
results that he himself had obtained. Full of admiration for the young mathematical genius,
Euler consulted with his colleague Maupertius, and then invited Lagrange to accept a
position at the Academy in Berlin. However, afraid of being distracted from his work by the
move, Lagrange initially refused. Instead he became a founding member of the Academy
if Sciences of Turin, and began the publication of a journal in French and Latin entitled
Mélanges de Turin. Much of this journal was devoted to Lagrange’s own mathematical
papers.

Finally, in 1766, Euler returned to St. Petersburg in Russia, and the King of Prussia

145



146 LIVES IN MATHEMATICS

Frederick II (Frederick the Great) himself offered Lagrange the post of Director of Math-
ematics at the Berlin Academy, at a very generous salary. This time, Lagrange accepted
the invitation to Berlin, and he remained there for twenty years as Euler’s successor, pro-
ducing a monumental volume of work on mechanics, variational calculus, number theory
and many other topics. Some of his work on the roots of equations anticipated the work
of Galois which led to group theory.

10.3 Lagrange is called to Paris

In 1786, Lagrange’s great patron, Frederick II died. and Lagrange’s position in Berlin
became less happy. He then accepted an invitation to come to Paris, where he became a
member of the French Academy, and part of a committee to go over to the metric system
and the decimal system for weights and measures. Lagrange survived during the dangerous
times of the French Revolution by conforming to whatever regulations were current. While
his great friend, Lavoisier, was guillotined in Robespierre’s Terror, Lagrange not only
survived but was made a Senator.

Napoleon named Lagrange to the Legion of Honour and Count of the Empire in 1808.
On 3 April 1813, a week before his death, he was awarded the Grand Croix of the Ordre
Impérial de la Réunion.

10.4 The calculus of variations

In a typical problem of the calculus of variations, one considers an integral of the form

δS ≡ δ

∫
L

(
x1, x2, · · · , xd, dx

1

dt
,
dx2

dt
, · · · , dx

d

dt
,

)
dt = 0 (10.1)

L is some function of the coordinates, x1, · · · , xd and their t-derivatives. The problem is
to find the coordinates as functions of t which will give a minimum or maximum value
to the integral S. For example, the principle of Pierre Fermat (1601-1665) states that in
geometrical optics, the actual path of a ray of light is the one that takes the least time. The
infinitesimal time dt required for the light signal to move an infinitesimal distance dl along
its path is

dt =
n(x)

c
dl (10.2)

where c is the velocity of light in a vacuum and n(x) is the index of refraction. From the
Pythagorean Theorem we have

dl =
√
dx2 + dy + dz2 =

√
dx · dx

=

√
dx

dl
· dx
dl

dl =
dx

dl
· dx
dl

dl (10.3)
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Figure 10.1: Portrait of Lagrange.
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Figure 10.2: Another portrait of Joseph-Louis Lagrange.
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Figure 10.3: A commemorative French Stamp.
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Figure 10.4: Lagrange’s patron during his twenty-year stay in Berlin, Frederick
the Great of Prussia. The portrait shows him at the age of 68. His court and
Academy featured many of the leading intellectuals of the time.
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Thus we can write Fermat’s principle in the form:

S =

∫
L

(
x, y, z,

dx

dl
,
dy

dl
,
dz

dl

)
dl = minimum (10.4)

where

L = n(x)
dx

dl
· dx
dl

(10.5)

A similar principle was discovered by the great Irish mathematician Sir William Rowan
Hamilton (1805-1865). In 1835, he showed that for a system of particles whose state in
Newtonian mechanics is specified at a given time by the coordinates x1, x2, · · · , xd, and the
velocities dx1/dt, dx2/dt, · · · , dxd/dt. the integral

S =

∫
L dt =

∫
(T − V ) dt (10.6)

is an extremum, where T is the kinetic energy

T =
1

2

d∑
i=1

d∑
j=1

mi,j
dxi

dt

dxj

dt
≡ 1

2

d∑
i=1

d∑
j=1

mi,jẋ
iẋj (10.7)

and where V (x1, x2, · · · , xd) is the potential energy. Leonhard Euler (1707-1783) and
Joseph-Louis Lagrange (1736-1813), who developed the calculus of variations, had shown
that if the coordinates and their time derivatives obey the differential equations

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0 i = 1, 2, · · · , d (10.8)

Then the integral S =
∫
L dt will be an extremum, and vice versa. The way that they

showed this was as follows: Suppose that we have found the true path, xi(t), for which
S =

∫
L dt is an extremum. Now consider what happens to S when we wander slightly

away from the true path. The situation is analogous to calculating the change of a function
as we move very slightly away from one of its maxima or minima. If we are at the top of
a mountain, or at the bottom of a valley, then taking a very slight step in any direction
will not change our altitude, since at that point the ground is level. In the same way, if we
alter the path by an amount δxi, the resulting alteration in

∫
L dt will be zero:

δ

∫
L dt =

∫
δL dt = 0 (10.9)

The variation of the Lagrangian function L resulting directly from the variation of the
coordinates, or indirectly through the consequent variation of the velocities is

δL =
d∑
i=1

[
∂L

∂xi
δxi +

∂L

∂ẋi
d

dt
(δxi)

]
(10.10)
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We next integrate by parts using the relationship∫ b

a

u dv = [uv]ba −
∫ b

a

v du (10.11)

This give us the relationship∫ b

a

d∑
i=1

∂L

∂ẋi
d

dt
(δxi) dt =

[
d∑
i=1

∂L

∂ẋi
δxi

]b
a

−
∫ b

a

d∑
i=1

d

dt

∂L

∂ẋi
δxi dt

(10.12)

Since the slightly altered path must still reach the end points a and b, the variation from
the true path must vanish at those points, and therefore[

d∑
i=1

∂L

∂ẋi
δxi

]b
a

= 0 (10.13)

Finally, combining equations (10.10), (10.12) and (10.13). we obtain∫ b

a

δL dt =

∫ b

a

d∑
i=1

[
− d

dt

∂L

∂ẋi
+
∂L

∂xi

]
δxi dt = 0 (10.14)

To ensure that the integral in (10.14) will vanish for an arbitrary slight variation of path
δxi, it is necessary that

d

dt

∂L

∂ẋi
− ∂L

∂xi
= 0 i = 1, 2, · · · , d (10.15)

Therefore the Euler-Lagrange equations (10.8) are a consequence of action principle (10.1).

10.5 Cyclic coordinates

The Lagrangian formalism allows us to obtain conservation laws with great ease. As an
example, we can think of a single particle moving in a central potential, V (r). This is a
case where it is convenient to express the particle’s Lagrangian in terms of spherical polar
coordinates. Let

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ (10.16)

In Cartesian coordinates, the element of length is given by

dl2 = dx2 + dy2 + dz2 (10.17)
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Combining (10.16) and (10.17) we find that in spherical polar coordinates, the element of
length is

dl2 = dr2 + r2dθ2 + r2 sin2 θ dφ2 (10.18)

We can now write down the Lagrangian of the particle in terms of r, θ and φ:

L =
1

2
m

[(
dr

dt

)2

+ r2

(
dθ

dt

)2

+ r2 sin2 θ

(
dφ

dt

)2
]
− V (r) (10.19)

The Euler-Lagrange equations of the particle then become

d

dt

∂L

∂ṙ
=
∂L

∂r
→ m

d2r

dt2
= mrθ̇2 +mr sin2 θφ̇2 − ∂V

∂r
d

dt

∂L

∂θ̇
=
∂L

∂θ
→ d

dt

(
mr2dθ

dt

)
= mr2 sin θ cos θφ̇2

d

dt

∂L

∂φ̇
=
∂L

∂φ
→ d

dt

(
mr2 sin2 θ

dφ

dt

)
= 0 (10.20)

The second and third of the equations in this array are conservation laws. In fact, if the
coordinate system is chosen in such a way that φ̇ = 0, the second equation is Kepler’s second
law. When a coordinate does not appear in the Lagrangian, but only its time derivative,
that coordinate is said to be cyclic. For each cyclic coordinate, there is a conservation law.
The momentum conjugate to a coordinate is defined to be the partial derivative of the
Lagrangian with respect to the time derivative of that coordinate. In the example which
we are considering here, the momenta conjugate to the coordinates r, θ and φ are

pr ≡
∂L

∂ṙ
= m

dr

dt

pθ ≡
∂L

∂θ̇
= mr2dθ

dt

pφ ≡
∂L

∂φ̇
= mr2 sin2 θ

dφ

dt
(10.21)

We can see from this example that the momenta which are conjugate to cyclic coordinates
are conserved. The Euler-Lagrange equations ensure that this is true in general. We can
also see that transformation to coordinates, as many as possible of which are cyclic, is a
big step towards solving the equations of motion of a system.

As a second example of a transformation to coordinates, some of which are cyclic, we
can think of a two particles interacting through a potential which depends only on the
distance between them. In that case, the Lagrangian, expressed in Cartesian coordinates,
is given by

L =
1

2
m1

dx1

dt
· dx1

dt
+

1

2
m2

dx2

dt
· dx2

dt
− V (|x1 − x2|) (10.22)
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The Lagrangian formulation allows us to introduce a new set of coordinates which are
much more convenient. Let

Xc.m. ≡
m1x1 +m2x2

m1 +m2

X12 ≡ x1 − x2 (10.23)

In terms of the center of mass coordinates Xc.m. and the relative position coordinates X12,
the Lagrangian of the system becomes:

L =
1

2
(m1 +m2)

dXc.m.

dt
· dXc.m.

dt
+

1

2

(
m1m2

m1 +m2

)
dX12

dt
· dX12

dt

− V (|X12|) (10.24)

Since the Lagrangian does not depend on Xc.m, the center of mass coordinates are cyclic,
and the momenta conjugate to them are conserved:

d

dt
(pc.m.) =

d

dt

(
∂L

∂Ẋ c.m.

)
=

d

dt

(
(m1 +m2)

dXc.m.

dt

)
= 0 (10.25)

Since the potential energy does not depend on the orientation of the vector X12, but only
on its magnitude, we could complete our transformation to cyclic coordinates by expressing
X12 in terms of spherical polar coordinates. Then the only non-cyclic coordinate would be
r12 ≡ |X12|. It is a general rule that if the Lagrangian is independent of some generalized
coordinate Xµ, i.e if

∂L

∂Xµ
= 0 (10.26)

then the momentum conjugate to it is conserved:

pµ ≡
∂L

∂Ẋµ
= constant (10.27)

Suggestions for further reading

1. Penrose, Roger (2007). The Road to Reality. Vintage books.
2. Landau, L. D.; Lifshitz, E. M. (15 January 1976). Mechanics (3rd ed.). Butterworth

Heinemann. p. 134.
3. Landau, Lev; Lifshitz, Evgeny (1975). The Classical Theory of Fields. Elsevier Ltd.
4. Hand, L. N.; Finch, J. D. (13 November 1998). Analytical Mechanics (2nd ed.).

Cambridge University Press. p. 23.
5. Louis N. Hand; Janet D. Finch (1998). Analytical mechanics. Cambridge University

Press. pp. 140-141.
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Chapter 11

CONDORCET

In France the Marquis de Condorcet had written an equally optimistic book, Esquisse d’un
Tableau Historique des Progrès de l’Esprit Humain. Condorcet’s optimism was unaffected
even by the fact that at the time when he was writing he was in hiding, under sentence
of death by Robespierre’s government. Like Godwin’s Political Justice, this book offers
an optimistic vision of of how human society can be improved. Together, the two books
provoked Malthus to write his book on population.

11.1 Condorcet becomes a mathematician

Marie-Jean-Antoine-Nicolas Caritat, Marquis de Condorcet, was born in 1743 in the town
of Ribemont in southern France. He was born into an ancient and noble family of the
principality of Orange but there was nothing in his background to suggest that he might
one day become a famous scientist and social philosopher. In fact, for several generations
before, most of the men in the family had followed military or ecclesiastical careers and
none were scholars.

After an initial education received at home from his mother, Condorcet was sent to
his uncle, the Bishop of Lisieux, who provided a Jesuit tutor for the boy. In 1758 Con-
dorcet continued his studies with the Jesuits at the College of Navarre. After he graduated
from the College, Condorcet’s powerful and independent intelligence suddenly asserted it-
self. He announced that he intended to study mathematics. His family was unanimously
and violently opposed to this idea. The privileges of the nobility were based on heredi-
tary power and on a static society. Science, with its emphasis on individual talent and
on progress, undermined both these principles. The opposition of Condorcet’s family is
therefore understandable but he persisted until they gave in.

From 1765 to 1774, Condorcet focused on science. In 1765, he published his first work
on mathematics entitled Essai sur le calcul intégral, which was well received, launching his
career as a mathematician. He would go on to publish many more papers, and in 1769, at
the age of 26, he was elected to the Academie royale des Sciences (French Royal Academy
of Sciences)
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Condorcet worked with Leonhard Euler and Benjamin Franklin. He soon became an
honorary member of many foreign academies and philosophic societies including the Royal
Swedish Academy of Sciences (1785), Foreign Honorary Member of the American Academy
of Arts and Sciences (1792), and also in Prussia and Russia.

11.2 Human rights and scientific sociology

In 1774, at the age of 31, Condorcet was appointed Inspector-General of the Paris Mint by
his friend, the economist Turgot. From this point on, Condorcet shifted his focus from the
purely mathematical to philosophy and political matters. In the following years, he took up
the defense of human rights in general, and of women’s and blacks’ rights in particular (an
abolitionist, he became active in the Society of the Friends of the Blacks in the 1780s). He
supported the ideals embodied by the newly formed United States, and proposed projects
of political, administrative and economic reforms intended to transform France.

The year 1785 saw the publication of Condorcet’s highly original mathematical work,
Essai sur l’application de l’analyse à la probabilité des décisions rendues à la pluralité
des voix, in which he pioneered the application of the theory of probability in the social
sciences. A later, much enlarged, edition of this book extended the applications to games
of chance. Through these highly original works, Condorcet became a pioneer of scientific
sociology.

In 1786, Condorcet married one of the most beautiful women of the time, Sophie de
Grouchy (1764-1822). Condorcet’s position as Inspector-General of the Mint meant that
they lived at the Hotel des Monnaies. Mme Condorcet’s salon there was famous.
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Figure 11.1: The Marquis de Condorcet.
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Figure 11.2: A commerative French stamp.
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Figure 11.3: Condorcet’s wife, Sophie de Gauchy.
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Figure 11.4: The French economist Turgot was Condorcet’s mentor and friend.
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Figure 11.5: The frontpage of Condorcet’s famous book, in which he defined the
idea of human progress, and anticipated Darwin’s theory of evolution.
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11.3 The French Revolution

Ever since the age of 17, Condorcet had thought about questions of justice and virtue and
especially about how it is in our own interest to be both just and virtuous. Very early in
his life he had been occupied with the idea of human perfectibility. He was convinced that
the primary duty of every person is to contribute as much as possible to the development
of mankind, and that by making such a contribution, one can also achieve the greatest
possible personal happiness. When the French Revolution broke out in 1789 he saw it as
an unprecedented opportunity to do his part in the cause of progress and he entered the
arena wholeheartedly.

Condorcet was first elected as a member of the Municipality of Paris; and then, in
1791, he became one of the six Commissioners of the Treasury. Soon afterwards he was
elected to the Legislative Assembly, of which he became first the Secretary and finally the
President. In 1792, Condorcet proposed to the Assembly that all patents of nobility should
be burned. The motion was carried unanimously; and on 19 June his own documents were
thrown on a fire with the others at the foot of a statue of Louis XIV.

Condorcet was one of the chief authors of the proclamation which declared France to
be a republic and which summoned a National Convention. As he remained above the
personal political quarrels that were raging at the time, Condorcet was elected to the
National Convention by five different constituencies. When the Convention brought Louis
XVI to trial, Condorcet maintained that, according to the constitution, the monarch was
inviolable and that the Convention therefore had no legal right to try the King. When the
King was tried despite these protests, Condorcet voted in favor of an appeal to the people.

11.4 Drafting a new constitution for France

In October 1792, when the Convention set up a Committee of Nine to draft a new consti-
tution for France, Condorcet sat on this committee as did the Englishman, Thomas Paine.
Under sentence of death in England for publishing his pamphlet The Rights of Man, Paine
had fled to France and had become a French citizen. He and Condorcet were the chief
authors of a moderate (Gerondist) draft of the constitution. However, the Jacobin leader,
Robespierre, bitterly resented being excluded from the Committee of Nine and, when the
Convention then gave the responsibility for drafting the new constitution to the Committee
for Public Safety, which was enlarged for this purpose by five additional members. The
result was a hastily produced document with many glaring defects. When it was presented
to the Convention, however, it was accepted almost without discussion. This was too
much for Condorcet to stomach and he published anonymously a letter entitled Advice
to the French on the New Constitution, in which he exposed the defects of the Jacobin
constitution and urged all Frenchmen to reject it.
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11.5 Hiding from Robespierre’s Terror

Condorcet’s authorship of this letter was discovered and treated as an act of treason. On
8 July 1793, Condorcet was denounced in the Convention; and an order was sent out for
his arrest. The officers tried to find him, first at his town house and then at his house in
the country but, warned by a friend, Condorcet had gone into hiding.

The house where Condorcet took refuge was at Rue Servandoni, a small street in Paris
leading down to the Luxembourg Gardens, and it was owned by Madame Vernet, the
widow of a sculptor. Madame Vernet, who sometimes kept lodgings for students, had been
asked by Condorcet’s friends whether she would be willing to shelter a proscribed man. ‘Is
he a good man?’, she had asked; and when assured that this was the case, she had said,
‘Then let him come at once. You can tell me his name later. Don’t waste even a moment.
While we are speaking, he may be arrested.’ She did not hesitate, although she knew that
she risked death, the penalty imposed by the Convention for sheltering a proscribed man.

11.6 Condorcet writes the Esquisse

Although Robespierre’s agents had been unable to arrest him, Condorcet was sentenced
to the guillotine in absentia. He knew that in all probability he had only a few weeks
or months to live and he began to write his last thoughts, racing against time. Hidden
in the house at Rue Servandoni, and cared for by Madame Vernet, Condorcet returned
to a project which he had begun in 1772, a history of the progress of human thought,
stretching from the remote past to the distant future. Guessing that he would not have
time to complete the full-scale work he had once planned, he began a sketch or outline:
Esquisse d’un Tableau Historique des progrés de l’Esprit Humain.

Condorcet’s Esquisse, is an enthusiastic endorsement of the idea of infinite human per-
fectibility which was current among the philosophers of the 18th century, and in this book,
Condorcet anticipated many of the evolutionary ideas of Charles Darwin. He compared
humans with animals, and found many common traits. Condorcet believed that animals
are able to think, and even to think rationally, although their thoughts are extremely sim-
ple compared with those of humans. He also asserted that humans historically began their
existence on the same level as animals and gradually developed to their present state.

Since this evolution took place historically, he reasoned, it is probable, or even in-
evitable, that a similar evolution in the future will bring mankind to a level of physical,
mental and moral development which will be as superior to our own present state as we
are now superior to animals.

In his Esquisse, Condorcet called attention to the unusually long period of dependency
which characterize the growth and education of human offspring. This prolonged childhood
is unique among living beings. It is needed for the high level of mental development of the
human species; but it requires a stable family structure to protect the young during their
long upbringing. Thus, according to Condorcet, biological evolution brought into existence
a moral precept, the sanctity of the family.
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Similarly, Condorcet maintained, larger associations of humans would have been impos-
sible without some degree of altruism and sensitivity to the suffering of others incorporated
into human behavior, either as instincts or as moral precepts or both; and thus the evolu-
tion of organized society entailed the development of sensibility and morality.

Condorcet believed that ignorance and error are responsible for vice; and he listed what
he regarded as the main mistakes of civilization: hereditary transmission of power, inequal-
ity between men and women, religious bigotry, disease, war, slavery, economic inequality,
and the division of humanity into mutually exclusive linguistic groups.

Condorcet believed the hereditary transmission of power to be the source of much of
the tyranny under which humans suffer; and he looked forward to an era when republican
governments would be established throughout the world. Turning to the inequality between
men and women, Condorcet wrote that he could see no moral, physical or intellectual basis
for it. He called for complete social, legal, and educational equality between the sexes.

Condorcet predicted that the progress of medical science would free humans from the
worst ravages of disease. Furthermore, he maintained that since perfectibility (i.e. evolu-
tion) operates throughout the biological world, there is no reason why mankind’s physical
structure might not gradually improve, with the result that human life in the remote future
could be greatly prolonged. Condorcet believed that the intellectual and moral facilities of
man are capable of continuous and steady improvement; and he thought that one of the
most important results of this improvement will be the abolition of war.

At the end of his Esquisse, Condorcet said that any person who has contributed to the
progress of mankind to the best of his ability becomes immune to personal disaster and
suffering. He knows that human progress is inevitable and can take comfort and courage
from his inner picture of the epic march of mankind, through history, towards a better
future.

Shortly after Condorcet completed the Esquisse, he received a mysterious warning that
soldiers of the Convention were on their way to inspect Madame Vernet’s house. Wishing
to spare his generous hostess from danger, he disguised himself as well as he could and
slipped past the portress. However, Condorcet had only gone a few steps outside the house
when he was recognized by Madame Verdet’s cousin, who risked his life to guide Condorcet
past the sentinels at the gates of Paris, and into the open country beyond.

Condorcet wandered for several days without food or shelter, hiding himself in quarries
and thickets. Finally, on 27 March 1794, hunger forced him to enter a tavern at the village
of Clamart, where he ordered an omelette. When asked how many eggs it should contain,
the exhausted and starving philosopher replied without thinking, ‘twelve’. This reply,
together with his appearance, excited suspicion. He was asked for his papers and, when it
was found that he had none, soldiers were sent for and he was arrested. He was taken to a
prison at Bourg-la-Reine, but he was so weak that he was unable to walk there, and had
to be carried in a cart. The next morning, Condorcet was found dead on the floor of his
cell. The cause of his death is not known with certainty. It was listed in official documents
as congestion sanguine, congestion of the blood but the real cause may have been cold,
hunger, exhaustion or poison. Many historians believe that Condorcet was murdered by
Robespierre’s agents, since he was so popular that a public execution would have been
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impossible.
After Condorcet’s death the currents of revolutionary politics shifted direction. Robe-

spierre, the leader of the Terror, was himself soon arrested. The execution of Robespierre
took place on 25 July 1794, only a few months after the death of Condorcet.

Condorcet’s Esquisse d’un Tableau Historique des Progrès de l’Esprit Humain was pub-
lished posthumously in 1795. In the post-Thermidor reconstruction, the Convention voted
funds to have it printed in a large edition and distributed throughout France, thus adopt-
ing the Esquisse as its official manifesto. Condorcet’s name will always be linked with this
small prophetic book. It was destined to establish the form in which the eighteenth-century
idea of progress was incorporated into Western thought.
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maines 111 (1990), 7-43.
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préférences, Math. Inform. Sci. Humaines 111(1990), 61-71.

42. M Morange, Condorcet et les naturalistes de son temps, in R Rashed (ed.), Sciences
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Chapter 12

HAMILTON

Sir William Rowan Hamilton (1805-1865) made many extremely important contributions
both to mathematics and to physics. He was a remarkable child prodigy. At the age of
three, he was given to his uncle, James Hamilton, to be educated. His uncle was a linguist,
and by the time William was thirteen years old, he had acquired as many languages as
he had years of age. Besides all the classical and modern European languages, these
included Persian, Arabic, Hindustani, Sanskrit, and even Marathi and Malay. In those
days, Hamilton slept in a room next to his uncle with a string tied to the back of his
nightshirt. The string went through a hole in the wall to his uncle’s room. When the uncle
thought that it was time for his nephew to wake up and work, he pulled the string.
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Figure 12.1: Sir William Rowan Hamilton (1805-1865).

Figure 12.2: Irish commemorative coin celebrating the 200th Anniversary of
Hamilton’s birth.
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Figure 12.3: This figure shows a system of particle trajectories of the kind visual-
ized by Hamilton. Here the system might be produced by the fragments of an
exploding sky-rocket, assuming that they are all of equal mass and are thrown
out with equal velocities. At various times after the explosion, the fragments
will reach points given by spheres drawn around the falling center of mass.
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Figure 12.4: This figure shows surfaces corresponding to constant values of
Hamilton’s characteristic function S. These surfaces are everywhere perpen-
dicular to the trajectories discussed in the previous figure.
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12.1 Uniting optics and mechanics

Hamilton retained his knowledge of languages until the end of his life, and often read books
in Persian and Arabic for pleasure. Fortunately, however, this orgy of linguistics was not
continued and Hamilton became strongly interested in mathematics. At the age of 18, he
submitted a Memoir on Systems of Rays for publication. It caused the Astronomer Royal
of Ireland to exclaim, “This young man, I do not say will be but is the first mathematician
of his age!”

With remarkable intuition, Hamilton anticipated both quantum theory and the gen-
eral theory of relativity. He saw the close analogy between geometrical optics and the
classical trajectories of Newtonian mechanics. In geometrical optics, the rays of light are
perpendicular to wave fronts. Hamilton introduced a function that yielded wave fronts for
mechanics, thus anticipating wave mechanics, a field that lay a century ahead in time. His
reformulation of Newtonian mechanics also anticipated general relativity by showing that
the trajectories of objects can be viewed as the shortest paths in a space with a special
metric. The Hamiltonian reformulation of Newtonian mechanics has proved to be the a
key to the development of modern physics.

12.2 Professor of Astronomy at the age of 21

Hamilton entered Trinity College, Dublin, where his scholastic record was remarkable. At
the age of 21, while still an undergraduate, he was appointed to be Andrews Professor of
Astronomy and Royal Astronomer of Ireland. He then moved into Dunsink Observatory,
where he spent the remainder of his life. He married a clergyman’s daughter, and they had
three children together, but she could not stand the strain of living with him and returned
to live with her parents.

Hamilton was the close friend of the poets Coleridge and Wordsworth, and his life had
a profligate poetic quality. His lectures on astronomy attracted many scholars and poets,
and even ladies, which at that time was unusual. One of his lectures inspired the poet
Felicia Hermans to write The Prayer of a Lonely Student.

Hamilton drank a great deal, and the heaps of papers in his study were in a state of
disorder. During the last part of his life, he was often alone, cared for by the house-keeper
of the observatory. He had no regular meals, but from time to time, the house-keeper would
hand him a mutton chop, which he would accept without a word, and without looking up
from his work. After Hamilton’s death, dozens of partly-eaten mutton chops were found
among his mounds of papers.

12.3 Hamilton’s unified formulation

As we mentioned above, the work of Sir William Rowan Hamilton (1805-1865) contains
some remarkably modern insights, foreshadowing quantum mechanics and relativity the-
ory. His treatment of mechanics and optics unified the two disciplines in a manner that
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foreshadows wave mechanics. In his first paper on systems of rays in geometrical optics,
he considered rays coming from a point source which flashes on at a certain instant of
time. If the light is propagating in a uniform medium, the rays will form system of straight
lines, pointing outward from the point source of the light. Perpendicular to these lines,
will be a set of concentric spherical surfaces, which represent the maximum distance that
can be reached at any given time. In a non-uniform medium, the system of rays will not be
straight lines, and surfaces will not be spheres, but nevertheless, the lines representing rays
will always be perpendicular to the surfaces representing wave fronts. Hamilton introduced
the integral

S(x) =

∫
dt =

1

c

∫
n(x) dl (12.1)

This integral, taken along the path of a ray, gives the time needed for the wave front of
a flash to reach a particular point x. Hamilton called S(x) the eikonal function, taking
the name from the Greek word for “image”, and he showed that it satisfies the differential
equation
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Equation (12.2) follows from Fermat’s principle, which states that the actual path of a ray
of light is the one that takes the least time:

S(x) =

∫
dt =

1

c

∫
n(x) dl =

1

c

∫
n(x)

dx

dl
· dx
dl

dl = minimum

(12.3)

The Euler-Lagrange equations corresponding to (12.3) are
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Figure 12.5: This figure shows a system of parallel light rays entering a medium
with a different index of refraction. The rays of light are perpendicular to the
wave fronts at all points in space. The wave fronts correspond to surfaces with
constant values of Hamilton’s eikonal function.

By combining (12.6) with the relation

dx

dl
· dx
dl

= 1 (12.7)

we obtain Hamilton’s eikonal equation, (12.2). With remarkable intuition, Hamilton saw
the analogy between the rays of geometrical optics and the trajectories of point masses
in classical mechanics. His next step was to put mechanics on the same footing as optics
by defining what he called the characteristic function for a system of trajectories. We
can obtain an understanding of Hamilton’s characteristic function by thinking of the frag-
ments of an exploding skyrocket. If all of the fragments leave the point of the explosion
with equal velocity, then they will form the sort of system which Hamilton studied. The
upward-moving fragments are decelerated by gravity, while the downward-moving ones are
accelerated. The positions of the fragments at successive instants of time are on spheres
drawn around the falling center of mass of the system. Hamilton defined the characteristic
function S(x) by the relationship

S(x) =

∫ x

x0

L dt (12.8)

taken along the system of trajectories. From the Euler-Lagrange equations, it follows that
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∂ẋi
dt =

∂L

∂ẋi
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Hamilton used this relationship to show that his characteristic function satisfies a differ-
ential equation similar to his eikonal equation (12.2). He first defined the total energy
function (we call it the Hamiltonian) of a mechanical system as

H =
∑
i

piẋ
i − L (12.10)

It follows from equation (12.10) that
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From (12.10) it also follows that
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Equations (12.11) and (12.12) are called Hamilton’s equations of motion. From these
equations, it follows that for systems where the potential energy is independent of time
and where there are no velocity-dependent forces, the Hamiltonian function (12.10) is a
constant of the motion. For such conservative systems, H is a constant of the motion.
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Thus

H(xi, pi) = E (12.14)

where E is a constant. Hamilton then substituted ∂S/∂xi for pi. In this way he obtained
an equation which has become known as the Hamiltonian-Jacobi equation:
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For example, in the case where the mechanical system is a single point mass moving in the
potential V (x), the Hamiltonian of the system is

H =
m

2

dx

dt
· dx
dt

+ V (x) =
1

2m
p · p + V (x) (12.16)

and the Hamilton-Jacobi equation is

1

2m

[(
∂S

∂x

)2

+

(
∂S

∂y

)2

+

(
∂S

∂z

)2
]

+ V (x) = E (12.17)

which is analogous to Hamilton’s eikonal equation, (12.2).
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Figure 12.6: This figure shows a system of particle trajectories of the kind visual-
ized by Hamilton. Here the system might be produced by the fragments of an
exploding sky-rocket, assuming that they are all of equal mass and are thrown
out with equal velocities. At various times after the explosion, the fragments
will reach points given by spheres drawn around the falling center of mass.
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Figure 12.7: This figure shows surfaces corresponding to constant values of
Hamilton’s characteristic function S. These surfaces are everywhere perpen-
dicular to the trajectories discussed in the previous figure.
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12.4 Quaternions

On October 16, 1843, Hamilton was walking beside a canal with his wife, He was on his
way to a meeting of the Council of the Royal Irish Academy. His wife spoke to him now
and then, but he hardly heard her because he was so deep in thought. Breaking the barrier
of tradition he proposed the introduction of non-commutative algebraic entities, to which
he gave the name “quaternions”.

Hamilton described his discovery of quaternions, hypercomplex numbers and non-
commutative algebra in the following words:

“And here there dawned on me the notion that we must admit, in some
sense, a fourth dimension of space for the purpose of calculating with triples
... An electric circuit seemed to close, and a spark flashed forth.”

He later carved the formula

i2 = j2 = k2 = ijk = −1 (12.18)

on the stone of the bridge that he and his wife had passed when the discovery flashed
through his mind.

Hamilton spent the remainder of his life working on non-commutative algebra, and he
considered it to be very important, writing:

“I still must assert that this discovery appears to me to be as important for
the middle of the nineteenth century as the discovery of fluxions [the calculus]
was for the close of the seventeenth.”

The Pauli spin matrices, introduced much later in quantum theory, obey non-commutative
equations closely similar to those that Hamilton proposed for quaternions.
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Chapter 13

ABEL AND GALOIS

Niels Henrik Abel (1802-1829) and Éveriste Galois (1811-1832), both mathematicians of
genius, and both tragically short-lived, contributed to the development of group theory.
both Abel and Galois were interested in the question of whether general roots could be
found for fourth-order and fifth-order polynomials. This question led them to study what
we now call the group of permutations. Today group theory, to whose foundation Abel
and Galois contributed, is of great importance in mathematics, physics and chemistry.

The political events of the time during which Abel and Galois lived greatly affected their
lives. Norway, which was Abel’s home, was then a part of Denmark, and when Denmark
was blockaded by the English during the Napoleonic Wars, Norway also suffered under
this blockade. Unable to export timber and to import grain. Norwegians suffered great
hardship during this period. Abel’s life was marked by poverty, and he died very young
from tuberculosis, which he probably would not have acquired if he had not been so poor.

The life of Galois was also marked by the political events of this period. In the case
of Galois, it was revolutionary politics which affected his life, and which led to his early
death.
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Figure 13.1: Niels Henrik Abel.
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Figure 13.2: Christine Kemp, Abel’s fiancé.
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Figure 13.3: Statue of Niels Henrik Abel in Oslo (former Christiania).
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Figure 13.4: Niels Henrik Abel memorial in Gjerstad.
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Figure 13.5: A Norwegian stamp.
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Figure 13.6: Portrait of Éveriste Galois.
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Figure 13.7: Augustin-Louis Cauchy reviewed Galois’ early mathematical papers.
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Figure 13.8: Battle for the Town Hall by Jean-Victor Schnetz. Galois, as a
staunch Republican, would have wanted to participate in the July Revolution
of 1830 but was prevented by the director of the École Normale.
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Figure 13.9: A drawing done in 1848 from memory by Evariste’s brother.
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Figure 13.10: A French stamp.
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13.1 Group theory

The definition of a finite group

A finite group is defined by the following conditions:

1. If any two elements belonging to the group are multiplied together, the product is
another element belonging to the group.

2. There is an identity element.

3. Each element has an inverse.

4. Multiplication of the elements is associative1, but necessarily commutative.

5. The group contains g elements, where g is a finite positive integer called the order of
the group.

As a simple example, we might think of a molecule which is symmetric with respect
to rotations through an angle of 2π/3 about some axis but which has no other symmetry.
Then the set of geometrical operations that leave the molecule invariant form a group
containing 3 elements: the identity element; a rotation through an angle 2π/3 about the
axis of symmetry, and a rotation through an angle 4π/3 about the same axis. Let us denote
these operations respectively by E, C3, and C−1

3 . We can easily construct a multiplication
table for the group. If we do so, each element of the group will appear once and only once
in any row or column of the multiplication table. This follows from the fact that AX = B
has one and only one solution among the group elements. Since A−1 and B belong to
the group, and since the product of any two elements belongs to the group, X = A−1B
is also a uniquely-defined element. Now suppose that the element B appears more than
once in the Ath row of the multiplication table. Then AX = B will have more than one
solution which is impossible. Since no element can appear more than once, each element
must appear once because there are g elements and g places in the row, all of which have
to be filled.

Representations of geometrical symmetry groups

The elements of a geometrical symmetry group are linear coordinate transformations. Such
transformations have the form

X i =
d∑
j=1

∂X i

∂xj
xj + bi (13.1)

where ∂X i/∂xj and bi are constants.

1A(BC)=(AB)C
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Now consider a set of functions Φ1, Φ2, ..., ΦM . We can use equation (13.1) to express
Φ1(x) as a function of X. If we then expand the resulting function of X in terms of the
other Φn’s, we shall obtain a relation of the form

Φn(x) =
∑
n′

Φn′(X)Dn′,n (13.2)

If we denote the coordinate transformation in equation (13.1) by the symbol G, we can
rewrite equations (13-1) and (13.2) in the form:

X = Gjx

Φn(x) ≡ Φn(G−1
j X) ≡ GjΦn(X)

=
∑
n′

Φn′(X)Dn′,n(G) (13.3)

In this sense, the coordinate transformation defines an operator Gj, and Dn′,n(Gj) is a
matrix representing Gj. Is can easily be shown that the matrices representing a set of
operators G1, G2,...,Gg in a given basis, obey the same multiplication table as the operators
themselves. For example, if we know that

C3C
−1
3 = E (13.4)

and that

C3Φn =
∑
n′

Φn′Dn′,n(C3)

C−1
3 Φn =

∑
n′

Φn′Dn′,n(C−1
3 )

EΦn =
∑
n′

Φn′Dn′,n(E) (13.5)

then it follows that:

C3C
−1
3 Φn =

∑
n′

C3Φn′Dn′,n(C−1
3 )

=
∑
n′′

Φn′′

{∑
n′

Dn′′,n′(C3)Dn′,n(C−1
3 )

}
= EΦn =

∑
n′′

Φn′′Dn′′,n(E) (13.6)

so that we must have

Dn′′,n(E) =
∑
n′

Dn′′,n′(C3)Dn′,n(C−1
3 ) (13.7)
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Thus given any set of basis functions Φ1, Φ2, ..., ΦM which mix together under the ele-
ments of a group G1, G2,...,Gg, we can obtain a set of matrices Dn′,n(Gj) defined by the
relationships

GjΦn =
∑
n′

Φn′Dn′,n(Gj) j = 1, 2, ..., g (13.8)

These matrices will obey the same multiplication table as the operators G1, G2,...,Gg, and
they are said to form a matrix representation of the group.

Besides finite groups, there are also continuous groups, such as the group of rotations
in space, and the group of translations in space.

Group theory allows us to study symmetry in a systematic way. For this reason, it has
proved to be of great importance for modern theoretical physics and theoretical chemistry.
Both exact symmetries and approximate symmetries are extremely important in modern
particle physics. Group theory is also much used in theoretical chemistry, where it is
used to explain the observed properties of molecules. It is also used to choose optimal
basis sets in quantum chemical calculations. Group theory is also very useful in X-ray
crystallography.

An extensive discussion of the theory of finite groups can be found in Appendix C of
this book.

13.2 Abel’s family and education

Niels Henrik Abel (1802-1829) was the second son of Pastor Søren Abel, of Gjerstad Church,
near the town of Risør in Norway. His mother, Anne Marie Simonsen, came from a family
of well-to-do ship owners. She enjoyed arranging social events, and took little interest in
her children’s education.

Besides being a pastor, with degrees in theology and philosophy, Søren Abel had some
importance in Norwegian politics. With the coming of Norwegian independence, he was
elected to the Storting, the supreme legislature of Norway. It met in Oslo, at the Cathedral
School, and in this way, Søren Abel’s attention was attracted to the school. Two of his
sons, Niels Henrik Abel and his elder brother Hans were sent there to study.

The Cathedral School had at one time been excellent. However, the school’s best
teachers were transferred to the University by the time that the Abel brothers arrived, and
thus the teaching was mediocre.

This situation changed with the arrival of the mathematician Bernt Michael Holmboe,
who immediately recognized Niels Henrik Abel’s outstanding abilities in mathematics, and
gave him both encouragement and private lessons. Under Holmboe’s guidance, Abel began
to study the works of Euler, Newton, Lalande, d’Alembert, Lagrange and Laplace.

Meanwhile, Søren Abel had become involved in two controversies. The first of these
was a theological argument, which was widely reported in the Norwegian press. The second
was a scandal resulting from Søren’s insults to Carsten Anker, the host of the Norwegian
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Constituent Assembly. Søren Abel returned to Gjerstad in disgrace, his political career in
ruins. He began drinking heavily, and died two years later at the age of 48.

13.3 Abel’s travels in Europe

The death of Søren Abel was a tragedy for his son Niels. There was now no money
from home to support his studies. However, Niels Henrik Abel’s mentor and friend, Bernt
Michael Holmboe, raised money to help his talented student to finish the Cathedral school
and to enter the Royal Frederick University in Oslo. By the time that he entered the
university, Abel was already the most knowlegable mathematician in Norway.

While still a student at the university, Abel wrote a paper on the solution to quintic
equations, i.e. the roots of 5th-order polynomials. He sent the paper to the mathematician
Ferdinand Degen, for publication by the Royal Society of Copenhagen. Degen asked Abel
for a numerical example, and while working to provide an example, Abel discovered a
mistake in his calculation. He later proved that the exact algebraic solution of quintic
equations equations, and equations of higher order than quintic, is impossible.

Degen advised Abel to turn his attention to another outstanding problem. “... whose
development would have the greatest consequences for analysis and mechanics. I refer to
elliptic integrals. A serious investigator with suitable qualifications for research of this
kind would by no means be restricted to the many beautiful properties of these most
remarkable functions, but could discover a Strait of Magellan leading into wide expanses of
a tremendous analytic ocean.” Abel later followed Degen’s advice and did important work
on elliptic integrals.

While a student at the Royal Frederick University in Oslo, Abel found another friend
and supporter in the Professor of Astronomy, Christopher Hansteen, who gave him encour-
agement, financial support, and a place to live. Hansteen’s wife cared for Abel as though
he were her own son. In 1823, the 21 year old Abel published a paper entitled Solutions
of some problems by means of definite integrals in Norway’s first scientific journal, journal,
“Magazin for Naturvidenskaberne”, which had been founded by Hansteen. Abel’s paper
contained the first solution of an integral equation.

Abel obtained a grant to visit Degen and other mathematicians in Copenhagen. While
there, he met his future fiancé, Christine Kemp. He also applied for funds to travel in
Europe to meet mathematicians such as Gauss, but because he was not fluent in French
and German, permission to travel was delayed for two years so that he could study these
languages.

Finally, in September, 1825, Abel set out for the continent of Europe together with four
friends from the university. In Copenhagen, Abel had been given a letter of introduction
to the mathematician August Crelle, and he met Crelle in Berlin. Crell was the publisher
of a journal devoted to mathematical research, and Abel began to contribute many papers
to Crelle’s journal.

Wikipedia gives the following description of Abel’s travels;
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“From Berlin Abel also followed his friends to the Alps. He went to Leipzig
and Freiberg to visit Georg Amadeus Carl Friedrich Naumann and his brother
the mathematician August Naumann. In Freiberg Abel did research in the
theory of functions, particularly, elliptic, hyperelliptic, and a new class now
known as abelian functions.

“From Freiberg they went on to Dresden, Prague, Vienna, Trieste, Venice,
Verona, Bolzano, Innsbruck, Luzern and Basel. From July 1826 Abel traveled
on his own from Basel to Paris. Abel had sent most of his work to Berlin to be
published in Crelle’s Journal, but he had saved what he regarded as his most
important work for the French Academy of Sciences, a theorem on addition
of algebraic differentials. With the help of a painter, Johan Gorbitz, he found
an apartment in Paris and continued his work on the theorem. He finished
in October 1826 and submitted it to the academy. It was to be reviewed by
Augustin-Louis Cauchy. Abel’s work was scarcely known in Paris, and his
modesty restrained him from proclaiming his research. The theorem was put
aside and forgotten until his death.

“Abel’s limited finances finally compelled him to abandon his tour in Jan-
uary 1827. He returned to Berlin, and was offered a position as editor of
Crelle’s Journal, but opted out. By May 1827 he was back in Norway. His
tour abroad was viewed as a failure.[by whom?] He had not visited Gauss in
Göttingen and he had not published anything in Paris. His scholarship was
therefore not renewed and he had to take up a private loan in Norges Bank
of 200 spesidaler. He never repaid this loan. He also started tutoring. He
continued to send most of his work to Crelle’s Journal. But in mid-1828 he
published, in rivalry with Carl Jacobi, an important work on elliptic functions
in Astronomische Nachrichten in Altona.”

Abel died of tuberculosis, which he contracted in Paris. On his way to visit his fiancé,
Christine Kemp, in Finland, at Christmas 1928, he became seriously ill. He recovered
somewhat, and the couple enjoyed the holiday together; but soon afterwards the illness
worsened severely and he died at the early age of 27.

After Abel’s death, news arrived that Crelle had succeeded in obtaining a professorship
for him in Berlin, but it was too late to help.

The Abel Prize

In 1899, the Norwegian mathematician Sophus Lie learned that no Nobel Prize would be
awarded in mathematics, and he proposed that such a prize should be awarded by Norway.
In 1902. King Oscar II of Sweden and Norway expressed his willingness to establish and
finance such a prize. However, the establishment of the prize, which was named in honor of
Niels Henrik Abel, was delayed until 2001 by the dissolution of the political bond between
Sweden and Norway. Today the Abel Prize honors outstanding mathematicians, as well as
commemorating Abel’s life and work. A twice-yearly Abel symposium was also established.
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13.4 A list of mathematical topics to which Abel con-

tributed

• Abel’s binomial theorem
• Abelian variety
• Abel equation
• Abel equation of the first kind
• Abelian extension
• Abel function
• Abelian group
• Abel’s identity
• Abel’s inequality
• Abel’s irreducibility theorem
• Abel-Jacobi map
• Abel-Plana formula
• Abel-Ruffini theorem
• Abelian means
• Abel’s summation formula
• Abelian and tauberian theorems
• Abel’s test
• Abel’s theorem
• Abel transform
• Abel transformation
• Abelian variety
• Abelian variety of CM-type
• Dual abelian variety

13.5 The life and work of Éveriste Galois

Éveriste Galois was born in 1811 in a district of Paris called Bourg-la-Reine. His father
was an important man in this community, and was elected mayor of Bourg-la-Reine.

Éveriste Galois’s mother was well educated, especially in languages such as Latin and
Greek, and for his first twelve years it was she who educated her son Éveriste. After this,
he entered the Lycée Louis-le-Grande. At the age of 14 he became enormously interested
in mathematics, reading books by Legendre and Lagrange as though they were novels, and
mastering them after a first reading.

After graduating from Lycée Louis-le-Grande, Galois wanted to enter the École Poly-
technique, but failed his entrance examination, probably because he was awkward at ex-
plaining his thoughts to the examiners. He was forced to enter the École Normale instead,
which was much less good for the study of mathematics. Nevertheless, the followin year,
Galois published a a paper on continued fractions. He soon produced two important papers
on the theory of polynomial equations, which he sent to the mathematician Augustin-Louis
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Cauchy. It seems that Cauchy considered the work to be excellent and suggested that the
two papers be combined and sent to the French Academy as an entry for the Academy’s an-
nual prize. However, for some reason, Galois’ papers were never combined and submitted.

In 1829, Galois’ father committed suicide. The parish priest had forged Mayor Galois’
name on malicious forged epigrams directed at Galois’ own relatives. Overcome by the
ensuing scandal, Mayor Galois hanged hiself. His father’s death was a terrible blow to
Éveriste, who never recovered emotionally from the loss.

Évariste Galois was arrested and imprisoned for his political activities during the revo-
lutionary period in which he lived. Although eventually released from prison, he was killed
in a duel at the age of 20. The reasons for the duel are not known with certainty, but the
daughter of the prison doctor may have been involved. Galois was searching for love to
replace the loss of his beloved father.

13.6 Mathematical contributions of Galois

Galois Theory deals with the properties of mathematical fields.

Definition of a field in mathematics

Physicists and mathematicians have very different definitions of the word field. In math-
ematics, a field is defined to be a set which is mapped on itself by two binary operations
called addition and multiplication.

If a. b and c are elements in the field F , then the mathematical definition of a field
requires

• Associativity of addition and multiplication: a+ (b+ c) = (a+ b) + c, and a · (b · c) =
(a · b) · c.
• Commutativity of addition and multiplication: a+ b = b+ a, and a · b = b · a.

• Additive and multiplicative identity: there exist two different elements 0 and 1 in F
such that a+ 0 = a and a · 1 = a.

• Additive inverses: for every a in F , there exists an element in F , denoted −a, called
the additive inverse of a, such that a+ (−a) = 0.

• Multiplicative inverses: for every a 6= 0 in F , there exists an element in F , denoted
by a−1 or 1/a, called the multiplicative inverse of a, such that a · a−1 = 1.

• Distributivity of multiplication over addition: a · (b+ c) = (a · b) + (a · c).

Examples of fields include the rational numbers, the real numbers, and the complex
numbers.

For the rational numbers, we have

a

b
· b
a

=
ab

ba
= 1 (13.9)
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so that an inverse exits under multiplication. The distributive requirement can also be
demonstrated:

a

b
·
(
c

d
+
e

f

)

=
a

b
·
(
c

d
· f
f

+
e

f
· d
d

)

=
a

b
·
(
cf

df
+
ed

fd

)
=
a

b
· cf + ed

df

=
a(cf + ed)

bdf
=
acf

bdf
+
aed

bdf
=
ac

bd
+
ae

bf

=
a

b
· c
d

+
a

b
· e
f

(13.10)

which proves the distributive property. In general the requirements of a field can be
recognized as known properties of the rational numbers.

Éveriste Galois is remembered for exploring the relationships between field theory and
group theory, (where field theory is defined in the mathematical rather than physical sense).

Fields with a finite number of elements are called Galois fields. An interesting example
of a mathematical field with only four elements is given in the following tables:
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Table 13.1: Addition

+ 0 I A B

0 0 I A B
I I 0 B A
A A B 0 I
B B A I 0

Table 13.2: Multiplication

· 0 I A B

0 0 0 0 0
I 0 I A B
A 0 A B I
B 0 B I A
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Chapter 14

GAUSS AND RIEMANN

14.1 Gauss contributed to many fields

Johann Carl Friedrich Gauss was born in 1777 in Brunswick, now a part of Lower Saxony,
Germany. His parents were not wealthy, and his mother was illiterate, but Gauss soon
showed himself to be a child prodigy. At the age of three, he corrected an error that his
father had made in summing up his accounts.

Another story is told about the precocity of Gauss: At the age of seven, he amazed
his school teacher who was in the habit of giving his students the problem of summing all
the integers from 1 to 100. His young student Gauss almost instantly gave him the correct
answer, having realized that the sum could be expressed as 50 pairs of numbers, each with
the sum, 101.

Continuing in this way, Gauss made important mathematical discoveries as a teenager.
His great ability attracted the attention of the Duke of Brunswick, who arranged for Gauss
to be sent to the Collegium Carolinium, today known as the Braunschweig University
of Technology.Later, the Duke also supported the studies of Gauss at the University of
Göttingen.

While still a student at Göttingen, Gauss discovered how to construct a seventeen-sided
polygon with a compass and ruler. He was so pleased with this discovery that he decided
to make mathematics his career, instead of his previous choice, philosophy.

Gauss returned from Göttingen to Brunswick, where he received a degree. The Duke
of Brunswick agreed to continue his stipend, and he requested that Gauss should submit
a doctoral dissertation to the University of Helmstedt. The dissertation which Gauss
submitted discussed the fundamental theorem of algebra.

Supported by the Duke of Brunswick’s stipend, Gauss was able to devote himself com-
pletely to research. In 1801, at the age of 24, he published an important book entitled
Disquisitiones Arithmeticae. Most of the chapters were devoted to number theory.
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Contributions to astronomy

In 1801 the astronomer Zach discovered the small planet Ceres, later reclassified as an
asteroid. He was only able to track it for a short time, before it disappeared behind the
sun. Many astronomers tried to calculate where Ceres would re-appear. Gauss also made
a calculation, which turned out to be by far the most accurate. He had used his methods of
least squares and normal distributions, which will be discussed below. The astronomer Ol-
bers suggested that Gauss be made director of the proposed new astronomical observatory,
but no action was taken at the time.

The year 1805 was both happy and sad for Gauss. In that year, he married Johanna
Ostoff, and his personal life became happy. However, 1805 was also the year in which his
great patron, the Duke of Brunswick, was killed in a war. In 1807, Gauss left Brunswick
to take up the position of director of the new astronomical observatory in Göttingen.

In 1808, Gauss was again hit by tragedy. Both his father and his wife died. Johanna
died in childbirth, and her newly-born son died soon afterward. Although emotionally
shattered by these personal losses, Gauss continued to work. and a year later he married
Johanna’s best friend, Minna. In 1809 he published a second important book, Theoria
motus corporum coelestium in sectionibus conicis Solem ambientium. This two-volume
work discusses differential equations, conic sections, and the motion of celestial bodies. He
showed how to estimate the orbits of planets, and how to refine the estimates. This book
was his most important contribution to theoretical astronomy, but he continued to make
astronomical observations until the age of 70.

The geodesic survey

In 1818, Gauss was asked to work on a geodesic survey of his country, and he accepted
the task with pleasure. For this purpose, he invented the heliotrope, which reflected the
sun’s light, and which made use of mirrors and a small telescope. Gauss published over 70
papers related to the survey.

Differential geometry

In 1828, Gauss published Disquisitiones generales circa superficies curva, an important
paper which discusses geodesics and total curvature. Today, Gaussian curvature is an
important topic in differential geometry.

Work on terrestrial magnetism

In 1831, Wilhelm Weber became the Professor of Physics at Göttingen University, and
the following year, he and Gauss began a collaborative study of terrestrial magnetism. By
1840, Gauss had written three important papers on the subject: Intensitas vis magnet-
icae terrestris ad mensuram absolutam revocata (1832), Allgemeine Theorie des Erdmag-
netismus (1839) and Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse
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des Quadrats der Entfernung wirkenden Anziehungs- und Abstossungskräfte (1840).
Gauss and Weber invented the first electromagnetic telegraph in 1933. It was capable

of sending messages over a distance of 5,000 feet between the Göttingen Observatory and
the Institute of Physics. Gauss also established the unit of magnetism in terms of mass,
charge and time. In this period he also derived Gauss’ law, which states that the flux of
electric field out of any region of space is proportional to to the electric charge contained
within the region. This law laster became one of the four equations on which James Clerk
Maxwell based his general theory of electromagnetism.

Gauss was able to show that the earth could have only two magnetic poles. He con-
tributed greatly to Alexander von Humboldt’s efforts to map the earth’s magnetic field.

14.2 Normal distributions in probability theory

Figure 14.8 shows a Gaussian distribution function of the form

ϕ(x) =

√
σ2

2π
e−σ

2(x−µ)2/2 (14.1)

In his 1809 book, Theoria motus corporum coelestium in sectionibus conicis solem ambien-
tium, Gauss addressed the problem of finding a way to make use of several measurements of
the same quantity to achieve the best possible estimate of the quantity’s actual value. This
led him to introduce what we now call the gaussian distribution function or alternatively
the normal distribution function.

Gaussians have many useful properties, The Fourier transform of a gaussian is a gaus-
sian in reciprocal space, and he product of two 3-dimensional Cartesian gaussian functions,
is another Cartesian gaussian. This last property has led to the widespread use of Cartesian
gaussians as basis functions in quantum chemical calculations, to facilitate the calculation
of many-center Coulomb and exchange integrals.

14.3 Bernhard Riemann’s life and work

Georg Friedrich Bernhard Riemann (1826-1866) was the son of a German Lutheran pastor.
He was born in a village near Dannenberg in the Kingdom of Hanover.From an early age
he showed exceptional mathematical ability, coupled with poor health, extreme shyness
and fear of public speaking.

In 1846, Bernhard Riemann’s father gathered enough money to send him to the Uni-
versity of Göttingen, where it was intended that he should study theology. While at the
university, however, Riemann attracted the attention of Gauss, who recognized Riemann’s
great mathematical ability and recommended that he should change the topic of his stud-
ies to mathematics. Permission to do so was fortunately granted by Bernhard Riemann’s
father.

At that time, the University of Berlin was famous for its mathematical faculty, and
Riemann studied there for two years before returning to Göttingen.
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In order to become a lecturer at the University of Göttingen, Riemann was required
to deliver a qualifying lecture. He prepared three, on different topics, and to his surprise,
Gauss chose topic that he least expected: On the hypotheses that underlie geometry. This
lecture turned out to be a milestone in the history of mathematics.

The main point of Riemann’s lecture was the definition of the curvature tensor; but
he also posed deep questions concerning the physical space in which we live. Riemann
was too far ahead of his time to be appreciated by most of his audience, but Gauss was
deeply impressed. According to Monastyrsky, “Among Riemann’s audience, only Gauss
was able to appreciate the depth of Riemann’s thoughts. ... The lecture exceeded all his
expectations and greatly surprised him. Returning to the faculty meeting, he spoke with
the greatest praise and rare enthusiasm to Wilhelm Weber about the depth of the thoughts
that Riemann had presented.”

The pioneering work on the metric tensor by Riemann later formed the basis for Ein-
stein’s general theory of relativity. Freudenthal writes that “The general theory of relativity
splendidly justified his work. In the mathematical apparatus developed from Riemann’s
address, Einstein found the frame to fit his physical ideas, his cosmology, and cosmogony:
and the spirit of Riemann’s address was just what physics needed: the metric structure
determined by data.”

In 1859, Riemann became the head of the mathematics department at the University
of Göttingen.

Riemann’s death from tuberculosis

Throughout his life, Riemann’s health had never been good. He contracted tuberculosis,
and was forced to go to Italy for the sake of his health. However, the illness worsened and
he died in Italy. Throughout his life, Riemann had been a devout Christian, and he died
while reciting the Lord’s Prayer together with his wife.
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Figure 14.1: On a sphere, the sum of the angles of a triangle is not equal to 180o.
The surface of a sphere is not a Euclidean space, but locally the laws of the
Euclidean geometry are good approximations. In a small triangle on the face
of the earth, the sum of the angles is very nearly 180o.
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Figure 14.2: János Bolyai. (1802-1860), from Hungary, sent Gauss his work
on non-Euclidean geometry. Gauss wrote to a friend, “I regard this young
geometer Bolyai as a genius of the first order.” However, to Bolyai himself, he
wrote (regarding the paper that Bolyai had sent to him) “To praise it would
amount to praising myself. For the entire content of the work...coincides almost
exactly with my own meditations which have occupied my mind for the past
thirty or thirty-five years.”
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Figure 14.3: The Russian mathematician Nikolai Ivanovich Lobachevsky (1792-
1856) independently worked on non-Euclidean geometry.
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Figure 14.4: Portrait of Carl Friedrich Gauss (1777-1855).
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Figure 14.5: Portrait of Gauss published in Astronomische Nachrichten (1828).
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Figure 14.6: Statue of Gauss at his birthplace, Brunswick.

Figure 14.7: German 10-Deutsche Mark Banknote (1993) featuring Gauss.
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Figure 14.8: Four normal distributions. In 1809 Gauss published his monograph
Theoria motus corporum coelestium in sectionibus conicis solem ambientium
where among other things he introduces several important statistical concepts,
such as the method of least squares, the method of maximum likelihood, and
the normal distribution.
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Figure 14.9: Gauss and Weber, two pioneers in the study of electromagnetism.
Together, they invented the first electromagnetic telegraph, and mapped the
earths magnetic field. The unit of magnetic field strength is named after Gauss,
while the unit of magnetic flux is named after Weber. In 1856, Weber demon-
strated that the ratio of electric to magnetic units was equal to the velocity of
light, a finding that led James Clerk Maxwell to believe correctly that light is
an electromagnetic wave. In 1865, Maxwell published his epoch-making book
A Dynamical Theory of the Electromagnetic Field, which was based on the ob-
servations of Gauss and Weber, and those of Michael Faraday. Maxwell’s book
achieved, after Newton’s Principia, the second great unification in physics, and
it paved the way for much of modern technology - electrical power generation,
radio, television, computers, and so on.
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Figure 14.10: A photograph of Georg Friedrich Bernhard Riemann taken in
1863. In a famous lecture in 1854, he founded Riemanian geometry, discussing
infinitely differentiable manifolds, and curvature.
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Figure 14.11: Another image of Riemann.
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Figure 14.12: Riemannian Geometry.

Figure 14.13: Quantum Riemannian Geometry.
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14.4 Functions of a complex variable

The Cauchy-Riemann equations

Let z = x+ iy be a complex variable, and let

f(z) = u(x, y) + iv(x, y) (14.2)

be a function of z, where u and v are real functions of x and y. Then the Cauchy-Riemann
equations are

∂u

∂x
=
∂v

∂y
(14.3)

and
∂u

∂y
= −∂v

∂x
(14.4)

In regions of the complex plane where the Cauchy-Riemann equations are satisfied, the
function f(z) is said to be analytic. For example, the function

f(z) = z2 (14.5)

is analytic everywhere in the complex plane. while the function

f(z) =
1

(x+ iy)(x− iy)
(14.6)

is analytic everywhere in the complec plane except at two points, z = ±iy.
The Cauchy-Riemann equations can be used to evaluate definite integrals. It cam be

shown that the integral taken around a contour in the complex plane is equal to the sum of
the residues contained at the singularities of the function within the contour. This method
of evaluating definite integrals is usually called Riemannian integration

Riemannian surfaces
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Figure 14.14: Riemann surface for the function f(z) =
√
z. The two horizontal

axes represent the real and imaginary parts of z, while the vertical axis rep-
resents the real part of

√
z. The imaginary part of

√
z is represented by the

coloration of the points.
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Figure 14.15: f(z) = log(z)
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Chapter 15

HILBERT

15.1 David Hilbert’s life and work

David Hilbert (1862-1943) was born in or near to Kömogsberg in the Kingdom of Prussia.
His father, Otto Hilbert, was a county judge, while his mother, Maria, was the daughter
of a Königsberg merchant. She was greatly interested in philosophy, astronomy and prime
numbers. and it was she who taught her son. David, for his first eight years, before he
entered school.

Later, at the gymnasium stage of his education, David Hilbert was at first enrolled in
a gymnasium that emphasized the classics. He was unhappy there, and did poorly. For
his final year, however, he transferred to the Wilhelm Gymnasium, where there was more
emphasis on mathematics. There, he received top grades for mathematics. His final report
stated that “For mathematics he always showed a very lively interest and a penetrating
understanding: he mastered all the material taught in the school in a very pleasing manner
and was able to apply it with sureness and ingenuity.”

In the autumn of 1880, at the age of 18, he entered the University of Königsberg, where
he took courses on integral calculus, the theory of determinants, the curvature of surfaces.
and number theory.

In 1882, another student, Hermann Minkowsky. arrived at the University of Königsberg.
He and David Hilbert became lifelong friends, and they greatly influenced each other’s
mathematical thoughts. They were later to become two of the four masters of the Math-
ematical Institute at the University of Göttingen: Klein, Runge, Minkowsi and Hilbert.

In 1884, Hilbert presented a defense of his doctoral thesis. It was entitled Über in-
variante Eigenschaften specieller binärer Formen, insbesondere der Kugelfunctionen, and
it dealt with the invariant properties of sets of spherical harmonics.

Hilbert was encouraged by Felix Klein to travel to Paris and to meet the most important
French mathematicians. He did so and was received in Paris in a very friendly way. The
French mathematicians spoke to him in German out of politeness, but not being entirely
fluent in German, they were sometimes not able to communicate their ideas adequately.
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Klein advised Hilbert that the University of Königsberg was a backwater, but Hilbert
decided to stay and teach there anyway, writing to Klein, “I am content and full of joy to
have decided myself for Königsberg. The constant association with Professor Lindemann
and, above all, with Hurwitz is not less interesting than it is advantageous to myself and
stimulating. The bad part about Königsberg being so far away from things I hope I will
be able to overcome by making some trips again next year, and perhaps then I will get to
meet Herr Gordan.”

Hilbert taught at Königsberg from 1886 to 1895, finally rising to the rank of Full
Professor. In 1895, Felix Klein succeeded in having Hilbert appointed to a vacant chair at
the University of Göttingen, and Hilbert remained there for the rest of his career, becoming
one of the four masters of the Mathematical Institute.

In 1899, Hilbert published an influential book entitled Grundlagen der Geometrie, which
put geometry on a formal axiomatic basis, and later another influential book entitled
Grundlagen der Mathematik.

In August, 1900, David Hilbert gave a lecture at the International Congress of Math-
ematicians in Paris, in which he proposed 23 outstanding problems for the mathematical
community to solve. Some of these problems remain challenging even today.

In 1912, Hilbert changed his focus from pure mathematics to mathematical physics.
He arranged to have a tutor in physics for himself, and he gave a number of seminars on
the work of Albert Einstein. Hilbert invited Einstein to visit Göttingen, and talks between
the two helped Einstein to formulate his general theory of relativity in a mathematically
correct way. After Einstein’s visit, Hilbert also made contributions to the general theory
of relativity.

In 1930, Hilbert retired from the University of Göttingen, but he continued to give
lectures there occasionally. Shortly afterwards, the Nazis came to power and Jewish pro-
fessors were purged from the university, together with professors who had Jewish wives.
After this happened, Hilbert was seated next to Bernhard Rust, the new Minister of Ed-
ucation at a dinner. The minister asked “Did the Mathematical Institute really suffer so
much from the departure of the Jews?”. Hilbert replied, “Suffer? It no longer exists!”

Illness and death

Starting in 1925, Hilbert began to exhibit signs of exhaustion. His illness was diagnosed
as pernicious anemia, which was at that time untreatable. He died in 1943.

15.2 Hilbert space

Hilbert space, or function space, is an infinite-dimensional Euclidian space in which func-
tions play the role of unit vectors. In discussing Hilbert space, it is convenient to use
the bra and ket notation later introduced by P.A.M. Dirac. In this notation, a set of
orthonormal functions

φ1(x), φ2(x), φ3(x), φ4(x), · · · (15.1)



15.3. GENERALIZED FOURIER ANALYSIS 229

is represented by a set of kets:
|1〉, |2〉, |3〉, |4〉, · · · (15.2)

Their conjugate functions are represented by the set of bras

〈1|, 〈2|, 〈3|, 〈4|, · · · (15.3)

The scalar product of two members of this set is represented by

∫
dx φ∗(x)φ(x)→ 〈i|j〉 = δi,j ≡


1 if i = j

0 if i 6= j
(15.4)

This scalar product is closely analogous to the scalar product of two unit vectors in a
Euclidian vector space. Because of orthonormality, the scalar product is zero unless i = j.

15.3 Generalized Fourier analysis

Let us now consider some function, f(x). David Hilbert showed that we can represent any
well-behaved single-valued function by an infinite series of the form

f(x) =
∞∑
j=1

ajφj(x) (15.5)

where

aj =

∫
dx φ∗(x)f(x) (15.6)

In bra and ket notation, this becomes

|f〉 =
∞∑
j=1

|j〉〈j|f〉 (15.7)

15.4 Projection operators

The quantity

PA =
∑
j∈A

|j〉〈j| (15.8)

is called a projection operator. When acting on any function, PA projects out that part of
the function which is contained in the domain A of Hilbert space. Projection more than
once gives the same result as projecting a single time. In other words.

PA = PAPA = PAPAPA = PAPAPAPA · · · (15.9)
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If the domains A and B have no elements in common, then

PAPB = 0 A /∈ B (15.10)

The completeness property of a set of functions requires that

∞∑
j=1

|j〉〈j| = I (15.11)

where I is the identity operator.

Matrix representation of operators

Let H be some operator, for example the quantum mechanical Hamiltonian of a particle.
Then in the bra and ket notation, the matrix representation of an operator is given by∫

dx φ∗i (x)Hφj(x)→ 〈i|H|j〉 ≡ Hi,j (15.12)

where the operator acts on everything to its right. Using his studies of the matrix rep-
resentation of operators, David Hilbert was able to show that the seemingly different
representations of quantum theory given by Heisenberg and Schrödinger are actually just
two forms of the same theory.

15.5 Some quotations from David Hilbert

• “We must know! We will know!”
• “Before beginning I should put in three years of intensive study, and I

haven’t that much time to squander on a probable failure.” [On why he
didn’t try to solve Fermat’s last theorem]
• “Galileo was no idiot. Only an idiot could believe that science requires

martyrdom - that may be necessary in religion, but in time a scientific
result will establish itself.”
• “I have tried to avoid long numerical computations, thereby following

Riemann’s postulate that proofs should be given through ideas and not
voluminous computations.”
• “Mathematics is a game played according to certain simple rules with

meaningless marks on paper.”
• “How thoroughly it is ingrained in mathematical science that every real

advance goes hand in hand with the invention of sharper tools and simpler
methods which, at the same time, assist in understanding earlier theories
and in casting aside some more complicated developments.”
• “The art of doing mathematics consists in finding that special case which

contains all the germs of generality.”
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• “The further a mathematical theory is developed, the more harmoniously
and uniformly does its construction proceed, and unsuspected relations
are disclosed between hitherto separated branches of the science.”

• “One can measure the importance of a scientific work by the number of
earlier publications rendered superfluous by it.”

• “Mathematics knows no races or geographic boundaries; for mathematics,
the cultural world is one country.”

• “The infinite! No other question has ever moved so profoundly the spirit
of man.”

• “No one shall expel us from the paradise that Cantor has created for us.”

• “He who seeks for methods without having a definite problem in mind
seeks in the most part in vain.”

• “If one were to bring ten of the wisest men in the world together and ask
them what was the most stupid thing in existence, they would not be able
to discover anything so stupid as astrology.”

• “Physics is becoming too difficult for the physicists.”

• “Meine Herren, der Senat ist doch keine Badeanstalt. The faculty is not
a pool changing room.” [On the proposed appointment of Emmy Noether
as the first woman professor.]

• “Who of us would not be glad to lift the veil behind which the future lies
hidden; to cast a glance at the next advances of our science and at the
secrets of its development during future centuries? What particular goals
will there be toward which the leading mathematical spirits of coming
generations will strive? What new methods and new facts in the wide
and rich field of mathematical thought will the new centuries disclose?”
(Opening of his speech to the 1900 Congress in Paris.)

• “Every mathematical discipline goes through three periods of develop-
ment: the naive, the formal, and the critical.”

• “In mathematics ... we find two tendencies present. On the one hand,
the tendency towards abstraction seeks to crystallise the logical relations
inherent in the maze of materials ... being studied, and to correlate the
material in a systematic and orderly manner. On the other hand, the
tendency towards intuitive understanding fosters a more immediate grasp
of the objects one studies, a live rapport with them, so to speak, which
stresses the concrete meaning of their relations.” Geometry and the imag-
ination (New York, 1952).

• “No other question has ever moved so profoundly the spirit of man; no
other idea has so fruitfully stimulated his intellect; yet no other concept
stands in greater need of clarification than that of the infinite.”

• “A mathematical theory is not to be considered complete until you have
made it so clear that you can explain it to the first man whom you meet
on the street.”
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• “If I were to awaken after having slept for a thousand years, my first
question would be: Has the Riemann hypothesis been proven?”
• “Mathematical science is in my opinion an indivisible whole, an organism

whose vitality is conditioned upon the connection of its parts.”
• “Mathematics knows no races or geographic boundaries; for mathematics,

the cultural world is one country.”
• (On Cantor’s set theory:) “The finest product of mathematical genius and

one of the supreme achievements of purely intellectual human activity.”
• “The art of doing mathematics consists in finding that special case which

contains all the germs of generality.”
• “The further a mathematical theory is developed, the more harmoniously

and uniformly does its construction proceed, and unsuspected relations
are disclosed between hitherto separated branches of the science.”
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Figure 15.1: David Hilbert.
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Figure 15.2: The Mathematical Institute in Göttingen. Its new building, con-
structed with funds from the Rockefeller Foundation, was opened by Hilbert
and Courant in 1930.
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Figure 15.3: Spherical harmonics, an orthonormal basis for the Hilbert space
of square-integrable functions on the sphere, shown graphed along the radial
direction.
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Figure 15.4: Superposition of sinusoidal wave basis functions (bottom) to form
a sawtooth wave (top).



15.5. SOME QUOTATIONS FROM DAVID HILBERT 237

Figure 15.5: A Venn diagram illustrating the intersection of two sets. The sets
might, for example, represent sets of unit vectors in a Hilbert space. In that
case, if PA =

∑
j∈A |j〉〈j| and PB =

∑
k∈B |k〉〈k|, then PAPB = PC, where PC is the

projection operator corresponding to the intersection of A and B.
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Zürich, 2006), 1697-1718.

44. L Corry, Axiomatics, empiricism, and Anschauung in Hilbert’s conception of ge-
ometry: between arithmetic and general relativity, in The architecture of modern
mathematics (Oxford Univ. Press, Oxford, 2006), 133-156.

45. L Corry, David Hilbert and his empiricist philosophy of geometry (Spanish), History
and philosophy of mathematics (Spanish), Bol. Asoc. Mat. Venez. 9 (1) (2002),
27-43.

46. L Corry, Leo Hilbert and physics (1900-1915), in The symbolic universe, Milton
Keynes, 1996 (Oxford Univ. Press, New York, 1999), 145-188.

47. L Corry, David Hilbert between mechanical and electromagnetic reductionism (1910-
1915), Arch. Hist. Exact Sci. 53 (6) (1999), 489-527.

48. L Corry, The influence of David Hilbert and Hermann Minkowski on Einstein’s views
over the interrelation between physics and mathematics, Endeavour 22 (3) (1998),
95-97.

49. L Corry, Hilbert on kinetic theory and radiation theory (1912-1914), Math. Intelli-
gencer 20 (3) (1998), 52-58.

50. L Corry, David Hilbert and the axiomatization of physics (1894-1905), Arch. Hist.
Exact Sci. 51 (2) (1997), 83-198. L Corry, Axiomatics and structural algebra in the
works of David Hilbert (Spanish), Mathesis 11 (4) (1995), 291-329.

51. L Corry, J Renn and J Stachel, Belated Decision in the Hilbert-Einstein Priority
Dispute, Science 278 (5341) (1997), 1270-1273.

52. R Courant, Reminiscences from Hilbert’s Göttingen, Math. Intelligencer 3 (4) (1980/81),
154-164.

53. A Császár, Wie sah Hilbert die Zukunft der Mathematik?, in Grosse Augenblicke aus
der Geschichte der Mathematik (Bibliographisches Inst., Mannheim, 1990), 167-192.

54. J B Diaz, Review: Methods of Mathematical Physics, Volume II, by R Courant and
D Hilbert, SIAM Review 6 (4) (1964), 463-466.

55. J B Diaz, Review: Methods of Mathematical Physics Vol 2 by R. Courant and D.
Hilbert, Mathematics of Computation 18 (88) (1964), 680-683.
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Chapter 16

EMMY NOETHER

16.1 Emmy Noether’s family and education

Amalie Emmy Noether was born in Erlangen, a large town or small city in the Bavarian
region of Germany. Her father, Max Noether, was a distinguished mathematician who
taught at the University of Erlangen, while her mother came from a wealthy family of
Cologne. Both of Emmy Noether’s parents were Jewish.

Describing Emmy Noether as a schoolchild, Auguste Dick wrote “Emmy did not appear
exceptional as a child. Playing among her peers in the schoolyard on Fahrstrasse she
probably was not especially noticeable - a near-sighted, plain-looking little girl, though not
without charm. Her teachers and classmates knew Emmy as a clever, friendly, and likeable
child. She had a slight lisp and was one of the few who attended classes in the Jewish
religion.”

After elementary school, Emmy Noether attended the Städtische Höhere Töchter Schule
on Friedrichstrasse in Erlangen from 1889 until 1897, when she turned 15. At this stage of
her life, she intended to make a career as a language teacher, and her studies were focused
on foreign languages.

Although she later qualified as a language teacher, Emmy Noether never became one.
Instead she began to attend mathematics courses unofficially at the University of Erlangen.
It was possible at the time for women to do so, but each professor had to give his permission
for a particular female student to attend his classes.

Besides attending courses at the University of Erlangen, Emmy Noether prepared to
take the Matriculation Examination, which would allow her to become a student at any
German University. Having passed this examination on July 14, 1903, she went to the Uni-
versity of Göttingen, where she attended lectures by Karl Schwarzschild, Otto Blumenthal,
David Hilbert, Felix Klein and Hermann Minkowski.

At this point the rules were changed, and women were allowed to matriculate at German
universities. In 1904, Emmy Noether matriculated at the University of Erlangen, where
she began to study for a doctorate with the mathematician Paul Gordan. In 1907, she was
granted the doctorate, suma cum laude.
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Figure 16.1: Emmy Noether (1882-1935), the “mother of modern algebra”, was
described by Albert Einstein, Hermann Weyl and Norbert Wiener as the most
important woman in the history of mathematics. She developed the theories
of rings, fields, and algebras. In physics, Noether’s first theorem explains
the connection between symmetry and conservation laws. Following in her
father’s footsteps, Noether began her career in mathematics at the University
of Erlangen. In 1915, although at the time women were largely excluded from
academic positions, she was invited by Felix Klein and David Hilbert to join
the world-famous mathematics department of the University of Göttingen. Her
students, sometimes called “Noether’s boys”, spread her ideas, and ultimately
her influence was enormous. Forced to leave Germany because of the Nazis,
she died in the United States after an operation for an ovarian cyst.
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16.2 Working without pay at Erlangen

During the years 1908-1915, Emmy Noether worked without pay at the University of Er-
langen, assisting her father with his lecturing and with his supervision of postgraduate
students. During this period, she was very much influenced by Ernst Fischer, who had
succeeded Gordan to the Erlangen chair of mathematics. Fischer introduced Noether to
David Hilbert’s methods and interests. Expressing her gratitude for this crucial develop-
ment of her mathematical interests, Emmy Noether wrote: “Above all I am indebted to
Mr E Fischer from whom I received the decisive impulse to study abstract algebra from an
arithmetical viewpoint, and this remained the governing idea for all my later work.”

Fischer’s influence moved Emmy Noether towards Hilbert’s abstract approach, and
away from the constructive approach of Gordan.

16.3 Invited to Göttingen’s Mathematical Institute

In 1915 David Hilbert and Felix Klein invited Emmy Noether to come to the famous
Mathematical Institute at the University of Göttingen. Hilbert had been working on
physics, and especially on the general theory of relativity. He decided that he needed the
help of an expert on invariant theory, and after consulting Klein, the two invited Noether.

Bartel Van der Waerden wrote: “She came and at once solved two important problems.
First: How can one obtain all differential covariants of any vector or tensor field in a
Riemannian space? ... The second problem Emmy investigated was a problem from special
relativity. She proved: To every infinitesimal transformation of the Lorentz group there
corresponds a Conservation Theorem.”

The connection between symmetry and conservation laws was Noether’s first theorem,
an extremely important result for theoretical physics.

Hilbert and Klein struggled to have Emmy Noether given an official position on the
Göttingen faculty, but the prejudices against women in academic life were so strong that
they were at first unsuccessful. Noether’s lectures were advertised under Hilbert’s name.
For example, one such announcement read: “Mathematical Physics Seminar: Professor
Hilbert, with the assistance of Dr E Noether, Mondays from 4-6, no tuition.”

16.4 Escape from Nazi Germany to Bryn Maur

When Adolf Hitler became the German Reichskanzler in 1933, Jewish professors began
to be fired from their positions at German universities. Emmy Noether received a notice
that read “On the basis of paragraph 3 of the Civil Service Code of 7 April 1933, I hereby
withdraw from you the right to teach at the University of GÃ¶ttingen.”

Noether took this notice calmly, and continued to meet with students in her private
apartment. Hermann Weyl later wrote about her calm reaction: “Emmy Noether - her
courage, her frankness, her unconcern about her own fate, her conciliatory spirit - was
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in the midst of all the hatred and meanness, despair and sorrow surrounding us, a moral
solace.”

It soon became clear to Emmy Noether that she would have to leave Germany quickly.
In late 1933, she was offered a position by Bryn Maur College in the United States, and was
warmly welcomed there as Professor of Mathematics. She also gave lectures at Princeton
University’s Institute for Advanced Studies.

Sadly, although Emmy Noether was in her prime years of creativity, and still had much
to offer the world, she died in 1935, after an operation to remove a large ovarian cyst.
Leaders of the scientific community, including Albert Einstein, Hermann Weyl, Archibald
Wheeler and Pavel Alexandrov eulogized Emmy Noether’s life and work.

16.5 Noether’s theorem

In her extremely important first theorem. Emmy Noether proved that “If a system has
a continuous symmetry property, then there are corresponding quantities whose values are
conserved in time”, and that “To every differentiable symmetry generated by local actions
there corresponds a conserved current.”

As an example of applications of Noether’s theorem, we might consider particles that
obey the Klein-Gordan equation, whose Lagrangian density is given by

L =
4∑

µ=1

4∑
ν=1

∂ψ

∂xµ

∂ψ∗

∂xν
ηµ,ν +m2ψψ∗ (16.1)

This Lagrangian density is invariant under the gauge transformation

ψ → eiθψ, ψ∗ → e−iθψ∗ (16.2)

In this example, the conserved quantity is the current density 4-vector

jν = i
4∑

µ=1

(
∂ψ

∂xµ
ψ∗ − ∂ψ∗

∂xµ
ψ

)
ηµ,ν (16.3)

Some memorials honoring Emmy Noether

• The Association for Women in Mathematics holds a Noether Lecture to
honor women in mathematics every year; in its 2005 pamphlet for the
event, the Association characterizes Noether as ”one of the great math-
ematicians of her time, someone who worked and struggled for what she
loved and believed in. Her life and work remain a tremendous inspira-
tion”.
• Consistent with her dedication to her students, the University of Siegen

houses its mathematics and physics departments in buildings on the Emmy
Noether Campus.
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• The German Research Foundation (Deutsche Forschungsgemeinschaft)
operates the Emmy Noether Programme, providing funding to early-
career researchers to rapidly qualify for a leading position in science and
research by leading an independent junior research group.
• A street in her hometown, Erlangen, has been named after Emmy Noether

and her father, Max Noether.
• The successor to the secondary school she attended in Erlangen has been

renamed as the Emmy Noether School.
• A series of high school workshops and competitions are held in her honor

in May of each year since 2001, originally hosted by a subsequent woman
mathematics Privatdozent of the University of GÃ¶ttingen.
• Perimeter Institute for Theoretical Physics annually awards Emmy Noether

Visiting Fellowships[141] to outstanding female theoretical physicists. Perime-
ter Institute is also home to the Emmy Noether Council, a group of vol-
unteers made up of international community, corporate and philanthropic
leaders work together to increase the number of women in physics and
mathematical physics at Perimeter Institute.
• The Emmy Noether Mathematics Institute in Algebra, Geometry and

Function Theory in the Department of Mathematics and Computer Sci-
ence, Bar-Ilan University, Ramat Gan, Israel was jointly founded in 1992
by the university, the German government and the Minerva Foundation
with the aim to stimulate research in the above fields and to encourage
collaborations with Germany. Its main topics are Algebraic Geometry,
Group theory and Complex Function Theory. Its activities includes local
research projects, conferences, short-term visitors, post-doc fellowships,
and the Emmy Noether lectures (an annual series of distinguished lec-
tures). ENI is a member of ERCOM: ”European Research Centers of
Mathematics”.
• In 2013, The European Physical Society established the Emmy Noether

Distinction for Women in Physics. Winners have included Dr Catalina
Curceanu, Prof Sibylle GÃ1

4
nter and Prof Anne L’Huillier.

• The crater Nöther on the far side of the Moon is named after her.
• The minor planet 7001 Noether is named for Emmy Noether.[1
• Google put a memorial doodle created by Google artist Sophie Diao on

Google’s homepage in many countries on 23 March 2015 to celebrate
Emmy Noether’s 133rd birthday.
• On 6 November 2020, a satellite named after her was launched into space.

Mathematical topics containing Emmy Noether’s name

• Noetherian
• Noetherian group
• Noetherian ring
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Figure 16.2: The Emmy Noether Campus at the University of Siegen, in North-
Rhine-Westphalia, Germany, is home to its mathematics and physics depart-
ments.

• Noetherian module
• Noetherian space
• Noetherian induction
• Noetherian scheme
• Noether normalization lemma
• Noether problem
• Noether’s theorem
• Noether’s second theorem
• Lasker-Noether theorem
• Skolem-Noether theorem
• Brill-Noether theorem
• Brauer-Noether theorem
• Albert-Brauer-Hasse-Noether theorem
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Chapter 17

EINSTEIN

“The unleashed power of the atom has changed everything except our ways of thinking, and
thus we drift towards unparalleled catastrophes.”

“I don’t know what will be used in the next world war, but the 4th will be fought with stones.”

Albert Einstein (1879-1955)

Besides being one of the greatest physicists of all time, Albert Einstein was a lifelong
pacifist, and his thoughts on peace can speak eloquently to us today. We need his wisdom
today, when the search for peace has become vital to our survival as a species.

17.1 Family background

Albert Einstein was born in Ulm, Germany, in 1879. He was the son of middle-class,
irreligious Jewish parents, who sent him to a Catholic school. Einstein was slow in learning
to speak, and at first his parents feared that he might be retarded; but by the time he was
eight, his grandfather could say in a letter: “Dear Albert has been back in school for a
week. I just love that boy, because you cannot imagine how good and intelligent he has
become.”

Remembering his boyhood, Einstein himself later wrote: “When I was 12, a little book
dealing with Euclidean plane geometry came into my hands at the beginning of the school
year. Here were assertions, as for example the intersection of the altitudes of a triangle in
one point, which, though by no means self-evident, could nevertheless be proved with such
certainty that any doubt appeared to be out of the question. The lucidity and certainty
made an indescribable impression on me.”

When Albert Einstein was in his teens, the factory owned by his father and uncle began
to encounter hard times. The two Einstein families moved to Italy, leaving Albert alone
and miserable in Munich, where he was supposed to finish his course at the gymnasium.
Einstein’s classmates had given him the nickname “Beidermeier”, which means something
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like “Honest John”; and his tactlessness in criticizing authority soon got him into trouble.
In Einstein’s words, what happened next was the following: “When I was in the seventh
grade at the Lutpold Gymnasium, I was summoned by my home-room teacher, who ex-
pressed the wish that I leave the school. To my remark that I had done nothing wrong, he
replied only, ‘Your mere presence spoils the respect of the class for me’.”

Einstein left gymnasium without graduating, and followed his parents to Italy, where
he spent a joyous and carefree year. He also decided to change his citizenship. “The
over-emphasized military mentality of the German State was alien to me, even as a boy”,
Einstein wrote later. “When my father moved to Italy, he took steps, at my request, to
have me released from German citizenship, because I wanted to be a Swiss citizen.”

The financial circumstances of the Einstein family were now precarious, and it was clear
that Albert would have to think seriously about a practical career. In 1896, he entered
the famous Zürich Polytechnic Institute with the intention of becoming a teacher of math-
ematics and physics. However, his undisciplined and nonconformist attitudes again got
him into trouble. His mathematics professor, Hermann Minkowski (1864-1909), considered
Einstein to be a “lazy dog”; and his physics professor, Heinrich Weber, who originally had
gone out of his way to help Einstein, said to him in anger and exasperation: “You’re a
clever fellow, but you have one fault: You won’t let anyone tell you a thing! You won’t let
anyone tell you a thing!”

Einstein missed most of his classes, and read only the subjects which interested him. He
was interested most of all in Maxwell’s theory of electro-magnetism, a subject which was
too “modern” for Weber. There were two major examinations at the Zürich Polytechnic
Institute, and Einstein would certainly have failed them had it not been for the help of his
loyal friend, the mathematician Marcel Grossman.

Grossman was an excellent and conscientious student, who attended every class and
took meticulous notes. With the help of these notes, Einstein managed to pass his ex-
aminations; but because he had alienated Weber and the other professors who could have
helped him, he found himself completely unable to get a job. In a letter to Professor F.
Ostwald on behalf of his son, Einstein’s father wrote: “My son is profoundly unhappy
because of his present joblessness; and every day the idea becomes more firmly implanted
in his mind that he is a failure, and will not be able to find the way back again.”

From this painful situation, Einstein was rescued (again!) by his friend Marcel Gross-
man, whose influential father obtained for Einstein a position at the Swiss Patent Office:
Technical Expert (Third Class). Anchored at last in a safe, though humble, position, Ein-
stein married one of his classmates. He learned to do his work at the Patent Office very
efficiently; and he used the remainder of his time on his own calculations, hiding them
guiltily in a drawer when footsteps approached.

In 1905, this Technical Expert (Third Class) astonished the world of science with five
papers, written within a few weeks of each other, and published in the Annalen der Physik.
Of these five papers, three were classics: One of these was the paper in which Einstein ap-
plied Planck’s quantum hypothesis to the photoelectric effect. The second paper discussed
“Brownian motion”, the zig-zag motion of small particles suspended in a liquid and hit
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Figure 17.1: Einstein at the age of three in 1882.
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Figure 17.2: Albert Einstein in 1893 (age 14).
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Figure 17.3: Albert Einstein in 1904 (age 25).
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Figure 17.4: Olympia Academy founders: Conrad Habicht, Maurice Solovine
and Einstein.
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Figure 17.5: Albert and Mileva Einstein, 1912.
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Figure 17.6: Einstein with his second wife, Elsa, in 1921.
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Figure 17.7: Albert Einstein during a lecture in Vienna in 1921.
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Figure 17.8: Einstein and Niels Bohr, 1925.
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Figure 17.9: Einstein (left) and Charlie Chaplin at the Hollywood premiere of
City Lights, January 1931.
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Figure 17.10: Einstein in 1947.
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randomly by the molecules of the liquid. This paper supplied a direct proof of the validity
of atomic ideas and of Boltzmann’s kinetic theory. The third paper was destined to estab-
lish Einstein’s reputation as one of the greatest physicists of all time. It was entitled “On
the Electrodynamics of Moving Bodies”, and in this paper, Albert Einstein formulated his
special theory of relativity. Essentially, this theory maintained that all of the fundamental
laws of nature exhibit a symmetry with respect to rotations in a 4-dimensional space-time
continuum.

17.2 Special relativity theory

The theory of relativity grew out of problems connected with Maxwell’s electromagnetic
theory of light. Ever since the wavelike nature of light had first been demonstrated, it had
been supposed that there must be some medium to carry the light waves, just as there must
be some medium (for example air) to carry sound waves. A word was even invented for the
medium which was supposed to carry electromagnetic waves: It was called the “ether”.

By analogy with sound, it was believed that the velocity of light would depend on
the velocity of the observer relative to the “ether”. However, all attempts to measure
differences in the velocity of light in different directions had failed, including an especially
sensitive experiment which was performed in America in 1887 by A.A. Michelson and E.W.
Morley.

Even if the earth had, by a coincidence, been stationary with respect to the “ether”
when Michelson and Morley first performed their experiment, they should have found an
“ether wind” when they repeated their experiment half a year later, with the earth at the
other side of its orbit. Strangely, the observed velocity of light seemed to be completely
independent of the motion of the observer!

In his famous 1905 paper on relativity, Einstein made the negative result of the Michelson-
Morley experiment the basis of a far-reaching principle: He asserted that no experiment
whatever can tell us whether we are at rest or whether we are in a state of uniform motion.
With this assumption, the Michelson-Morley experiment of course had to fail, and the
measured velocity of light had to be independent of the motion of the observer.

Einstein’s Principle of Special Relativity had other extremely important consequences:
He soon saw that if his principle were to hold, then Newtonian mechanics would have to be
modified. In fact, Einstein’s Principle of Special Relativity required that all fundamental
physical laws exhibit a symmetry between space and time. The three space dimensions,
and a fourth dimension, ict, had to enter every fundamental physical law in a symmetrical
way. (Here i is the square root of -1, c is the velocity of light, and t is time.)

When this symmetry requirement is fulfilled, a physical law is said to be “Lorentz-
invariant” (in honor of the Dutch physicist H.A. Lorentz, who anticipated some of Ein-
stein’s ideas). Today, we would express Einstein’s principle by saying that every funda-
mental physical law must be Lorentz-invariant (i.e. symmetrical in the space and time
coordinates). The law will then be independent of the motion of the observer, provided
that the observer is moving uniformly.
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Einstein was able to show that, when properly expressed, Maxwell’s equations are
already Lorentz-invariant; but Newton’s equations of motion have to be modified. When
the needed modifications are made, Einstein found, then the mass of a moving particle
appears to increase as it is accelerated. A particle can never be accelerated to a velocity
greater than the velocity of light; it merely becomes heavier and heavier, the added energy
being converted into mass.

From his 1905 theory, Einstein deduced his famous formula equating the energy of a
system to its mass multiplied by the square of the velocity of light. As we shall see, his
formula was soon used to explain the source of the energy produced by decaying uranium
and radium; and eventually it led to the construction of the atomic bomb. Thus Einstein,
a lifelong pacifist, who renounced his German citizenship as a protest against militarism,
became instrumental in the construction of the most destructive weapon ever invented - a
weapon which casts an ominous shadow over the future of humankind.

Just as Einstein was one of the first to take Planck’s quantum hypothesis seriously, so
Planck was one of the first physicists to take Einstein’s relativity seriously. Another early
enthusiast for relativity was Hermann Minkowski, Einstein’s former professor of mathe-
matics. Although he once had characterized Einstein as a “lazy dog”, Minkowski now
contributed importantly to the mathematical formalism of Einstein’s theory; and in 1907,
he published the first book on relativity. In honor of Minkowski’s contributions to relativity,
the 4-dimensional space-time continuum in which we live is sometimes called “Minkowski
space”.

In 1908, Minkowski began a lecture to the Eightieth Congress of German Scientists and
Physicians with the following words:

“ From now on, space by itself, and time by itself, are destined to sink completely into
the shadows; and only a kind of union of both will retain an independent existence.”

Gradually, the importance of Einstein’s work began to be realized, and he was much
sought after. He was first made Assistant Professor at the University of Zürich, then full
Professor in Prague, then Professor at the Zürich Polytechnic Institute; and finally, in
1913, Planck and Nernst persuaded Einstein to become Director of Scientific Research at
the Kaiser Wilhelm Institute in Berlin. He was at this post when the First World War
broke out

While many other German intellectuals produced manifestos justifying Germany’s in-
vasion of Belgium, Einstein dared to write and sign an anti-war manifesto. Einstein’s
manifesto appealed for cooperation and understanding among the scholars of Europe for
the sake of the future; and it proposed the eventual establishment of a League of Euro-
peans. During the war, Einstein remained in Berlin, doing whatever he could for the cause
of peace, burying himself unhappily in his work, and trying to forget the agony of Europe,
whose civilization was dying in a rain of shells, machine-gun bullets, and poison gas.
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17.3 General relativity

The work into which Einstein threw himself during this period was an extension of his
theory of relativity. He already had modified Newton’s equations of motion so that they
exhibited the space-time symmetry required by his Principle of Special Relativity. However,
Newton’s law of gravitation. remained a problem.

Obviously it had to be modified, since it disagreed with his Special Theory of Relativity;
but how should it be changed? What principles could Einstein use in his search for a more
correct law of gravitation? Certainly whatever new law he found would have to give results
very close to Newton’s law, since Newton’s theory could predict the motions of the planets
with almost perfect accuracy. This was the deep problem with which he struggled.

In 1907, Einstein had found one of the principles which was to guide him, the Principle
of Equivalence of inertial and gravitational mass. After turning Newton’s theory over and
over in his mind, Einstein realized that Newton had used mass in two distinct ways: His
laws of motion stated that the force acting on a body is equal to the mass of the body
multiplied by its acceleration; but according to Newton, the gravitational force on a body
is also proportional to its mass. In Newton’s theory, gravitational mass, by a coincidence,
is equal to inertial mass; and this holds for all bodies. Einstein decided to construct a
theory in which gravitational and inertial mass necessarily have to be the same.

He then imagined an experimenter inside a box, unable to see anything outside it. If
the box is on the surface of the earth, the person inside it will feel the pull of the earth’s
gravitational field. If the experimenter drops an object, it will fall to the floor with an
acceleration of 32 feet per second per second. Now suppose that the box is taken out into
empty space, far away from strong gravitational fields, and accelerated by exactly 32 feet
per second per second. Will the enclosed experimenter be able to tell the difference between
these two situations? Certainly no difference can be detected by dropping an object, since
in the accelerated box, the object will fall to the floor in exactly the same way as before.

With this “thought experiment” in mind, Einstein formulated a general Principle of
Equivalence: He asserted that no experiment whatever can tell an observer enclosed in a
small box whether the box is being accelerated, or whether it is in a gravitational field.
According to this principle, gravitation and acceleration are locally equivalent, or, to say
the same thing in different words, gravitational mass and inertial mass are equivalent.

Einstein soon realized that his Principle of Equivalence implied that a ray of light must
be bent by a gravitational field. This conclusion followed because, to an observer in an
accelerated frame, a light beam which would appear straight to a stationary observer, must
necessarily appear very slightly curved. If the Principle of Equivalence held, then the same
slight bending of the light ray would be observed by an experimenter in a stationary frame
in a gravitational field.

Another consequence of the Principle of Equivalence was that a light wave propagating
upwards in a gravitational field should be very slightly shifted to the red. This followed
because in an accelerated frame, the wave crests would be slightly farther apart than they
normally would be, and the same must then be true for a stationary frame in a gravitational
field. It seemed to Einstein that it ought to be possible to test experimentally both the
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gravitational bending of a light ray and the gravitational red shift.
This seemed promising; but how was Einstein to proceed from the Principle of Equiva-

lence to a formulation of the law of gravitation? Perhaps the theory ought to be modeled
after Maxwell’s electromagnetic theory, which was a field theory, rather than an “action at
a distance” theory. Part of the trouble with Newton’s law of gravitation was that it allowed
a signal to be propagated instantaneously, contrary to the Principle of Special Relativity.
A field theory of gravitation might cure this defect, but how was Einstein to find such a
theory? There seemed to be no way.

From these troubles Albert Einstein was rescued (a third time!) by his staunch friend
Marcel Grossman. By this time, Grossman had become a professor of mathematics in
Zürich, after having written a doctoral dissertation on tensor analysis and non-Euclidean
geometry, the very things that Einstein needed. The year was then 1912, and Einstein had
just returned to Zürich as Professor of Physics at the Polytechnic Institute. For two years,
Einstein and Grossman worked together; and by the time Einstein left for Berlin in 1914,
the way was clear. With Grossman’s help, Einstein saw that the gravitational field could
be expressed as a curvature of the 4-dimensional space-time continuum.

In 1919, a British expedition, headed by Sir Arthur Eddington, sailed to a small island
off the coast of West Africa. Their purpose was to test Einstein’s prediction of the bending
of light in a gravitational field by observing stars close to the sun during a total eclipse.
The observed bending agreed exactly with Einstein’s predictions; and as a result he became
world-famous. The general public was fascinated by relativity, in spite of the abstruseness
of the theory (or perhaps because of it). Einstein, the absent-minded professor, with long,
uncombed hair, became a symbol of science. The world was tired of war, and wanted
something else to think about.

Einstein met President Harding, Winston Churchill and Charlie Chaplin; and he was
invited to lunch by the Archbishop of Canterbury. Although adulated elsewhere, he was
soon attacked in Germany. Many Germans, looking for an excuse for the defeat of their
nation, blamed it on the pacifists and Jews; and Einstein was both these things.

17.4 Metric tensors

Let us consider a coordinate system x1, x2, · · · , xd labelling the points in a d-dimensional
space. We can label the points in a different way by going to a new coordinate system
X1, X2, · · · , Xd where the new coordinates are expressed as functions of the old ones.

X1 = X1(x1, x2, · · · , xd)
X2 = X2(x1, x2, · · · , xd)

...
...

...

Xd = Xd(x1, x2, · · · , xd) (17.1)

For example, (17.1) might represent a transformation from Cartesian coordinates to spher-
ical polar coordinates. If we have an equation written in terms of the old coordinates, we
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might ask how to rewrite it in terms of the new ones. More generally, we can try to write
a physical equation in such a way that it will look the same in every coordinate system.
Suppose that the space is Euclidean (flat), so that in terms of the Cartesian coordinates
x1, x2, · · · , xd, the infinitesimal element of length separating two points is given by the
Pythagorean rule:

ds2 = δi,jdx
idxj ≡ gi,jdx

idxj (17.2)

(In equation (17.2) and in the remainder of this section, we use the Einstein convention,
in which a sum over repeated indices is understood, although not written explicitly.) The
symbol gi,j which appears in the definition of the infinitesimal length ds2 is called the
covariant metric tensor, and for Cartesian coordinates in a Euclidean space, it is just the
Kronecker delta function. Using the identity

dxi =
∂xi

∂Xµ
dXµ (17.3)

we can rewrite (17.2) as

ds2 = δi,j
∂xi

∂Xµ

∂xj

∂Xν
dXµdXν ≡ Gµ,νdX

µdXν (17.4)

where

Gµ,ν ≡ gi,j
∂xi

∂Xµ

∂xj

∂Xν
(17.5)

The quantity Gµ,ν which appears in equations (17.4) and (17.5) is the covariant metric
tensor in the new coordinate system. In any space, whether Euclidean or not, the covariant
metric tensor is defined by the expression which yields ds2, the square of the infinitesimal
distance between two points, as in equation (17.2) or (17.4). The word tensor refers to the
way in which a quantity transforms under changes in the coordinate system. The rank of a
tensor is the number of indices. The covariant metric tensor is the prototype of a covariant
tensor of second rank. Any physical quantity which must be transformed according to the
rule

Aµ,ν = ai,j
∂xi

∂Xµ

∂xj

∂Xν
(17.6)

under the coordinate transformation x1, x2, · · · , xd → X1, X2, · · · , Xd is said to be a co-
variant tensor of second rank. The d-component entity

dXµ =
∂Xµ

∂xi
dxi (17.7)

is the prototype of a contravariant tensor of first rank. Any quantity that transforms
according to the rule

Aµ =
∂Xµ

∂xi
ai (17.8)
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is said to be a contravariant tensor of first rank (or contravariant vector). The distance
element ds is the prototype of an invariant or scalar. Any quantity φ which is invariant
under coordinate transformations is said to be a scalar. The gradient of a scalar

∂φ

∂Xµ
=

∂xi

∂Xµ

∂φ

∂xi
(17.9)

is the prototype of a covariant tensor of first rank, or covariant vector. Any quantity which
transforms according to the rule

Aµ =
∂xi

∂Xµ
ai (17.10)

is said to be a covariant vector. We can also define tensors of higher rank. For example,

Aµνσ =
∂Xµ

∂xi
∂Xν

∂xj
∂Xσ

∂xk
aijk (17.11)

is said to be a contravariant tensor of third rank. A covariant vector and a contravariant
vector can be contracted into a scalar:

AµB
µ =

∂xi

∂Xµ

∂Xµ

∂xj
aib

j = δijaib
j = aib

i (17.12)

Similarly, if we contract a contravariant vector with the covariant metric tensor, we obtain
a covariant vector:

GµνA
ν = Aµ

gija
i = ai (17.13)

It is useful to define a quantity called the contravariant metric tensor, which gives the
Kronecker δ-function when it is contracted with the covariant metric tensor:

GµνGνσ = δµσ
gijgjk = δik

Gµν =
∂Xµ

∂xi
∂Xν

∂xj
gij (17.14)

If we contract a covariant vector with the contravariant metric tensor, we obtain a con-
travariant vector:

GµνAν = Aµ (17.15)

In a similar way, we can raise or lower the indices of a tensor of higher rank. For example,
it is easy to show that

GµνA
νσρ = Aσρµ (17.16)



17.4. METRIC TENSORS 275

In a Cartesian coordinate system with unit metric we are accustomed to writing the
volume element as

dv = dx1dx2 · · · dxd (17.17)

This is obviously unsatisfactory from the standpoint of tensor analysis, since the right-
hand side of equation (17.17) appears to be a contravariant tensor of rank d (or rather a
particular component of such a tensor), while the left-hand side has no indices at all. In
order to write the volume element in an invariant way, the Italian mathematician Tulio
Levi-Civita (1873-1941) introduced a totally antisymmetric covariant tensor of rank d. In
a Cartesian coordinate system, for a flat space, the Levi-Civita tensor is given by

eijkl··· =


(−1)σ if ijkl · · · = σ(1234 · · ·)

0 otherwise
(17.18)

In other words, the Levi-Civita tensor is ±1 if ijkl · · · is a permutation of 1234· · ·, with
the sign depending on whether the permutation is even or odd, and it is zero otherwise.
In terms of this tensor, the volume element of equation (17.17) becomes

dv =
1

d!
eijkl···dx

idxjdxkdxl · · · (17.19)

while in a transformed coordinate system it is

dV =
1

d!
Eµνσρ···dX

µdXνdXσdXρ · · · (17.20)

where

Eµνσ··· = eijk···
∂xi

∂Xµ

∂xj

∂Xν

∂xk

∂Xσ
· · · (17.21)

In this way, Levi-Civita used the formalism of tensor calculus to re-derive the previous
result of the German mathematician Carl Gustav Jacobi (1804-1851), who had shown that
in a curvilinear coordinate system, the volume element is given by

dV =

∣∣∣∣ ∂xi∂Xµ

∣∣∣∣ dX1dX2 · · · dXd (17.22)

where |∂xi/∂Xµ| is the determinant of the d×d square matrix of transformation coefficients
from Cartesian coordinates to curvilinear coordinates. This determinant is called the
Jacobian of the transformation. From the relationship

Gµ,ν =
∂xi

∂Xµ
δij

∂xj

∂Xν
(17.23)
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one can show that the Jacobian√
|Gµν | ≡

∣∣∣∣ ∂xi∂Xµ

∣∣∣∣ ≡√|G| (17.24)

is the square root of the determinant of the covariant metric tensor. The Jacobian is
usually represented by the symbol

√
|G|. Levi-Civita’s book Absolute Differential Calculus

has been translated into many languages. It is still in print, and it remains one of the
best textbooks in the field, along with Schrödinger’s Space-Time Structure, Brillouin’s Les
Tenseurs and Landau and Lifshitz’s The Classical Theory of Fields.

The Jacobian,
√
|G|, is the prototype of a scalar density. We can construct tensor

densities by multiplying tensors by the Jacobian appropriate for the coordinate system.
When a tensor density is transformed to another coordinate system, the Jacobian has to
be recalculated from the transformed covariant metric tensor. Tensor capacities can be
constructed by dividing tensors by the Jacobian. Now consider a scalar function ψ. Its
gradient is a covariant vector, and therefore

Gµν ∂ψ

∂Xµ

∂ψ

∂Xν
= scalar (17.25)

It follows that if we let

L =
√
|G|
[
Gµν ∂ψ

∂Xµ

∂ψ

∂Xν
+ κψ2

]
(17.26)

where κ is a constant, then the variational principle

δ

∫ ∫
· · ·
∫
L dX1dX2 · · · dXd = 0 (17.27)

will be invariant under a curvilinear coordinate transformation. As we saw above, the
Euler-Lagrange equations that follow from this variational principle are

∂

∂Xµ

∂L
∂ (∂ψ/∂Xµ)

− ∂L
∂ψ

= 0 (17.28)

With the Lagrangian density of equation (17.26), this becomes

1√
|G|

∂

∂Xµ

√
|G| Gµν ∂ψ

∂Xν
= κ ψ (17.29)

17.5 The Laplace-Beltrami operator

The operator

∆ =
d∑

µ=1

d∑
ν=1

1√
|G|

∂

∂Xµ

√
|G| Gµν ∂

∂Xν
(17.30)
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is the generalized Laplacian operator, which plays such an important role in the theory of
hyperspherical harmonics, but here it is written in a form due to Eugenio Beltrami (1835-
1899), which is invariant under coordinate transformations. (In equation (17.29), we have
abandoned the Einstein convention, and have re-introduced explicit sums.) To illustrate
this equation, let us consider some examples. In a d-dimensional space, we can let

x1 = r sin θ1 sin θ2... sin θd−2 cos θd−1

x2 = r sin θ1 sin θ2... sin θd−2 sin θd−1

x3 = r sin θ1 sin θ2... cos θd−2

...
...

...

xd−1 = r sin θ1 cos θ2

xd = r cos θ1 (17.31)

while

X1 = r

X2 = θ1

X3 = θ2

...
...

...

Xd−1 = θd−2

Xd = θd−1 (17.32)

Then the Jacobians for various values of d are

d = 3
√
|G| = r2 sin θ1

d = 4
√
|G| = r3 sin2 θ1 sin θ2

d = 5
√
|G| = r4 sin3 θ1 sin2 θ2 sin θ3

d = 6
√
|G| = r5 sin4 θ1 sin3 θ2 sin2 θ3 sin θ4

...
...

...

d = d
√
|G| = rd−1 sind−2 θ1 sind−3 θ2... sin

2 θd−3 sin θd−2 (17.33)

The covariant metric tensor for d = 3 is

Gµ,ν =

 1 0 0
0 r2 0
0 0 r2 sin2 θ1

 (17.34)

while for d = 4

Gµ,ν =


1 0 0 0
0 r2 0 0
0 0 r2 sin2 θ1 0
0 0 0 r2 sin2 θ1 sin2 θ2

 (17.35)
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and so on. Combining these results, we obtain the Laplace-Beltrami operators:∑
ν

Gµ,ν ∂

∂Xν

=

(
∂

∂r
,

1

r2

∂
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For d = 3,

3∑
ν=1

√
|G| Gµ,ν ∂

∂Xν

= r2 sin θ1

(
∂

∂r
,

1

r2

∂

∂θ1

,
1

r2 sin2 θ1

∂

∂θ2

)
(17.37)
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For d = 4,
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For general values of d,
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As we saw in equation (??), the Laplace-Beltrami operator in hyperspherical coordinates
can be written as

∆ =
1

rd−1

∂

∂r
rd−1 ∂

∂r
− Λ2

r2
(17.43)

where r is the hyperradius and where Λ2 is the generalized angular momentum operator.
Comparing this with the results that we have just been discussing, we can see that for
d = 3,
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while for d = 4,
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and for d = 5,
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For general values of d, we have
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We have until now been considering spaces that are intrinsically flat, but a d-dimensional
hyperspherical surface embedded in a d + 1-dimensional space has intrinsic curvature. If
the hyperradius r is regarded as a constant, then the Laplace-Beltrami operator for such
a surface is given by

∆ = −Λ2

r2
(17.48)

while the covariant metric tensor on the surface is

Gµ,ν =


r2 0 0 0 · · ·
0 r2 sin2 θ1 0 0 · · ·
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...

...
...

...

 (17.49)

The infinitesimal element of length on the surface, ds is given by
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17.6 Geodesics

In the geometry of curved spaces, geodesics play the role that straight lines play in Eu-
clidean geometry. The geodesic curves are local minima of path length. The minimal
geodesics between two points are the shortest paths through the curved space, and play an
important role when analyzing physical systems in curved space. They can be determined
by the variational principle
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The Euler-Lagrange equations which follow from this variational principle are
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The Euler-Lagrange equations for geodesics can be written in the form

d2Xσ

ds
= Γσµν

dXµ

ds

dXσ

ds
(17.54)

Here Γσµν is a Christoffel symbol, which is related to the metric tensors by
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In general relativity theory, the trajectories of particles are geodesics in a space-time con-
tinuum, whose metric is affected by the presence of other masses.

17.7 Einstein’s letter to Freud: Why war?

Because of his fame, Einstein was asked to make several speeches at the Reichstag. and in
all these speeches he condemned violence and nationalism, urging that these be replaced by
and international cooperation and law under an effective international authority. He also
wrote many letters and articles pleading for peace and for the renunciation of militarism
and violence.

Einstein believed that the production of armaments is damaging, not only economically,
but also spiritually. In 1930 he signed a manifesto for world disarmament sponsored by
the Womens International League for Peace and Freedom. In December of the same year,
he made his famous statement in New York that if two percent of those called for military
service were to refuse to fight, governments would become powerless, since they could
not imprison that many people. He also argued strongly against compulsory military
service and urged that conscientious objectors should be protected by the international
community. He argued that peace, freedom of individuals, and security of societies could
only be achieved through disarmament, the alternative being “slavery of the individual
and annihilation of civilization”.

In letters, and articles, Einstein wrote that the welfare of humanity as a whole must
take precedence over the goals of individual nations, and that we cannot wait until leaders
give up their preparations for war. Civil society, and especially public figures, must take
the lead. He asked how decent and self-respecting people can wage war, knowing how
many innocent people will be killed.

In 1931, the International Institute for Intellectual Cooperation invited Albert Einstein
to enter correspondence with a prominent person of his own choosing on a subject of
importance to society. The Institute planned to publish a collection of such dialogues.
Einstein accepted at once, and decided to write to Sigmund Freud to ask his opinion about
how humanity could free itself from the curse of war. A translation from German of part
of the long letter that he wrote to Freud is as follows:

“Dear Professor Freud, The proposal of the League of Nations and its International
Institute of Intellectual Cooperation at Paris that I should invite a person to be chosen by
myself to a frank exchange of views on any problem that I might select affords me a very



282 LIVES IN MATHEMATICS

Figure 17.11: Sigmund Freud and Albert Einstein (public domain). Their ex-
change of letters entitled “Why War?” deserves to be read by everyone con-
cerned with the human future.
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welcome opportunity of conferring with you upon a question which, as things are now,
seems the most important and insistent of all problems civilization has to face. This is the
problem: Is there any way of delivering mankind from the menace of war? It is common
knowledge that, with the advance of modern science, this issue has come to mean a matter
of life or death to civilization as we know it; nevertheless, for all the zeal displayed, every
attempt at its solution has ended in a lamentable breakdown.”

“I believe, moreover, that those whose duty it is to tackle the problem professionally
and practically are growing only too aware of their impotence to deal with it, and have
now a very lively desire to learn the views of men who, absorbed in the pursuit of science,
can see world-problems in the perspective distance lends. As for me, the normal objective
of my thoughts affords no insight into the dark places of human will and feeling. Thus in
the enquiry now proposed, I can do little more than seek to clarify the question at issue
and, clearing the ground of the more obvious solutions, enable you to bring the light of
your far-reaching knowledge of man’s instinctive life upon the problem..”

“As one immune from nationalist bias, I personally see a simple way of dealing with
the superficial (i.e. administrative) aspect of the problem: the setting up, by international
consent, of a legislative and judicial body to settle every conflict arising between nations...
But here, at the outset, I come up against a difficulty; a tribunal is a human institution
which, in proportion as the power at its disposal is... prone to suffer these to be deflected
by extrajudicial pressure...”

Freud replied with a long and thoughtful letter in which he said that a tendency towards
conflict is an intrinsic part of human emotional nature, but that emotions can be overridden
by rationality, and that rational behavior is the only hope for humankind.

17.8 The fateful letter to Roosevelt

Albert Einstein’s famous relativistic formula, relating energy to mass, soon yielded an
understanding of the enormous amounts of energy released in radioactive decay. Marie
and Pierre Curie had noticed that radium maintains itself at a temperature higher than
its surroundings. Their measurements and calculations showed that a gram of radium
produces roughly 100 gram-calories of heat per hour. This did not seem like much energy
until Rutherford found that radium has a half-life of about 1,000 years. In other words,
after a thousand years, a gram of radium will still be producing heat, its radioactivity only
reduced to one-half its original value. During a thousand years, a gram of radium produces
about a million kilocalories, an enormous amount of energy in relation to the tiny size of
its source! Where did this huge amount of energy come from? Conservation of energy was
one of the most basic principles of physics. Would it have to be abandoned?

The source of the almost-unbelievable amounts of energy released in radioactive decay
could be understood through Einstein’s formula equating the energy of a system to its
mass multiplied by the square of the velocity of light, and through accurate measurements
of atomic weights. Einstein’s formula asserted that mass and energy are equivalent. It
was realized that in radioactive decay, neither mass nor energy is conserved, but only a
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quantity more general than both, of which mass and energy are particular forms. Scientists
in several parts of the world realized that Einstein’s discovery of the relationship between
mass and energy, together with the discovery of fission of the heavy element uranium meant
that it might be possible to construct a uranium-fission bomb of immense power.

Meanwhile night was falling on Europe. In 1929, an economic depression had begun
in the United States and had spread to Europe. Without the influx of American capital,
the postwar reconstruction of the German economy collapsed. The German middle class,
which had been dealt a severe blow by the great inflation of 1923, now received a second
heavy blow. The desperate economic chaos drove German voters into the hands of political
extremists.

On January 30, 1933, Adolf Hitler was appointed Chancellor and leader of a coalition
cabinet by President Hindenburg. Although Hitler was appointed legally to this post,
he quickly consolidated his power by unconstitutional means: On May 2, Hitler’s police
seized the headquarters of all trade unions, and arrested labor leaders. The Communist
and Socialist parties were also banned, their assets seized and their leaders arrested. Other
political parties were also smashed. Acts were passed eliminating Jews from public service;
and innocent Jewish citizens were boycotted, beaten and arrested. On March 11, 1938,
Nazi troops entered Austria.

On March 16, 1939, the Italian physicist Enrico Fermi (who by then was a refugee in
America) went to Washington to inform the Office of Naval Operations that it might be
possible to construct an atomic bomb; and on the same day, German troops poured into
Czechoslovakia.

A few days later, a meeting of six German atomic physicists was held in Berlin to
discuss the applications of uranium fission. Otto Hahn, the discoverer of fission, was not
present, since it was known that he was opposed to the Nazi regime. He was even said to
have exclaimed: “I only hope that you physicists will never construct a uranium bomb! If
Hitler ever gets a weapon like that, I’ll commit suicide.”

The meeting of German atomic physicists was supposed to be secret; but one of the
participants reported what had been said to Dr. S. Flügge, who wrote an article about
uranium fission and about the possibility of a chain reaction. Flügge’s article appeared in
the July issue of Naturwissenschaften, and a popular version in the Deutsche Allgemeine
Zeitung. These articles greatly increased the alarm of American atomic scientists, who
reasoned that if the Nazis permitted so much to be printed, they must be far advanced on
the road to building an atomic bomb.

In the summer of 1939, while Hitler was preparing to invade Poland, alarming news
reached the physicists in the United States: A second meeting of German atomic scientists
had been held in Berlin, this time under the auspices of the Research Division of the
German Army Weapons Department. Furthermore, Germany had stopped the sale of
uranium from mines in Czechoslovakia.

The world’s most abundant supply of uranium, however, was not in Czechoslovakia,
but in Belgian Congo. Leo Szilard, a refugee Hungarian physicist who had worked with
Fermi to measure the number of neutrons produced in uranium fission, was deeply worried
that the Nazis were about to construct atomic bombs; and it occurred to him that uranium
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from Belgian Congo should not be allowed to fall into their hands.

Szilard knew that his former teacher, Albert Einstein, was a personal friend of Elizabeth,
the Belgian Queen Mother. Einstein had met Queen Elizabeth and King Albert of Belgium
at the Solvay Conferences, and mutual love of music had cemented a friendship between
them. When Hitler came to power in 1933, Einstein had moved to the Institute of Advanced
Studies at Princeton; and Szilard decided to visit him there. Szilard reasoned that because
of Einstein’s great prestige, and because of his long-standing friendship with the Belgian
Royal Family, he would be the proper person to warn the Belgians not to let their uranium
fall into the hands of the Nazis. Einstein agreed to write to the Belgian king and queen.

On August 2, 1939, Szilard again visited Einstein, accompanied by Edward Teller
and Eugene Wigner, who (like Szilard) were refugee Hungarian physicists. By this time,
Szilard’s plans had grown more ambitious; and he carried with him the draft of another
letter, this time to the American President, Franklin D. Roosevelt. Einstein made a few
corrections, and then signed the fateful letter, which reads (in part) as follows:

“Some recent work of E. Fermi and L. Szilard, which has been communicated to me in
manuscript, leads me to expect that the element uranium may be turned into an important
source of energy in the immediate future. Certain aspects of the situation seem to call for
watchfulness and, if necessary, quick action on the part of the Administration. I believe,
therefore, that it is my duty to bring to your attention the following..”

“It is conceivable that extremely powerful bombs of a new type may be constructed.
A single bomb of this type, carried by boat and exploded a port, might very well destroy
the whole port, together with some of the surrounding territory..”

The letter also called Roosevelt’s attention to the fact that Germany had already
stopped the export of uranium from the Czech mines under German control. After making
a few corrections, Einstein signed it. On October 11, 1939, three weeks after the defeat
of Poland, Roosevelt’s economic adviser, Alexander Sachs, personally delivered the letter
to the President. After discussing it with Sachs, the President commented,“This calls for
action.” Later, when atomic bombs were dropped on civilian populations in an already
virtually-defeated Japan, Einstein bitterly regretted having signed Szilard’s letter to Roo-
sevelt. He said repeatedly that signing the letter was the greatest mistake of his life, and
his remorse was extreme.

Throughout the remainder of his life, in addition to his scientific work, Einstein worked
tirelessly for peace, international understanding and nuclear disarmament. His last public
act, only a few days before his death in 1955, was to sign the Russell-Einstein Manifesto,
warning humankind of the catastrophic consequences that would follow from a war with
nuclear weapons.

A few more things that Einstein said about peace:

We cannot solve our problems with the same thinking that we used when we
created them.
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Figure 17.12: Signing the Russell-Einstein declaration was the last public act of
Einstein’s life.
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It has become appallingly obvious that our technology has exceeded our hu-
manity.

Peace cannot be kept by force; it can only be achieved by understanding.

The world is a dangerous place to live; not because of the people who are evil,
but because of the people who don’t do anything about it.

Insanity: doing the same thing over and over again and expecting to get dif-
ferent results.

Nothing will end war unless the people themselves refuse to go to war.

Past thinking and methods did not prevent world wars. Future thinking must
prevent war.

You cannot simultaneously prevent and prepare for war.

Never do anything against conscience, even if the state demands it.

Taken as a whole, I would believe that Gandhi’s views were the most enlight-
ened of all political men of our time.

Without ethical culture, there is no salvation for humanity.

War seems to me to be a mean, contemptible thing: I would rather be hacked
in pieces than take part in such an abominable business. And yet so high, in
spite of everything, is my opinion of the human race that I believe this bogey
would have disappeared long ago, had the sound sense of the nations not been
systematically corrupted by commercial and political interests acting through
the schools and the Press.

17.9 The Russell-Einstein Manifesto

In March, 1954, the US tested a hydrogen bomb at the Bikini Atoll in the Pacific Ocean.
It was 1000 times more powerful than the Hiroshima bomb. The Japanese fishing boat,
Lucky Dragon, was 130 kilometers from the Bikini explosion, but radioactive fallout from
the test killed one crew member and made all the others seriously ill.

In England, Prof. Joseph Rotblat, a Polish scientist who had resigned from the Man-
hattan Project for for moral reasons when it became clear that Germany would not develop
nuclear weapons, was asked to appear on a BBC program to discuss the Bikini test. He
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Figure 17.13: Joseph Rotblat believed that the Bikini bomb was of a fission-
fusion-fission type. Besides producing large amounts of fallout, such a bomb
can be made enormously powerful at very little expense.

was asked to discuss the technical aspects of H-bombs, while the Archbishop of Canterbury
and the philosopher Lord Bertrand Russell were asked to discuss the moral aspects.

Rotblat had became convinced that the Bikini bomb must have involved a third stage,
where fast neutrons from the hydrogen thermonuclear reaction produced fission in a casing
of ordinary uranium. Such a bomb would produce enormous amounts of highly dangerous
radioactive fallout, and Rotblat became extremely worried about the possibly fatal effect
on all living things if large numbers of such bombs were ever used in a war. He confided
his worries to Bertrand Russell, whom he had met on the BBC program.

After discussing the Bikini test and its radioactive fallout with Joseph Rotblat, Lord
Russell became concerned for the future of the human gene pool if large numbers of such
bombs should ever be used in a war. After consultations with Albert Einstein and others,
he drafted a document warning of the grave dangers presented by fission-fusion-fission
bombs. On July 9, 1955, with Rotblat in the chair, Russell read the Manifesto to a packed
press conference.

The document contains the words: “Here then is the problem that we present
to you, stark and dreadful and inescapable: Shall we put an end to the human
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Figure 17.14: Lord Russell devoted much of the remainder of his life to work-
ing for the abolition of nuclear weapons. Here he is seen in 1962 in Trafalgar
Square, London, addressing a meeting of the Campaign for Nuclear Disarma-
ment.
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race, or shall mankind renounce war?... There lies before us, if we choose,
continual progress in happiness, knowledge and wisdom. Shall we, instead,
choose death because we cannot forget our quarrels? We appeal as human
beings to human beings: Remember your humanity, and forget the rest. If you
can do so, the way lies open to a new Paradise; if you cannot, there lies before
you the risk of universal death.”

In 1945, with the horrors of World War II fresh in everyone’s minds, the United Nations
had been established with the purpose of eliminating war. A decade later, the Russell-
Einstein Manifesto reminded the world that war must be abolished as an institution because
of the constantly increasing and potentially catastrophic power of modern weapons.
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Chapter 18

ERWIN SCHRÖDINGER

18.1 A wave equation for matter

In 1926, the difficulties surrounding the “old quantum theory” of Max Planck, Albert
Einstein and Niels Bohr were suddenly solved, and its true meaning was understood. Two
years earlier, a French aristocrat, Louis de Broglie, writing his doctoral dissertation at the
Sorbonne in Paris, had proposed that very small particles, such as electrons, might exhibit
wavelike properties. The ground state and higher excited states of the electron in Bohr’s
model of the hydrogen atom would then be closely analogous to the fundamental tone and
higher overtones of a violin string.

Almost the only person to take de Broglie’s proposal seriously was Albert Einstein, who
mentioned it in one of his papers. Because of Einstein’s interest, de Broglie’s matter-waves
came to the attention of other physicists. The Austrian theoretician, Erwin Schrödinger,
working at Zürich, searched for the underlying wave equation which de Broglie’s matter-
waves obeyed.

Schrödinger’s gifts as a mathematician were so great that it did not take him long to
solve the problem. The Schrödinger wave equation for matter is now considered to be
more basic than Newton’s equations of motion. The wavelike properties of matter are
not apparent to us in our daily lives because the wave-lengths are extremely small in
comparison with the sizes of objects which we can perceive. However, for very small and
light particles, such as electrons moving in their orbits around the nucleus of an atom, the
wavelike behavior becomes important.

Schrödinger was able to show that Niels Bohr’s atomic theory, including Bohr’s seem-
ingly arbitrary quantization of angular momentum, can be derived by solving the wave
equation for the electrons moving in the attractive field of the nucleus. The allowed orbits
of Bohr’s theory correspond in Schrödinger’s theory to harmonics, similar to the funda-
mental harmonic and higher overtones of an organ pipe or a violin string. (If Pythagoras
had been living in 1926, he would have rejoiced to see the deepest mysteries of matter
explained in terms of harmonics!)

Bohr himself believed that a complete atomic theory ought to be able to explain the
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Figure 18.1: Bust of Erwin Schrödinger in the courtyard arcade of the main
building, University of Vienna.
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chemical properties of the elements in Mendeléev’s periodic system. Bohr’s 1913 theory
failed to pass this test, but the new de Broglie-Schrödinger theory succeeded! Through the
work of Pauli, Heitler, London, Slater, Pauling, Hund, Mulliken, Hückel and others, who
applied Schrödinger’s wave equation to the solution of chemical problems, it became appar-
ent that the wave equation could indeed (in principle) explain all the chemical properties
of matter.

Strangely, the problem of developing the fundamental quantum theory of matter was
solved not once, but three times in 1926! At the University of Göttingen in Germany,
Max Born (1882-1970) and his brilliant young students Werner Heisenberg and Pascal
Jordan solved the problem in a completely different way, using matrix methods. At the
same time, a theory similar to the “matrix mechanics” of Heisenberg, Born and Jordan
was developed independently at Cambridge University by a 24 year old mathematical
genius named Paul Adrian Maurice Dirac. At first, the Heisenberg-Born-Jordan-Dirac
quantum theory seemed to be completely different from the Schrödinger theory; but soon
the Göttingen mathematician David Hilbert (1862-1943) was able to show that the theories
were really identical, although very differently expressed.

18.2 Felix Bloch’s story about Schrödinger

There is an interesting story about Erwin Schrödinger’s derivation of his famous wave
equation. According to the solid state physicist Felix Bloch, Peter Debye was chairing a
symposium in Zürich, Switzerland, at which de Broglie’s waves were being discussed. At
one point during the symposium, Debye said: “Well, if there are waves associated with
every particle, there must be a wave equation.” Then, turning to Schrödinger, he said:
“You, Erwin. You’re not doing anything important at the moment. Why don’t you find
the wave equation obeyed by de Broglie’s waves?”

During the following weekend, the whole group started off for a skiing trip. “Come
with us, Erwin!”, they said, but Schrödinger replied: “No, forgive me, I think I will stay
here and work.” By the end of the weekend he had derived his famous non-relativistic
wave equation. He had first tried a relativistic equation (now known as the Klein-Gordon
equation), but had rejected it because he believed that the equation had to be first-order
in time.

Later, Felix Bloch asked Peter Debye, “Aren’t you sorry that you didn’t derive the
wave equation yourself, instead of giving the job to Schrödinger?” Debye replied wistfully,
“At least I was right about the need for a wave equation, wasn’t I?”

Schrödinger’s non-relativistic wave equation

The non-relativistic relationship between energy and momentum is given by

E = c
√
p2 +m2c2 + V ≈ p2

2m
+ V m2c2 >> p2 (18.1)
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Schrödinger’s non-relativistic wave equation,(
− ~2

2m
∇2 + V

)
ψ = Eψ (18.2)

can be derived by making the substitutions

pj →
~
i

∂

∂xj
j = 1, 2, 3 (18.3)

If the wave function ψ has time-dependence of the form

ψ(x, t) = ψ(x)eiEt/~ (18.4)

then we can write

i~
∂ψ

∂t
= Hψ (18.5)

where

H ≡
(
− ~2

2m
∇2 + V

)
(18.6)

18.3 Separation of the equation

The Schrödinger equation for hydrogenlike (1-electron) atoms is(
− ~2

2me

∇2 − e2Z2

r

)
ψ(x) = Eψ(x) (18.7)

If we let

ψ(x) = R(r)Yl,m(θ, ϕ) (18.8)

the Schrödinger equation for hydrogenlike (one electron) atoms is separable:

∇2R(r)Yl,m(θ, ϕ) =

(
1

r2

∂

∂r
r2 ∂

∂r
− l(l + 1)

r2

)
R(r)Yl,m(θ, ϕ) (18.9)

Dividing both sides by Yl,m(θ, ϕ), we find that the radial part of the Schrödinger equation
for one-electron atoms must obey the equation(

− ~2

2m

1

r2

d

dr
r2 d

dr
− e2Z2

r
+
l(l + 1)

r2

)
R(r) = ER(r) (18.10)

where we have made use of the relationship

∇2Yl,m(θ, ϕ) = − l(l + 1)

r2
Yl,m(θ, ϕ) (18.11)

and where we have replaced partial derivatives in the radial equation by ordinary deriva-
tives, since we now have a differential equation in a single variable.



18.4. SOLUTIONS TO THE RADIAL EQUATION 313

18.4 Solutions to the radial equation

If we let

ρ ≡ Zr (18.12)

and

ε =
2E

Z2
(18.13)

then the radial equation becomes:[
1

ρ2

d

dρ
ρ2 d

dρ
− l(l + 1)

ρ2
+

2

ρ
+ ε

]
Rn,l(ρ) = 0 (18.14)

Equation (18.14) has solutions of the form

Rn,l(ρ) = Nn,l ρ
l e−ρ/(n)F [ l + 1− n | 2l + 2 | 2ρ/n) ] (18.15)

where

Nn,l =
Z3/2

2(2l + 1)!

(
(l + n)!

(n− 1− l)!

)1/2(
2

n

)l+2

(18.16)

and where F [a|b|x] is a confluent hypergeometric function:

F [a|b|x] ≡ 1 +
ax

b
+
a(a+ 1)x2

b(b+ 1)2!
+
a(a+ 1)(a+ 2)x3

b(b+ 1)(b+ 2)3!
+ ... (18.17)

The confluent hypergeometric series terminates and reduces to a polynomial when a is a
negative integer. In our case this means that l + 1 − n must be a negative integer, and
thus, for the series to terminate, as is required for finiteness at large values of r, l cannot
exceed n−1. A table of the first few radial wave functions for hydrogenlike atoms is shown
below:
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Table 18.1: Radial wave functions for hydrogenlike atoms

n l Rnl(r)

1 0 e−ZrZ3/2

2 0
e−Zr/2Z3/2(1−Zr

2 )√
2

2 1 e−Zr/2Z3/2Zr
2
√

6

3 0
2e−Zr/3Z3/2

(
(2Z)r2

27
− 2Zr

3
+1

)
3
√

3

3 1 4
27

√
2
3
e−Zr/3Z3/2

(
1− Zr

6

)
Zr

3 2 2
81

√
2
15
e−Zr/3Z3/2(Zr)2
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18.5 Fock’s momentum-space treatment of hydrogen

In a brilliant 1935 paper, the Russian physicist V. Fock was able to show that a rela-
tionship exists between 4-dimensional hyperspherical harmonics and the solutions to the
Fourier transformed Schrödinger for hydrogenlike (1-electron) atoms. In direct space, the
Schrödinger equation (in atomic units) for an electron moving in the potential V (x) is[

−1

2
∇2 + V (x)

]
ψ(x) = Eψ(x) (18.18)

We can let

ψ(x) =
1

(2π)3/2

∫
d3p eip·xψt(p) (18.19)

where

ψt(p) =
1

(2π)3/2

∫
d3x e−ip·xψ(x) (18.20)

Substituting (18.19) into (18.18), we have

1

(2π)3/2

∫
d3p

[
p2

2
+ V (x)− E

]
eip·xψt(p) = 0 (18.21)

We now multiply on the left by e−ip
′·x and integrate over d3x. This gives:[

p′2

2
− E

]
ψt(p′) =

−1

(2π)3/2

∫
d3p V t(p′ − p) ψt(p) (18.22)

which is the 1-particle Schrödinger equation in reciprocal space. For hydrogenlike atoms,

V (x) = −Z
r

(18.23)

so that from (??),

V t(p) = −
√

2

π

Z

p2
(18.24)

Letting

−2E = k2 (18.25)

and combining (18.22), (18.23) and (18.24), we obtain[
p′2 + k2

]
ψt(p′) =

Z

π2

∫
d3p

1

|p′ − p|2 ψ
t(p) (18.26)
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Fock then made the transformation:

u1 =
2kp1

k2 + p2
≡ sinχ sin θ cosϕ

u2 =
2kp2

k2 + p2
≡ sinχ sin θ sinϕ

u3 =
2kp3

k2 + p2
≡ sinχ cos θ

u4 =
k2 − p2

k2 + p2
≡ cosχ (18.27)

Here θ and ϕ are the polar angles of the vector p:

p1 = p sin θ cosϕ

p2 = p sin θ sinϕ

p3 = p cos θ (18.28)

while

χ ≡ cos−1

(
k2 − p2

k2 + p2

)
= sin−1

(
2kp

k2 + p2

)
(18.29)

is an angle introduced by Fock in order to transform the integral d3p into an integral over
solid angle in a 4-dimensional space. Fock’s transformation maps the 3-dimensional p-space
onto the surface of a unit sphere in a 4-dimensional space. It is easy to verify from (18.27)
that

u2
1 + u2

2 + u2
3 + u2

4 = 1 (18.30)

From the Jacobian of the transformation from Cartesian coordinates to 4-dimensional
hyperspherical coordinates, one finds that the element of solid angle in the 4-dimensional
space is given by

dΩ = sin2 χ sin θ dχdθdϕ

=

(
2kp

k2 + p2

)2

sin θ dχdθdϕ (18.31)

Comparing this with

d3p = p2dp sin θ dθdϕ (18.32)

and making use of the fact that

dχ

dp
=

2k

k2 + p2
(18.33)
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we have

dΩ =

(
2k

k2 + p2

)3

d3p

d3p =

(
k2 + p2

2k

)3

dΩ (18.34)

Also, from (18.27), we have:

p · p′ =
4k2

(k2 + p2)(k2 + p′2)(u · u′ − u4u′4)

1

|p− p′|2 =
4k2

(k2 + p2)(k2 + p′2)

1

|u− u′|2 (18.35)

Inserting (18.34) and (18.35) into (18.26), we obtain:

[
p′2 + k2

]2
ψt(p′) =

Z

2kπ2

∫
dΩ

(k2 + p2)2

|u′ − u|2 ψt(p) (18.36)

We now let

ψt(p) =
4k5/2

(k2 + p2)2
ϕ(Ω) (18.37)

(As shown in Section 5.3 below, the factor 4k5/2 in the numerator is needed to normalize
ψt(p)). Equation (18.36) then takes on the simple form

ϕ(Ω′) =
Z

2kπ2

∫
dΩ

1

|u′ − u|2 ϕ(Ω) (18.38)

From equation (??), with d = 4 and α = d/2− 1 = 1, we have

1

|u′ − u|2 =
∞∑
λ=0

C1
λ(u · u′) (18.39)

so that (18.38) becomes

ϕ(Ω′) =
Z

2kπ2

∞∑
λ=0

∫
dΩ C1

λ(u · u′) ϕ(Ω) (18.40)

Remembering equation (??) we can rewrite this in the form

ϕ(Ω′) =
Z

2kπ2

∞∑
λ=0

Kλ Oλ[ϕ(Ω)] (18.41)
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For d = 4,

Kλ =
I(0)

λ+ 1
=

2π2

λ+ 1
(18.42)

so that equation (18.41) becomes:

ϕ(Ω′) =
Z

k

∞∑
λ=0

1

λ+ 1
Oλ[ϕ(Ω′)] (18.43)

If ϕ(Ω) is an eigenfunction of Λ2. so that

Oλ′ [ϕ(Ω′)] = δλ′λϕ(Ω) (18.44)

then (18.43) will be satisfied provided that

Z

k(λ+ 1)
= 1 (18.45)

or, from (18.25),

E = −k
2

2
= − Z2

2(λ+ 1)2
= − Z

2

2n2
λ = 0, 1, 2... n = 1, 2, 3... (18.46)

where we have made the identification λ + 1 = n. We can see that Fock’s treatment
gives the usual energy levels for hydrogenlike atoms. For the transformed wave function
ϕ(Ω), any 4-dimensional hyperspherical harmonic will do, but for most applications, it is
convenient to use hyperspherical harmonics of the type shown in Table 2.1. Thus we obtain
the Fourier transformed hydrogenlike orbitals:

ψtn,l,m(p) =
4k5/2

(k2 + p2)2
Yn−1,l,m(Ω4) ≡M(p)Yn−1,l,m(Ω4)

M(p) ≡ 4k5/2

(k2 + p2)2
(18.47)

For the first few values of n, l and m, 18.47 yields:

ψt1,0,0(p) =
2
√

2 k5/2

(k2 + p2)2π

ψt2,0,0(p) =
4
√

2 k5/2(k2 − p2)

(k2 + p2)3π

ψt2,1,−1(p) = −8ik7/2(p1 − ip2)

(k2 + p2)3π

ψt2,1,0(p) = − 8i
√

2 k7/2

(k2 + p2)π

ψt2,1,1(p) =
8ik7/2(p1 + ip2)

(k2 + p2)3π
...

...
...

(18.48)
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To see how Fock’s reciprocal space solutions to the hydrogenlike wave equation are related
to the familiar hydrogenlike orbitals, we can make a table of hydrogenlike orbitals with
Z/n replaced by the constant k. The radial functions become

R′1,0(r) = 2k3/2e−kr

R′2,0(r) = 2k3/2(1− kr)e−kr

R′2,1(r) =
2k3/2

√
3

kr e−kr

R′3,0(r) = 2k3/2

(
1− 2kr +

2k2r2

3

)
e−kr

...
...

... (18.49)

and so on, and the corresponding wave functions will be

χn,l,m(x) = R′n,l(r)Yl,m(Ω3) (18.50)

As you can verify, taking the Fourier transforms of the wave functions defined by equations
(18.49) and (18.50), and making the substitutions shown in equation (18.27), we obtain the
Fourier transformed solutions of V. Fock, equation (18.47). But this set of solutions is not
quite the same as a set of familiar hydrogenlike orbitals because Z/n is everywhere replaced
by the constant k. A set of Fock’s solutions corresponding to a particular value of k is
called a set of Coulomb Sturmians. Such a set obeys a potential-weighted orthonormality
relation, as we will discuss in detail in Chapters 6 and 7.

18.6 The Pauli exclusion principle and the periodic

table

Bohr himself believed that a complete atomic theory ought to be able to explain the chem-
ical properties of the elements in Mendeléev’s periodic system. Bohr’s 1913 theory failed
to pass this test, but the new de Broglie-Schrödinger theory succeeded! Through the work
of Pauli, Heitler, London, Slater, Pauling, Hund, Mulliken, Hückel and others, who applied
Schrödinger’s wave equation to the solution of chemical problems, it became apparent that
the wave equation could indeed (in principle) explain all the chemical properties of matter.

The solutions to Schrödinger’s wave equation for an electron moving in the field of a
nucleus are called atomic orbitals, and the first few of them are shown in Figure 11.6.They
are analogous to the harmonics of a violin string or an organ pipe, except the they are
three-dimensional. The electron had been shown to have a magnetic moment, and in a
magnetic field, it was found to orient itself either in the direction of an applied magnetic
field, or in the opposite direction - either “spin-up” or “spin-down”. This effect could
be observed in the splitting of the lines in atomic spectra in the presence of an applied
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magnetic field. The “spin” and magnetic moment of electrons were completely explained
in 1928 by P.A.M. Dirac’s relativistic wave equation.

Meanwhile, the Austrian physicist Wolfgang Pauli proposed his famous exclusion prin-
ciple, which explained the periodic table and the chemical properties of the elements.
According to the Pauli exclusion principle, in the lowest energy state of an atom, the elec-
trons fill the atomic orbitals in the order (1s), (2p), (3d), ... Two electrons are allowed in
each linearly independent orbital, one with spin up and the other with spin down. This
leads to the following electron configurations for the elements:

• Hydrogen; (1s); very active metal; valence=1
• Helium; (1s)2; noble (inert) gas; valence=0
• Lithium; (1s)2(2p)1; very active metal; valence=1
• Beryllium; (1s)2(2p)2; metal; valence=2
• Boron; (1s)2(2p)3; less active metal; valence=3
• Carbon; (1s)2(2p)4; intermediate; valence=4
• Nitrogen; (1s)2(2p)5; less active nonmetal; valence=5
• Oxygen; (1s)2(2p)6; nonmetal; valence=6
• Fluorine; (1s)2(2p)7; very active nonmetal; valence=7
• Neon; (1s)2(2p)8; noble gas; valence=0
• Sodium; (1s)2(2p)8(2s)1; very active metal; valence=1

In chemical reactions, the metals tend to give away their outer-shell electrons, while the
non-metals tend to accept electrons. The most active metals, hydrogen, lithium, sodium,
potassium, rubidium and cesium, all have a single electron in their outer shell, and they
tend to give this electron away. The most active nonmetals, fluorine, chlorine, bromine and
iodine, all are missing a single electron to complete their outer shell. We can notice that
common table salt, is a cubic crystal structure formed from Na+ ions and Cl− ions. When
it is dissolved in water, the sodium-chloride crystal dissociates into Na+ ions, complexed
with water molecules and Cl− ions, also forming complexes with water. We see here
the strong tendency of very active metals to give up their outer shell electron and to form
positive ions, while very active nonmetals have an equally strong tendency to form negative
ions. Helium, neon, argon, krypton, and radon, all with completely filled outer shell, are
unreactive noble gases, with no tendency at all to give away or accept electrons or to form
ions.

The Hartree-Fock equations

The application of the Schrödinger equation to our understanding of chemical reactivity
and the periodic table was made quantitative through the work of Douglas Hartree (1897-
1958) and Vladimir A. Fock (1898-1974).

Douglas Hartree was born in Cambridge, England, where his father was a professor
of engineering at Cambridge University and his mother was the mayor of the city. In
his work on the electronic structure of atoms, Hartree visualized the electrons moving
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Figure 18.2: Atomic orbitals.
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Figure 18.3: The periodic table of the elements.
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in both the attractive field of the atomic nucleus and in a repulsive potential produced
collectively by all the electrons. Hartree’s method for treating this problem was to make
an initial guess of the size of the atomic orbitals (Figure 11.6) occupied by the electrons.
He then calculated the repulsive potential that would result, and combined it with the
nuclear attraction potential. Solving the Schrödinger equation for the an electron moving
in this new potential, he obtained a set of improved atomic orbitals, and from these he
could calculate an improved total potential. He continued to iterate this process until the
change resulting from successive iterations became very small, at which point he described
the electrical field in which the electrons moved as being self-consistent. Hartree called
his procedure the Self-Consistent-Field (or SCF) Method. He published his first results in
1927, only a year after Schrödinger’s discovery of his wave equation.

The Russian physicist Vladimir A. Fock was able to refine Hartree’s method by postulat-
ing that the total electronic wave function of an atom or molecule had to be antisymmetric
with respect to the exchange of the coordinates of any two electrons in the system. When
spin was included in the wave function, this requirement led in a natural way to the exclu-
sion principle postulated by Wolfgang Pauli. When combined with Hartree’s SCF method,
Fock’s antisymmetry requirement led to more accurate results and better agreement be-
tween theory and experiment. However, the Hartree-Fock SCF equations were much more
difficult to solve. Later Clemens C.J. Roothaan (1918-2019) converted the Hartree-Fock
equations into a matrix form suitable for solution by digital computers. The method in
use today is thus known as the Hartree-Fock-Roothaan SCF Method. When applied to
molecules, it is called the Hartree-Fock-Roothaan LCAO SCF Method. The LCAO in the
name stands for the fact that molecular orbitals are represented as Linear Combinations
of Atomic Orbitals.
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Figure 18.4: Wolfgang Pauli (1900-1958).
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Figure 18.5: Douglas Hartree (1897-1958).
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Figure 18.6: Vladimir A. Fock (1898-1974).
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Figure 18.7: Louis Victor Pierre Raymond, duc de Broglie, (1892-1987).
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Figure 18.8: Heisenberg in 1933
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Figure 18.9: Niels Bohr, Werner Heisenberg and Wolfgang Pauli, c. 1935.
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Figure 18.10: Peter Debye, (1884-1966).
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18.7 Valence bond theory

18.8 What is life?

What is Life? That was the title of a small book published by the physicist Erwin
Schrödinger in 1944. Schrödinger (1887-1961) was born and educated in Austria. In
1926 he shared the Nobel Prize in Physics1 for his contributions to quantum theory (wave
mechanics). Schrödinger’s famous wave equation is as fundamental to modern physics as
Newton’s equations of motion are to classical physics.

When the Nazis entered Austria in 1938, Schrödinger opposed them, at the risk of his
life. To escape arrest, he crossed the Alps on foot, arriving in Italy with no possessions
except his knapsack and the clothes which he was wearing. He traveled to England; and
in 1940 he obtained a position in Ireland as Senior Professor at the Dublin Institute for
Advanced Studies. There he gave a series of public lectures upon which his small book is
based.

In his book, What is Life?, Schrödinger developed the idea that a gene is a very large
information-containing molecule which might be compared to an aperiodic crystal. He also
examined in detail the hypothesis (due to Max Delbrück) that X-ray induced mutations
of the type studied by Hermann Muller can be thought of as photo-induced transitions
from one isomeric conformation of the genetic molecule to another. Schrödinger’s book
has great historic importance, because Francis Crick (whose education was in physics) was
one of the many people who became interested in biology as a result of reading it. Besides
discussing what a gene might be in a way which excited the curiosity and enthusiasm of
Crick, Schrödinger devoted a chapter to the relationship between entropy and life.

“What is that precious something contained in our food which keeps us from death?
That is easily answered,” Schrodinger wrote, “Every process, event, happening - call it
what you will; in a word, everything that is going on in Nature means an increase of the
entropy of the part of the world where it is going on. Thus a living organism continually
increases its entropy - or, as you may say, produces positive entropy, which is death. It can
only keep aloof from it, i.e. alive, by continually drawing from its environment negative
entropy - which is something very positive as we shall immediately see. What an organism
feeds upon is negative entropy. Or, to put it less paradoxically, the essential thing in
metabolism is that the organism succeeds in freeing itself from all the entropy it cannot
help producing while alive...”2

“Entropy, taken with a negative sign, is itself a measure of order. Thus the device by
which an organism maintains itself stationary at a fairly high level of orderliness (= fairly
low level of entropy) really consists in continually sucking orderliness from its environment.
This conclusion is less paradoxical than it appears at first sight. Rather it could be blamed

1 with P.A.M. Dirac
2 The Hungarian-American biochemist Albert Szent-Györgyi, who won a Nobel prize for isolating

vitamin C, and who was a pioneer of bioenergetics, expressed the same idea in the following words: “We
need energy to fight against entropy”.
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for triviality. Indeed, in the case of higher animals we know the kind of orderliness they
feed upon well enough, viz. the extremely well-ordered state of matter state in more or less
complicated organic compounds which serve them as foodstuffs. After utilizing it, they
return it in a very much degraded form - not entirely degraded, however, for plants can still
make use of it. (These, of course, have their most powerful source of ’negative entropy’ in
the sunlight.)” At the end of the chapter, Schrödinger added a note in which he said that
if he had been writing for physicists, he would have made use of the concept of free energy;
but he judged that this concept might be difficult or confusing for a general audience.

In the paragraphs which we have quoted, Schrodinger focused on exactly the aspect of
life which is the main theme of the present book: All living organisms draw a supply of
thermodynamic information from their environment, and they use it to “keep aloof” from
the disorder which constantly threatens them. In the case of animals, the information-
containing free energy comes in the form of food. In the case of green plants, it comes
primarily from sunlight. The thermodynamic information thus gained by living organisms
is used by them to create configurations of matter which are so complex and orderly that
the chance that they could have arisen in a random way is infinitesimally small.

John von Neumann invented a thought experiment which illustrates the role which free
energy plays in creating statistically unlikely configurations of matter. Von Neumann imag-
ined a robot or automaton, made of wires, electrical motors, batteries, etc., constructed in
such a way that when floating on a lake stocked with its component parts, it will repro-
duce itself.3 The important point about von Neumann’s automaton is that it requires a
source of free energy (i.e., a source of energy from which work can be obtained) in order
to function. We can imagine that the free energy comes from electric batteries which the
automaton finds in its environment. (These are analogous to the food eaten by animals.)
Alternatively we can imagine that the automaton is equipped with photocells, so that it
can use sunlight as a source of free energy, but it is impossible to imagine the automaton
reproducing itself without some energy source from which work can be obtained to drive
its reproductive machinery. If it could be constructed, would von Neumann’s automaton
be alive? Few people would say yes. But if such a self-reproducing automaton could be
constructed, it would have some of the properties which we associate with living organisms.

The autocatalysts which are believed to have participated in molecular evolution had
some of the properties of life. They used “food” (i.e., energy-rich molecules in their en-
vironments) to reproduce themselves, and they evolved, following the principle of natural
selection. The autocatalysts were certainly precursors of life, approaching the borderline
between non-life and life.

Is a virus alive? We know, for example, that the tobacco mosaic virus can be taken
to pieces. The proteins and RNA of which it is composed can be separated, purified,
and stored in bottles on a laboratory shelf. At a much later date, the bottles containing
the separate components of the virus can be taken down from the shelf and incubated
together, with the result that the components assemble themselves in the correct way,

3 In Chapter 8 we will return to von Neumann’s self-replicating automaton and describe it in more
detail.



18.8. WHAT IS LIFE? 333

guided by steric and electrostatic complementarity. New virus particles are formed by this
process of autoassembly, and when placed on a tobacco leaf, the new particles are capable
of reproducing themselves. In principle, the stage where the virus proteins and RNA are
purified and placed in bottles could be taken one step further: The amino acid sequences
of the proteins and the base sequence of the RNA could be determined and written down.

Later, using this information, the parts of the virus could be synthesized from amino
acids and nucleotides. Would we then be creating life? Another question also presents
itself: At a certain stage in the process just described, the virus seems to exist only in
the form of information - the base sequence of the RNA and the amino acid sequence of
the proteins. Can this information be thought of as the idea of the virus in the Platonic
sense? (Pythagoras would have called it the “soul” of the virus.) Is a computer virus
alive? Certainly it is not so much alive as a tobacco mosaic virus. But a computer virus
can use thermodynamic information (supplied by an electric current) to reproduce itself,
and it has a complicated structure, containing much cybernetic information.

Under certain circumstances, many bacteria form spores, which do not metabolize, and
which are able to exist without nourishment for very long periods - in fact for millions of
years. When placed in a medium containing nutrients, the spores can grow into actively
reproducing bacteria. There are examples of bacterial spores existing in a dormant state
for many millions of years, after which they have been revived into living bacteria. Is a
dormant bacterial spore alive?

Clearly there are many borderline cases between non-life and life; and Aristotle seems to
have been right when he said, “Nature proceeds little by little from lifeless things to animal
life, so that it is impossible to determine either the exact line of demarcation, or on which
side of the line an intermediate form should lie.” However, one theme seems to characterize
life: It is able to convert the thermodynamic information contained in food or in sunlight
into complex and statistically unlikely configurations of matter. A flood of information-
containing free energy reaches the earth’s biosphere in the form of sunlight. Passing through
the metabolic pathways of living organisms, this information keeps the organisms far away
from thermodynamic equilibrium (“which is death”). As the thermodynamic information
flows through the biosphere, much of it is degraded into heat, but part is converted into
cybernetic information and preserved in the intricate structures which are characteristic
of life. The principle of natural selection ensures that as this happens, the configurations
of matter in living organisms constantly increase in complexity, refinement and statistical
improbability. This is the process which we call evolution, or in the case of human society,
progress.
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Chapter 19

DIRAC

19.1 Dirac’s relativistic wave equation

In 1928, P.A.M. Dirac derived a relativistic wave equation that was first-order in time.
To do this, he made use of a set of four anticommuting matrices. Solutions to the Dirac
equation in the absence of external fields also obey the Klein-Gordon equation, which
is second-order in time, the equation that Schrödinger first tried and then abandoned.
Dirac’s relativistic equation explained for the first time many details of the spectrum of
hydrogen, but critics complained that it predicted the existence of negative energy states,
and they asked, “Why don’t the positive energy electrons fall down into these states?”
Dirac replied “Because the negative energy states are all occupied.” ‘But then”, the critics
said, “an extremely energetic photon could create an electron-hole pair!” “Keep looking”,
Dirac answered, “and you will find that it sometimes happens.” Thus, an astonishing
consequence of Dirac’s relativistic wave equation was the prediction of the existence of
antimatter!

Years passed. Then, in 1932, the physicist Carl David Anderson observed in a cos-
mic ray photographic plate an event that confirmed Dirac’s prediction of the existence of
antimatter. A highly-energetic photon was annihilated, and converted into an electron-
antielectron pair. The antielectron was given the name “positron”. Since that time, the
antiparticles of other particles have been discovered, created in high-energy events where
a photon is annihilated and a particle-antiparticle pair created.

347
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Figure 19.1: P.A.M. Dirac, the greatest British physicist of the 20th century. A
memorial inscribed with his relativistic wave equation stands in Westminister
Cathedral, near to the statue of Newton.
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Figure 19.2: Carl David Anderson. He discovered experimentally the antiparti-
cles whose existence Dirac had predicted.
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19.2 Some equations

For readers with some mathematical background, a few equations are included here.

The relativistic relationship between energy and momentum

E2 − p2c2 = m2c4 (19.1)

Here E stands for energy, p for momentum, m for mass, and c for the velocity of light.

The Klein-Gordon equation

(
− ~2 ∂2

c2 ∂2t
+ ~2∇2

)
ψ = m2c2ψ (19.2)

The Klein-Gordon equation can be derived from equation 19.1 by making the substitutions

E → ~
i

∂

∂x4

x4 ≡ ict

pj →
~
i

∂

∂xj
j = 1, 2, 3 (19.3)

where ~ is Planck’s constant.

Schrödinger’s non-relativistic wave equation

The non-relativistic relationship between energy and momentum is given by

E = c
√
p2 +m2c2 + V ≈ p2

2m
+ V m2c2 >> p2 (19.4)

Schrödinger’s non-relativistic wave equation,(
− ~2

2m
∇2 + V

)
ψ = Eψ (19.5)

can be derived by making the substitutions

pj →
~
i

∂

∂xj
j = 1, 2, 3 (19.6)

If the wave function ψ has time-dependence of the form

ψ(x, t) = ψ(x)eiEt/~ (19.7)
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then we can write

i~
∂ψ

∂t
= Hψ (19.8)

where

H ≡
(
− ~2

2m
∇2 + V

)
(19.9)

19.3 Lorentz invariance and 4-vectors

Albert Einstein’s special theory of relativity was built on the negative result of the Michelson-
Morley experiment, an experiment that attempted to measure the absolute velocity of the
earth through space. Einstein boldly postulated that no experiment whatever can measure
absolute motion, that is to say, according to his postulate it is impossible for an observer
to know whether he is in a state of rest or in a state of uniform motion. All inertial frames
are equivalent. Einstein’s postulate has been amply confirmed by experiment, and today
it is one of the basic principles of modern physics.

The equivalence of all inertial frames can be expressed in another way: Every funda-
mental physical law must exhibit symmetry between the space and time coordinates in such
a way that ict enters on the same footing as the Cartesian coordinates x, y and z. (Here
i ≡
√
−1, while c is the velocity of light, and t is the time.) In relativistic theory, space

and time combine to form a pseudo-Euclidean space-time continuum (Minkowski space). A
transformation from one inertial frame to another (a Lorentz transformation) corresponds
to a rotation in this space, and such a transformation must leave all fundamental physical
laws invariant in form.

Every physical quantity that is represented by a 3-component vector in non-relativistic
theory has a 4th component in the relativistic 4-dimensional space-time continuum. Thus,
for example, the position vector x = (x, y, z) in 3-dimensional space has a 4th component
in relativistic theory:

xλ = (x, y, z, ict) = (x, ict) (19.10)

while the vector potential A = (Ax, Ay, Az) in electromagnetic theory is the space compo-
nent of a 4-vector, whose 4th component is i multiplied by the electrostatic potential φ:

Aλ = (Ax, Ay, Az, iφ) = (A, iφ) (19.11)

Similarly, the current density vector j = (jx, jy, jz) is the space-component of a 4-vector

jλ = (jx, jy, jz, icρ) = (j, icρ) (19.12)

whose time-component is ic multiplied by the charge density ρ. (Throughout this chapter
we will represent 3-vectors by writing them in bold-face letters. Thus jλ = (j, icρ) means
that the first three components of the 4-vector jλ are given by j = (jx, jy, jz), while the
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4th component is icρ.) The gradient operator ∂ also becomes the space-component of a
4-vector in relativistic theory:

∂λ ≡
(

∂

∂x1

,
∂

∂x2

,
∂

∂x3

,
∂

∂x4

)
=

(
∂,− i

c

∂

∂t

)
(19.13)

while the Laplacian operator is replaced by the d’Alembertian operator:

� ≡
4∑

λ=1

∂2
λ ≡

4∑
λ=1

∂2

∂xλ
(19.14)

an operator which exhibits the required space-time symmetry, so that its form is the same
in all inertial frames. In relativistic electrodynamics, the electric field vector E and the
magnetic field vector H are components of an antisymmetric tensor Fλ′,λ, which is related
to Aλ by

Fλ′,λ ≡ ∂λ′Aλ − ∂λAλ′ =


0 Hz −Hy −iEx
−Hz 0 Hx −iEy
Hy −Hx 0 −iEz
iEx iEy iEz 0

 (19.15)

The 4-vector Aλ, which represents the electromagnetic potential, is related to the 4-vector
representing current density by

�Aλ = −4π

c
jλ (19.16)

When both the current density jλ and the electromagnetic potential 4-vector Aλ are
independent of time, equation (19.16) reduces to:

∇2
1Aλ(x1) = −4π

c
jλ(x1) (19.17)

which has the Green’s function solution

Aλ(x1) =
1

c

∫
d3x2

1

|x1 − x2|
jλ(x2) (19.18)

We can see that (19.18) is a solution to (19.17) because

∇2
1

1

|x1 − x2|
= −4πδ3(x1 − x2) ≡ −4πδ(x1 − x2)δ(y1 − y2)δ(z1 − z2) (19.19)

and therefore

∇2
1Aλ(x1) =

1

c

∫
d3x2 ∇2

1

1

|x1 − x2|
jλ(x2)

= −4π

c

∫
d3x2 δ3(x1 − x2) jλ(x2)

= −4π

c
jλ(x1)

(19.20)
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The subscript 1 on the Laplacian operator means that the operator is acting on the coor-
dinates of the field-point x1 rather than on the source-point, x2.

Because of charge conservation, the current density 4-vector obeys the condition

4∑
λ=1

∂λjλ = 0 (19.21)

Since the current density is related to the electromagnetic potential 4-vector through
(19.16), it is natural to work in the Lorentz gauge, where a similar condition is imposed
on Aλ:

4∑
λ=1

∂λAλ = 0 (19.22)

Equations (19.16) and (19.22) are Maxwell’s equations in a vacuum, written in a form that
makes the space-time symmetry apparent.

19.4 The Dirac equation for an electron in an external

electromagnetic potential

P.A.M. Dirac’s relativistic wave equation for an electron moving in an external potential
Aλ can be written in the form:[

4∑
λ=1

γλ

(
∂λ −

i

c
Aλ

)
+ c

]
χµ = 0 (19.23)

where atomic units are used and where the γλ’s are 4× 4 matrices:

γ1 =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 γ2 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 (19.24)

γ3 =


0 0 −i 0
0 0 0 i
i 0 0 0
0 −i 0 0

 γ4 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 (19.25)

In atomic units, the electron rest-mass is equal to 1, and Planck’s constant divided by 2π
is also equal to 1, while the velocity of light has a value equal to the reciprocal of the fine
structure constant:

m0 = 1 ~ = 1 c = 137.036 (19.26)

From the definitions of the γλ’s, it follows that they anticommute:

γλ′γλ + γλγλ′ = 2Iδλ′,λ (19.27)

In equation (19.27), I is a 4×4 unit matrix. Solutions to the 1-electron Dirac equation are
4-component spinors.
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19.5 Time-independent problems

In the special case where the external electromagnetic potential 4-vector Aλ is independent
of time, it is convenient to write the Dirac equation (19.23) in a different form, where we
introduce the notation

α = iγ0γ γ0 ≡ γ4 (19.28)

From equations (19.24), (19.25) and (19.28) it follows that the components of the 3-vector
α can be written in block form as

αj =

(
0 σj
σj 0

)
j = 1, 2, 3 (19.29)

where, in the off-diagonal blocks, σj, j = 1, 2, 3 are the 2×2 Pauli spin matrices:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(19.30)

For time-independent problems, the Dirac equation for a single electron can then be written
in the form:

[H − εµ]χµ(x) = 0 (19.31)

where

H = −icα ·
(
∂ − i

c
A(x)

)
+ Iφ(x) + γ0c

2 (19.32)

is the Dirac Hamiltonian of an electron moving in a constant external electromagnetic
potential, εµ is the 1-electron energy, and χµ(x) is the 4-component time-independent
spinor of the electron. The kinetic energy term in the Dirac Hamilton is given by

−icα · ∂ = −ic


0 0 ∂3 ∂−
0 0 ∂+ −∂3

∂3 ∂− 0 0
∂+ −∂3 0 0

 (19.33)

where
∂± ≡ ∂1 ± i∂2 (19.34)

Similarly, the part of the Dirac Hamiltonian involving potentials is

−α ·A + Iφ =


φ 0 −A3 −A−
0 φ −A+ A3

−A3 −A− φ 0
−A+ A3 0 φ

 (19.35)

where
A± ≡ A1 ± iA2 (19.36)
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19.6 The Dirac equation for an electron in the field

of a nucleus

When A(x) = 0, and φ(x) = −Z/r, equation (19.31) reduces to[
−icα · ∂ − Z

r
+ γ0c

2 − εµ
]
χµ(x) = 0 (19.37)

which is the Dirac equation for an electron moving in the attractive electrostatic potential
of a nucleus with charge Z. Equation (19.37) can be solved exactly, and the solutions have
the form

χµ(x) = χnjlM(x) =

 ignjl(r)Ωj,l,M(θ, ϕ)

−fnjl(r)Ωj,2j−l,M(θ, ϕ)

 (19.38)

Examples are shown in equations (??) and (??). In equation (19.38), the angular func-
tion Ωj,l,M(θ, ϕ) is a two-component “spherical spinor”, which is an eigenfunction of orbital
angular momentum corresponding to the quantum number l, total angular momentum (or-
bital plus spin) with quantum number j, and the z-component of total angular momentum,
with quantum number M . The spherical spinors are built up from spherical harmonics and
2-component spinors by combining them with the appropriate Clebsch-Gordan coefficients
in such a way as to produce eigenfunctions of total angular momentum. The Clebsch-
Gordan coefficients that enter are different, depending on whether j = l + 1

2
or j = l − 1

2
.

When j = l + 1
2
,

Ωj,l,M(θ, ϕ) =



√
l +M + 1

2

2l + 1
Yl,M− 1

2
(θ, ϕ)

√
l −M + 1

2

2l + 1
Yl,M+ 1

2
(θ, ϕ)


(19.39)

while when j = l − 1
2
,

Ωj,l,M(θ, ϕ) =


−

√
l −M + 1

2

2l + 1
Yl,M− 1

2
(θ, ϕ)

√
l +M + 1

2

2l + 1
Yl,M+ 1

2
(θ, ϕ)


(19.40)
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The radial function gnjl(r) is much larger than fnjl(r). The large and small radial functions
are defined respectively by

gnjl(r) = N rγ−1e−Zr/n̄ (W1(r)−W2(r)) (19.41)

and

fnjl(r) = N
√
c2 − εnj
c2 + εnj

rγ−1e−Zr/n̄ (W1(r) +W2(r)) (19.42)

where

W1(r) ≡ nrF

(
j +

1

2
− n+ 1

∣∣∣∣2γ + 1

∣∣∣∣2Zrn̄
)

W2(r) ≡ (n̄− κ)F

(
j +

1

2
− n

∣∣∣∣2γ + 1

∣∣∣∣2Zrn̄
)

(19.43)

with

κ ≡


−(j + 1

2
) j = l + 1

2

j + 1
2

j = l − 1
2

(19.44)

γ ≡
√(

j +
1

2

)2

−
(
Z

c

)2

(19.45)

nr ≡ n− j − 1

2
(19.46)

and

n̄ ≡
√
n2 − 2nr(j +

1

2
− γ) (19.47)

Just as in the definition of the non-relativistic hydrogenlike orbitals, F (a|b|ζ) is a confluent
hypergeometric function:

F (a|b|ζ) ≡ 1 +
a

b
ζ +

a(a+ 1)

b(b+ 1)2!
ζ2 + · · · (19.48)

When Z � 137, the 1-electron energies

εnj =
c2√

1 +
(

Z
c(γ+nr)

)2
(19.49)
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Chapter 20

SHANNON

20.1 Maxwell’s demon

In England, the brilliant Scottish theoretical physicist, James Clerk Maxwell (1831-1879)
invented a thought experiment which demonstrated that the second law of thermodynamics
is statistical in nature and that there is a relationship between entropy and information.
It should be mentioned that at the time when Clausius and Maxwell were living, not all
scientists agreed about the nature of heat, but Maxwell, like Kelvin, believed heat to be
due to the rapid motions of atoms or molecules. The more rapid the motion, the greater
the temperature.

In a discussion of the ideas of Carnot and Clausius, Maxwell introduced a model system
consisting of a gas-filled box divided into two parts by a wall; and in this wall, Maxwell
imagined a small weightless door operated by a ”demon”. Initially, Maxwell let the tem-
perature and pressure in both parts of the box be equal. However, he made his demon
operate the door in such a way as to sort the gas particles: Whenever a rapidly-moving
particle approaches from the left, Maxwell’s demon opens the door; but when a slowly
moving particle approaches from the left, the demon closes it. The demon has the opposite
policy for particles approaching from the right, allowing the slow particles to pass, but
turning back the fast ones. At the end of Maxwell’s thought experiment, the particles are
sorted, with the slow ones to the left of the barrier, and the fast ones to the right. Although
initially, the temperature was uniform throughout the box, at the end a temperature dif-
ference has been established, the entropy of the total system is decreased and the second
law of thermodynamics is violated.

In 1871, Maxwell expressed these ideas in the following words: “If we conceive of a
being whose faculties are so sharpened that he can follow every molecule in its course,
such a being, whose attributes are still finite as our own, would be able to do what is at
present impossible to us. For we have seen that the molecules in a vessel full of air are
moving at velocities by no means uniform... Now let us suppose that such a vessel full of
air at a uniform temperature is divided into two portions, A and B, by a division in which
there is a small hole, and that a being who can see individual molecules, opens and closes

359
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Figure 20.1: James Clark Maxwell by Jemima Blackburn.

Figure 20.2: Maxwell’s demon, a thought experiment where entropy decreases.
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swifter molecules to pass from A to B, and only slower ones to pass from B to A. He will
thus, without the expenditure of work, raise the temperature of B and lower that of A,
in contradiction to the second law of thermodynamics.” Of course Maxwell admitted that
demons and weightless doors do not exist. However, he pointed out, one could certainly
imagine a small hole in the partition between the two halves of the box. The sorting
could happen by chance (although the probability of its happening decreases rapidly as
the number of gas particles becomes large). By this argument, Maxwell demonstrated that
the second law of thermodynamics is a statistical law.

An extremely interesting aspect of Maxwell’s thought experiment is that his demon
uses information to perform the sorting. The demon needs information about whether an
approaching particle is fast or slow in order to know whether or not to open the door.

Finally, after the particles have been sorted, we can imagine that the partition is taken
away so that the hot gas is mixed with the cold gas. During this mixing, the entropy of
the system will increase, and information (about where to find fast particles and where
to find slow ones) will be lost. Entropy is thus seen to be a measure of disorder or lack
of information. To decrease the entropy of a system, and to increase its order, Maxwell’s
demon needs information. In the opposite process, the mixing process, where entropy
increases and where disorder increases, information is lost.

20.2 Statistical mechanics

Besides inventing an interesting demon (and besides his monumental contributions to elec-
tromagnetic theory), Maxwell also helped to lay the foundations of statistical mechanics.
In this enterprise, he was joined by the Austrian physicist Ludwig Boltzmann (1844-1906)
and by an American, Josiah Willard Gibbs, whom we will discuss later. Maxwell and
Boltzmann worked independently and reached similar conclusions, for which they share
the credit. Like Maxwell, Boltzmann also interpreted an increase in entropy as an increase
in disorder; and like Maxwell he was a firm believer in atomism at a time when this belief
was by no means universal. For example, Ostwald and Mach, both important figure in
German science at that time, refused to believe in the existence of atoms, in spite of the
fact that Dalton’s atomic ideas had proved to be so useful in chemistry. Towards the end of
his life, Boltzmann suffered from periods of severe depression, perhaps because of attacks
on his scientific work by Ostwald and others. In 1906, while on vacation near Trieste, he
committed suicide - ironically, just a year before the French physicist J.B. Perrin produced
irrefutable evidence of the existence of atoms.

Maxwell and Boltzmann made use of the concept of “phase space”, a 6N -dimensional
space whose coordinates are the position and momentum coordinates of each of N particles.
However, in discussing statistical mechanics we will use a more modern point of view, the
point of view of quantum theory, according to which a system may be in one or another of
a set of discrete states, i = 1,2,3,... with energies εi. Let us consider a set of N identical,
weakly-interacting systems; and let us denote the number of the systems which occupy a
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particular state by nj, as shown in equation

State number 1 2 3 ... i ...

Energy ε1, ε2, ε3, ... εi, ...

Occupation number n1, n2, n3, ... ni, ...

(20.1)

the energy levels and their occupation numbers. This macrostate can be constructed in
many ways, and each of these ways is called a “microstate”: For example, the first of the
N identical systems may be in state 1 and the second in state 2; or the reverse may be
the case; and the two situations correspond to different microstates. From combinatorial
analysis it is possible to show that the number of microstates corresponding to a given
macrostate is given by:

W =
N !

n1!n2!n3!...ni!...
(20.2)

Boltzmann was able to show that the entropy SN of the N identical systems is related to
the quantity W by the equation

SN = k lnW (20.3)

where k is the constant which appears in the empirical law relating the pressure, volume
and absolute temperature of an ideal gas;

PV = NkT (20.4)

This constant,

k = 1.38062× 10−23 joule

kelvin
(20.5)

is called Boltzmann’s constant in his honor. Boltzmann’s famous equation relating entropy
to missing information, equation (4.6), is engraved on his tombstone. A more detailed
discussion of Boltzmann’s statistical mechanics is given in Appendix 1.

20.3 Information theory; Shannon’s formula

We have seen that Maxwell’s demon needed information to sort gas particles and thus
decrease entropy; and we have seen that when fast and slow particles are mixed so that
entropy increases, information is lost. The relationship between entropy and lost or missing
information was made quantitative by the Hungarian-American physicist Leo Szilard (1898-
1964) and by the American mathematician Claude Shannon (1916-2001). In 1929, Szilard
published an important article in Zeitschrift für Physik in which he analyzed Maxwell’s
demon. In this famous article, Szilard emphasized the connection between entropy and
missing information. He was able to show that the entropy associated with a unit of
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Figure 20.3: The Hungarian physicist Leo Szilard, whose famous 1929 paper first
made the connection between entropy and information using the formula k ln 2,
where k is Boltzmann’s constant.
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Figure 20.4: A photograph of Claude Shannon.

Figure 20.5: John von Neumann, who advised Shannon to call missing informa-
tion “entropy”.
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information is k ln 2, where k is Boltzmann’s constant. We will discuss this relationship in
more detail below.

Claude Shannon is usually considered to be the “father of information theory”. Shan-
non graduated from the University of Michigan in 1936, and he later obtained a Ph.D. in
mathematics from the Massachusetts Institute of Technology. He worked at the Bell Tele-
phone Laboratories, and later became a professor at MIT. In 1949, motivated by the need
of AT&T to quantify the amount of information that could be transmitted over a given
line, Shannon published a pioneering study of information as applied to communication
and computers. Shannon first examined the question of how many binary digits are needed
to express a given integer Ω. In the decimal system we express an integer by telling how
many 1’s it contains, how many 10’s, how many 100’s, how many 1000’s, and so on. Thus,
for example, in the decimal system,

105 = 1× 102 + 0× 101 + 1× 100 (20.6)

Any integer greater than or equal to 100 but less than 1000 can be expressed with 3 decimal
digits; any number greater than or equal to 1000 but less than 10,000 requires 4, and so
on.

The natural language of computers is the binary system; and therefore Shannon asked
himself how many binary digits are needed to express an integer of a given size. In the
binary system, a number is specified by telling how many of the various powers of 2 it
contains. Thus, the decimal integer 105, expressed in the binary system, is

1101001 ≡ 1× 26 + 1× 25 + 0× 24 + 1× 23 + 0× 22 + 0× 21 + 1× 20 (20.7)

In the many early computers, numbers and commands were read in on punched paper
tape, which could either have a hole in a given position, or else no hole. Shannon wished
to know how long a strip of punched tape is needed to express a number of a given size
- how many binary digits are needed? If the number happens to be an exact power of 2,
then the answer is easy: To express the integer

Ω = 2n (20.8)

one needs n + 1 binary digits. The first binary digit, which is 1, gives the highest power of
2, and the subsequent digits, all of them 0, specify that the lower powers of 2 are absent.
Shannon introduced the word “bit” as an abbreviation of “binary digit”. He generalized
this result to integers which are not equal to exact powers of 2: Any integer greater than
or equal to 2n−l, but less than 2n, requires n binary digits or “bits”. In Shannon’s theory,
the bit became the unit of information. He defined the quantity of information needed to
express an arbitrary integer Ω as

I = log2 Ωbits =
ln Ω

ln 2
bits = 1.442695 ln Ω bits (20.9)

or
I = K ln Ω K = 1.442695 bits (20.10)
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Of course the information function I, as defined by equation (4.13), is in general not an
integer, but if one wishes to find the exact number of binary digits required to express a
given integer Ω, one can calculate I and round upwards1.

Shannon went on to consider quantitatively the amount of information which is missing
before we perform an experiment, the result of which we are unable to predict with cer-
tainty. (For example, the “experiment” might be flipping a coin or throwing a pair of dice.)
Shannon first calculated the missing information, IN , not for a single performance of the
experiment but for N independent performances. Suppose that in a single performance,
the probability that a particular result i will occur is given by Pi. If the experiment is
performed N times, then as N becomes very large, the fraction of times that the result
i occurs becomes more and more exactly equal to Pi. For example, if a coin is flipped
N times, then as N becomes extremely large, the fraction of “heads” among the results
becomes more and more nearly equal to 1/2. However, some information is still missing
because we still do not know the sequence of the results. Shannon was able to show from
combinatorial analysis, that this missing information about the sequence of the results is
given by

IN = K ln Ω (20.11)

where

Ω =
N !

n1!n2!n3!...ni!...
ni ≡ NPi (20.12)

or

IN = K ln Ω = K

[
ln(N !)−

∑
i

ln(ni)

]
(20.13)

Shannon then used Sterling’s approximation, ln(ni!) ≈ ni(lnni − 1), to rewrite (4.16) in
the form

IN = −KN
∑
i

Pi lnPi (20.14)

Finally, dividing by N , he obtained the missing information prior to the performance of a
single experiment:

I = −K
∑
i

Pi lnPi (20.15)

For example, in the case of flipping a coin, Shannon’s equation, (4.18), tells us that the
missing information is

I = −K
[

1

2
ln

(
1

2

)
+

1

2
ln

(
1

2

)]
= 1 bit (20.16)

As a second example, we might think of an “experiment” where we write the letters of the
English alphabet on 26 small pieces of paper. We then place them in a hat and draw out
one at random. In this second example,

Pa = Pb = ... = Pz =
1

26
(20.17)

1 Similar considerations can also be found in the work of the statistician R.A. Fisher.
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and from Shannon’s equation we can calculate that before the experiment is performed,
the missing information is

I = −K
[

1

26
ln

(
1

26

)
+

1

26
ln

(
1

26

)
+ ...

]
= 4.70 bits (20.18)

If we had instead picked a letter at random out of an English book, the letters would not
occur with equal probability. From a statistical analysis of the frequency of the letters, we
would know in advance that

Pa = 0.078, Pb = 0.013, ... Pz = 0.001 (20.19)

Shannon’s equation would then give us a slightly reduced value for the missing information:

I = −K [0.078 ln 0.078 + 0.013 ln 0.013 + ...] = 4.15 bits (20.20)

Less information is missing when we know the frequencies of the letters, and Shannon’s
formula tells us exactly how much less information is missing.

When Shannon had been working on his equations for some time, he happened to visit
the mathematician John von Neumann, who asked him how he was getting on with his
theory of missing information. Shannon replied that the theory was in excellent shape,
except that he needed a good name for “missing information”. “Why don’t you call it
entropy?”, von Neumann suggested. “In the first place, a mathematical development very
much like yours already exists in Boltzmann’s statistical mechanics, and in the second
place, no one understands entropy very well, so in any discussion you will be in a position
of advantage!” Like Leo Szilard, von Neumann was a Hungarian-American, and the two
scientists were close friends. Thus von Neumann was very much aware of Szilard’s paper
on Maxwell’s demon, with its analysis of the relationship between entropy and missing
information. Shannon took von Neumann’s advice, and used the word “entropy” in his pi-
oneering paper on information theory. Missing information in general cases has come to be
known as “Shannon entropy”. But Shannon’s ideas can also be applied to thermodynamics.

20.4 Entropy expressed as missing information

From the standpoint of information theory, the thermodynamic entropy SN of an ensemble
of N identical weakly-interacting systems in a given macrostate can be interpreted as the
missing information which we would need in order to specify the state of each system, i.e.
the microstate of the ensemble. Thus, thermodynamic information is defined to be the
negative of thermodynamic entropy, i.e. the information that would be needed to specify
the microstate of an ensemble in a given macrostate. Shannon’s formula allows this missing
information to be measured quantitatively. Applying Shannon’s formula, equation (4.13),
to the missing information in Boltzmann’s problem we can identify W with Ω, SN with
IN , and k with K:

W → Ω SN → IN k → K =
1

ln 2
bits (20.21)
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so that

k ln 2 = 1 bit = 0.95697× 10−23 joule

kelvin
(20.22)

and
k = 1.442695 bits (20.23)

This implies that temperature has the dimension energy/bit:

1 degree Kelvin = 0.95697× 10−23 joule

bit
(20.24)

From this it follows that

1
joule

kelvin
= 1.04496× 1023 bits (20.25)

If we divide equation (4.28) by Avogadro’s number we have

1
joule

kelvin mol
=

1.04496× 1023 bits/molecule

6.02217× 1023 molecules/mol
= 0.17352

bits

molecule
(20.26)

Figure 4.1 shows the experimentally-determined entropy of ammonia, NH3, as a function
of the temperature, measured in kelvins. It is usual to express entropy in joule/kelvin-mol;
but it follows from equation (4.29) that entropy can also be expressed in bits/molecule, as
is shown in the figure. Since

1 electron volt = 1.6023× 10−19 joule (20.27)

it also follows from equation (4.29) that

1
electron volt

kelvin
= 1.6743× 104 bits (20.28)

Thus, one electron-volt of energy, converted into heat at room temperature, T =298.15
kelvin, will produce an entropy change (or thermodynamic information change) of

1 electron volt

298.15 kelvin
= 56.157 bits (20.29)

When a system is in thermodynamic equilibrium, its entropy has reached a maximum;
but if it is not in equilibrium, its entropy has a lower value. For example, let us think of the
case which was studied by Clausius when he introduced the concept of entropy: Clausius
imagined an isolated system, divided into two parts, one of which has a temperature Ti,
and the other a lower temperature, T2. When heat is transferred from the hot part to the
cold part, the entropy of the system increases; and when equilibrium is finally established
at some uniform intermediate temperature, the entropy has reached a maximum. The
difference in entropy between the initial state of Clausius’ system and its final state is
a measure of how far away from thermodynamic equilibrium it was initially. From the
discussion given above, we can see that it is also possible to interpret this entropy difference
as the system’s initial content of thermodynamic information.
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Figure 20.6: This figure shows the entropy of ammonia as a function of temperature. It is
usual to express entropy in joule/kelvin-mol, but it can also be expressed in bits/molecule.

Similarly, when a photon from the sun reaches (for example) a drop of water on the
earth, the initial entropy of the system consisting of the photon plus the drop of water
is smaller than at a later stage, when the photon’s energy has been absorbed and shared
among the water molecules, with a resulting very slight increase in the temperature of
the water. This entropy difference can be interpreted as the quantity of thermodynamic
information which was initially contained in the photon-drop system, but which was lost
when the photon’s free energy was degraded into heat. Equation (4.32) allows us to express
this entropy difference in terms of bits. For example, if the photon energy is 2 electron-
volts, and if the water drop is at a temperature of 298.15 degrees Kelvin, then ∆S = 112.31
bits; and this amount of thermodynamic information is available in the initial state of the
system. In our example, the information is lost; but if the photon had instead reached the
leaf of a plant, part of its energy, instead of being immediately degraded, might have been
stabilized in the form of high-energy chemical bonds. When a part of the photon energy is
thus stabilized, not all of the thermodynamic information which it contains is lost; a part
is conserved and can be converted into other forms of information.
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20.5 Cybernetic information compared with thermo-

dynamic information

From the discussion given above we can see that there is a close analogy between Shannon
entropy and thermodynamic entropy, as well as a close analogy between cybernetic infor-
mation and thermodynamic information. However, despite the close analogies, there are
important differences between Shannon’s quantities and those of Boltzmann. Cybernetic
information (also called semiotic information) is an abstract quantity related to messages,
regardless of the physical form through which the messages are expressed, whether it is
through electrical impulses, words written on paper, or sequences of amino acids. Thermo-
dynamic information, by contrast, is a temperature-dependent and size-dependent physical
quantity. Doubling the size of the system changes its thermodynamic information content;
but neither doubling the size of a message written on paper, nor warming the message will
change its cybernetic information content. Furthermore, many exact copies of a message
do not contain more cybernetic information than the original message.

The evolutionary process consists in making many copies of a molecule or a larger
system. The multiple copies then undergo random mutations; and after further copying,
natural selection preserves those mutations that are favorable. It is thermodynamic infor-
mation that drives the copying process, while the selected favorable mutations may be said
to contain cybernetic information.

20.6 The information content of Gibbs free energy

At the beginning of this chapter, we mentioned that the American physicist Josiah Willard
Gibbs (1839-1903) made many contributions to thermodynamics and statistical mechanics.
In 1863, Gibbs received from Yale the first Ph.D. in engineering granted in America,
and after a period of further study in Prance and Germany, he became a professor of
mathematical physics at Yale in 1871, a position which he held as long as he lived. During
the period between 1876 and 1878, he published a series of papers in the Transactions
of the Connecticut Academy of Sciences. In these papers, about 400 pages in all, Gibbs
applied thermodynamics to chemical reactions. (The editors of the Transactions of the
Connecticut Academy of Sciences did not really understand Gibbs’ work, but, as they said
later, “We knew Gibbs, and we took his papers on faith”.)

Because the journal was an obscure one, and because Gibbs’ work was so highly math-
ematical, it remained almost unknown to European scientists for a long period. However,
in 1892 Gibbs’ papers were translated into German by Ostwald, and in 1899 they were
translated into French by Le Chatelier; and then the magnitude of Gibbs’ contribution was
finally recognized. One of his most important innovations was the definition of a quantity
which we now call “Gibbs free energy”. This quantity allows one to determine whether or
not a chemical reaction will take place spontaneously.

Chemical reactions usually take place at constant pressure and constant temperature.
If a reaction produces a gas as one of its products, the gas must push against the pressure
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of the earth’s atmosphere to make a place for itself. In order to take into account the
work done against external pressure in energy relationships, the German physiologist and
physicist Hermann von Helmholtz introduced a quantity (which we now call heat content
or enthalpy) defined by

H = U + PV (20.30)

where U is the internal energy of a system, P is the pressure, and V is the system’s volume.
Gibbs went one step further than Helmholtz, and defined a quantity which would also

take into account the fact that when a chemical reaction takes place, heat is exchanged
with the surroundings. Gibbs defined his free energy by the relation

G = U + PV − TS (20.31)

or
G = H − TS (20.32)

where S is the entropy of a system, H is its enthalpy, and T is its temperature.
Gibbs’ reason for introducing the quantity G is as follows: The second law of thermo-

dynamics states that in any spontaneous process, the entropy of the universe increases.
Gibbs invented a simple model of the universe, consisting of the system (which might, for
example, be a beaker within which a chemical reaction takes place) in contact with a large
thermal reservoir at constant temperature. The thermal reservoir could, for example, be
a water bath so large that whatever happens in the chemical reaction, the temperature of
the bath will remain essentially unaltered. In Gibbs’ simplified model, the entropy change
of the universe produced by the chemical reaction can be split into two components:

∆Suniverse = ∆Ssystem + ∆Sbath (20.33)

Now suppose that the reaction is endothermic (i.e. it absorbs heat). Then the reaction
beaker will absorb an amount of heat ∆Hsystem from the bath, and the entropy change of
the bath will be

∆Sbath = −∆Hsystem

T
(20.34)

Combining (4.36) and (4.37) with the condition requiring the entropy of the universe to
increase, Gibbs obtained the relationship

∆Suniverse = ∆Ssystem −
∆Hsystem

T
> 0 (20.35)

The same relationship also holds for exothermic reactions, where heat is transferred in the
opposite direction. Combining equations (4.38) and (4.35) yields

∆Gsystem = −T∆Suniverse < 0 (20.36)

Thus, the Gibbs free energy for a system must decrease in any spontaneous chemical
reaction or process which takes place at constant temperature and pressure. We can
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also see from equation (4.39) that Gibbs free energy is a measure of a system’s content of
thermodynamic information. If the available free energy is converted into heat, the quantity
of thermodynamic information ∆Suniverse = −∆Gsystem/T is lost, and we can deduce that
in the initial state of the system, this quantity of information was available. Under some
circumstances the available thermodynamic information can be partially conserved. In
living organisms, chemical reactions are coupled together, and Gibbs free energy, with its
content of thermodynamic information, can be transferred from one compound to another,
and ultimately converted into other forms of information.

Measured values of the “Gibbs free energy of formation”, ∆G◦f , are available for many
molecules. To construct tables of these values, the change in Gibbs free energy is measured
when the molecules are formed from their constituent elements. The most stable states of
the elements at room temperature and atmospheric pressure are taken as zero points. For
example, water in the gas phase has a Gibbs free energy of formation

∆G◦f (H2O) = −228.59
kJ

mol
(20.37)

This means that when the reaction

H2(g) +
1

2
O2(g)→ H2O(g) (20.38)

takes place under standard conditions, there is a change in Gibbs free energy of ∆G◦ =
–228.59 kJ/mol 2. The elements hydrogen and oxygen in their most stable states at room
temperature and atmospheric pressure are taken as the zero points for Gibbs free energy
of formation. Since ∆G◦ is negative for the reaction shown in equation (4.41), the reaction
is spontaneous. In general, the change in Gibbs free energy in a chemical reaction is given
by

∆G◦ =
∑

products

∆G◦f −
∑

reactants

∆G◦f (20.39)

where ∆G◦f denotes the Gibbs free energy of formation.
As a second example, we can consider the reaction in which glucose is burned:

C6H12O6(s) + 6O2(g)→ 6CO2(g) + 6H2O(g) ∆G◦ = −2870
kJ

mol
(20.40)

From equation (4.29) it follows that in this reaction,

−∆G◦

T
= 1670

bits

molecule
(20.41)

If the glucose is simply burned, this amount of information is lost; but in a living organism,
the oxidation of glucose is usually coupled with other reactions in which a part of the

2 The superscript ◦ means “under standard conditions”, while kJ is an abbreviation for joule×103.
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available thermodynamic information is stored, or utilized to do work, or perhaps converted
into other forms of information.

The oxidation of glucose illustrates the importance of enzymes and specific coupling
mechanisms in biology. A lump of glucose can sit for years on a laboratory table, fully
exposed to the air. Nothing will happen. Even though the oxidation of glucose is a
spontaneous process - even though the change in Gibbs free energy produced by the reaction
would be negative - even though the state of the universe after the reaction would be much
more probable than the initial state, the reaction does not take place, or at least we would
have to wait an enormously long time to see the glucose oxidized, because the reaction
pathway is blocked by potential barriers.
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Chapter 21

MARYAM MIRZAKHANI

21.1 Family and education in Tehran

Maryam Mirzakhani (1977-2017) was born in Tehran, Iran. As a child, she attended Tehran
Farzanegan School, which was part of an Iranian national program for the development of
exceptional talents.

While in high school, Maryam Mirzakhani won the gold medal for mathematics in the
Iranian National Olympiad, and in 1994, at the age of 17, she won a gold medal at the
International Mathematical Olympiad in Hong Kong. The following year, she won a second
international gold medal at the International Mathematical Olympiad in Toronto, Canada.

Maryam Mirzakhani and her friend and colleague Roya Beheshti Zavareh, were two of
the few survivors of a tragic accident in which a bus on which they were riding drove off a
cliff in a rainstorm. Zavareh, a sliver medalist at the Hong Kong Mathematical Olympiad,
later collaborated with Mirzakhani in writing a book entitled Elementary Number Theory,
Challenging Problems. The book was published in 1999.

21.2 A Ph.D. from Harvard

After obtaining a B.Sc. degree in mathematics from the Sharif University of Technology in
Iran, Maryam Mirzakhani traveled to the United States and enrolled as a Ph.D. student at
Harvard University. Her friend, Roya Zavareh, also went to the United States too, enrolling
in the Massachusetts Institute of Technology, which was not far away from Harvard. The
two friends saw each other frequently, and were like sisters.

Maryam Mirzakhani completed her Ph.D. at Harvard in 2004 under the direction of
Curtis T. McMullen. In her thesis she showed how to compute the Weil-Petersson volume
of the moduli space of bordered Riemann surfaces.
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21.3 Mirzakhani becomes a Stanford University pro-

fessor

In 2004, Maryam Mirzakhani became a research fellow at the Clay Mathematics Institute
at Princeton University. In 2009, she became a full professor at Stanford University. She
married the Czech theoretical computer scientist and applied mathematician named Jan
Vondrák, who is currently an associate professor at Stanford. They have a daughter named
Anashita.

21.4 The Fields Medal

The Fields Medal is awarded at a meeting of the International Congress of the International
Mathematical Union, a meeting which takes place every four years. The prize is awarded
to two, three or four mathematicians, who must be less than 40 years old. Together with
the Abel Prize, the Fields Medal is regarded as the most prestigious award in mathematics.

In 2014, Maryam Mirzakhani was awarded the Fields medal “for her outstanding con-
tributions to the dynamics and geometry of Riemann surfaces and their moduli spaces.”
She was the first woman and the first Iranian to receive the medal.

Iran’s president, Hassan Rouhani, praised Mirzakhani’s achievement with the words:
“Today, all Iranians can be proud that the first woman to win the Fields award is their
compatriot. All Iranians throughout the world are national assets for this country, and as
the representative of the Iranian people, I pay my respects to your scientific endeavors. I
hope your life is filled with happiness and success.”

However, at the time of the Fields Medal award, Maryam Mirzakhani was already
seriously ill with breast cancer, which had mestasticized, and was affecting other parts of
her body. Her reaction to the Fields Medal announcement was anxiety that she might
be too ill to appear at the award ceremony. She did have the strength to appear at the
ceremony, where her friends, realizing how ill she was, tried to protect her from the many
reporters who wanted to have interviews.

When Maryam Mirzakhani died in 2017, she was mourned and eulogized by mathe-
maticians throughout the world.

Roya Beheshti remembers her lifelong friend

When we were teenagers, Maryam and I would often talk about where in life we wanted
to be at forty. In our minds, forty was the peak of everything in life. What I could not
imagine was that one of us would be writing in memory of the other at forty.

I met Maryam in 1988 when we were both eleven and had just started middle school.
We became close friends almost instantly, and for the next seven years at school we sat
next to each other at a shared desk. My early memories of her are that she was well read,
had a passion for writing, could easily get into heated debates over social or political issues,
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and would get very bitter about any kind of prejudice against women. Our friendship did
not have its genesis in math. In fact, math was the only subject at which Maryam was not
among the top students in the sixth grade. A memory that I distinctly recall is when our
math teacher was returning our tests to us toward the end of the academic year. Maryam
had received a score of sixteen out of twenty, and although the test had been difficult, there
were students who had done better than that. Maryam was so frustrated by her score that
before putting the test in her bag, she tore it apart, and announced that that was it for her
and she was not going to even try to do better at math! That did not last long. After the
summer break, Maryam came back with her confidence regained and started to do very
well. Soon after that math became a shared passion between us, and we started to spend
a lot of time thinking and talking about math.

The middle/high school that we went to was a special school for gifted female students
in Tehran. Each year around one hundred students were admitted to that school through
a competitive entrance exam. The principal of the school, Ms. Haerizadeh, was a strong
woman with a vision who would always do anything to make sure that the students in our
school had the same opportunities as the students in the equivalent boys’ school. We had
a strong team of teachers, and the overall environment was very encouraging for students
who were interested in math or science.

When we entered middle school the Iran-Iraq War had been over for a month, and
the country was becoming more stable.1 Around that time a few programs for high school
students were initiated that I think played a big role in developing interest in mathematics
for several Iranian mathematicians of my generation. One of them was the Math Olympiad
competitions. Another was a summer workshop run by Sharif University for high school
students to introduce them to college-level mathematics. We participated in that workshop
the summer after ninth grade. That workshop had a major impact on Maryam’s growing
interest in math and resulted in her first publication (joint with Professor E. Mahmoodian).
We participated in the Math Olympiad competitions in the eleventh grade and made it
to the national team as the first female students on the team (see above). From 1995
to 1999 we attended Sharif University, the leading technical university in Iran, where we
got a lot of support from our professors and the chair of the mathematics department,
Y. Tabesh. By then Maryam had become very ambitious about her future in math, and
her life was not imaginable without it. Although the universities, unlike the high schools,
are coeducational in Iran, many forms of gender segregation were imposed in the 1990s.
The atmosphere within the math department, however, was relaxed and friendly, and there
were various activities from workshops to math competitions to reading seminars that kept
us motivated and stimulated an even stronger passion for mathematics. There were six of
us in our class who decided to apply to graduate schools in the US during our junior year.
To increase the chances of all of us getting admitted to top-tier schools, we decided to
each choose a school to which the others would not apply. Harvard and MIT were natural
choices for Maryam and me because we wanted to stay close to each other. We all moved
to universities in the northeastern US in 1999.

Maryam and I continued to see each other very often until 2003, when I left Boston.
She was very generous with her time when it came to discussing math and was always
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happy to meet and talk about any problem I was thinking about. I remember in fall 1999
I took a course that Maryam was auditing. The final was a take-home exam, which I had
planned to complete overnight. Maryam came to my office for moral support in case I had
to stay up late to finish the exam. The last problem looked difficult, so I discussed it with
Maryam. She got interested in it, and we thought on it for a while without success. After
a few hours I gave up, as I was too sleepy and decided that I had done enough for the
exam. But, as would always be her pattern, Maryam persisted. She stayed up all night
working on it, and when I woke up early in the morning, she had figured out how to do
the problem and was checking the last steps of her solution.

Maryam’s work was always driven by a certain pure joy that did not change over the
years by experience or wisdom. She drew pleasure from doing advanced mathematics in
the same way as she did from solving high school-level Math Olympiad problems. She was
driven by this joy and certainly not by a desire for fame or influence, and she continued to
be driven by it even when fame and influence came within her reach. She avoided public
attention religiously and that helped her stay focused on her research in the midst of the
celebrity she attained winning the Fields Medal while also dealing with cancer.

I was at a workshop at MSRI in May 2013 when I received a message from Maryam
informing me of her diagnosis. She had recently come back from a trip to Europe and Iran,
and I had planned to meet with her after the workshop. When I saw her a couple of days
later at Stanford, she was worried about the effect of the illness on her daughter and her
career but was determined to stay hopeful and upbeat. In the four years that followed, she
stubbornly focused on the positive and refrained from complaining about the problems she
was dealing with in the same way that she always avoided talking about her achievements.
Even after she was diagnosed with recurrent cancer and the odds were not in her favor,
she maintained hope and handled the situation with grit and grace.

In her final month, the last time I met Maryam at her home, I told her that I had
just read how difficult and painful one of her treatments was and expressed surprise that
she had never complained about it. She dismissed that as something not worth focusing
on and changed the topic. We then talked about various audiobooks that she planned to
listen to. She was, as always, warm and engaging and got radiant and happy when her
daughter interrupted us, jumping around Maryam and telling her that she loved her new
bike. This is how I am going to always remember Maryam.
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Figure 21.1: Maryam Mirzakhani (1977-2017). She was the only woman and the
first Iranian to win the Fields Medal. She developed important theorems in
differential geometry and in the study of geodesics on Riemannian surfaces and
surfaces with various topologies.
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21.5 Awards, fellowships, and other honors

• Gold medal. International Mathematical Olympiad (Hong Kong 1994)
• Gold medal. International Mathematical Olympiad (Canada 1995)
• IPM Fellowship, Tehran, Iran, 1995-1999
• Merit fellowship Harvard University, 2003
• Harvard Junior Fellowship Harvard University, 2003
• Clay Mathematics Institute Research Fellow 2004
• AMS Blumenthal Award 2009
• Invited to talk at the International Congress of Mathematicians in 2010, on the topic

of “Topology and Dynamical Systems & ODE”
• The 2013 AMS Ruth Lyttle Satter Prize in Mathematics. ”Presented every two years

by the American Mathematical Society, the Satter Prize recognizes an outstanding
contribution to mathematics research by a woman in the preceding six years. The
prize was awarded on 10 January 2013, at the Joint Mathematics Meetings in San
Diego.”
• Simons Investigator Award 2013
• Named one of Nature magazine’s ten “people who mattered” of 2014
• Clay Research Award 2014
• Fields Medal 2014
• Elected foreign associate to the French Academy of Sciences in 2015
• Elected to the American Philosophical Society in 2015
• National Academy of Sciences 2016
• Elected to the American Academy of Arts and Sciences in 2017
• Asteroid 321357 Mirzakhani was named in her memory.[88] The official naming cita-

tion was published by the Minor Planet Center (MPC 108698).
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Appendix A

TABLES OF DIFFERENTIALS,
INTEGRALS AND SERIES

In the tables shown below, f and g are functions of t, while a and C are constants. The
tables include

• Some fundemental differentials

• Some fundemental indefinite integrals

• A few important definite integrals

• Series expansions of functions
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Table A.1: Some fundemental differentials

d

dt
[tp] = ptp−1

d

dt
[f + g] =

df

dt
+
dg

dt

d

dt
[fg] = f

dg

dt
+ g

df

dt

d

dt

[
f

g

]
=

1

g2

[
g
df

dt
− f dg

dt

]

d

dt

[
eat
]

= aeat

d

dt
[ln(t)] =

1

t

d

dt
[f(g)] =

df

dg

dg

dt

d

dt
[sin(at)] = a cos(at)
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Table A.2: Some fundemental differentials (continued)

d

dt
[cos(at)] = −a sin(at)

d

dt
[sinh(at)] = a cosh(at)

d

dt
[cosh(at)] = a sinh(at)

d

dt

[
sin−1(t)

]
=

1√
1− t2

d

dt

[
cos−1(t)

]
=

−1√
1− t2

d

dt

[
tan−1(t)

]
=

1

1 + t2

d

dt

[
cot−1(t)

]
=

−1

1 + t2
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Table A.3: Some fundemental indefinite integrals

∫
dt tp =

tp+1

p+ 1
+ C p 6= −1

∫
dt t−1 = ln(t) + C

∫
dt eat =

eat

a
+ C

∫
dt cos(at) =

sin(at)

a
+ C

∫
dt sin(at) = −cos(at)

a
+ C

∫
dt sinh(at) =

cosh(at)

a
+ C

∫
dt cosh(at) =

sinh(at)

a
+ C
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Table A.4: A few important definite integrals

∫ ∞
0

dt tne−at =
n!

an+1
n = positive integer

∫ ∞
0

dt t2ne−at
2

=
(2n− 1)!!

2n+1an

√
π

a
n = integer

∫ ∞
0

dt tpe−t ≡ Γ(p+ 1)

∫ ∞
0

dt
a

a2 + t2
= ±π

2
± a > 0, a real

∫ ∞
0

dt
tp−1

1 + t
=

π

sin(pπ)
1 > p > 0, p real

∫ ∞
0

dt
sin2(t)

t2
=

π

2

∫ ∞
0

dt
sin(at)

t
=

π

2
a > 0

∫ π

0

dt sin2(nt) =
π

2
n = integer

∫ π

0

dt cos2(nt) =
π

2
n = integer

∫ π

0

dt sin(nt) sin(mt) = n, m = integers n 6= m

∫ π

0

dt cos(nt) cos(mt) = n, m = integers n 6= m
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Table A.5: Series expansions of functions

e = 1 +
1

1!
+

1

2!
+

1

3!
+

1

4!
+

1

5!
+ · · ·

et = 1 +
t

1!
+
t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+ · · ·

at = 1 +
t ln(a)

1!
+

[t ln(a)]2

2!
+

[t ln(a)]3

3!
+ · · ·

et = 1 +
t

1!
+
t2

2!
+
t3

3!
+
t4

4!
+
t5

5!
+ · · ·

ln(1 + t) =
t

1!
− t2

2!
+
t3

3!
− t4

4!
+
t5

5!
+ · · · − 1 < t ≤ 1

cos(t) = 1−t
2

2!
+
t4

4!
− t6

6!
+ · · ·

sin(t) =
t

1!
− t3

3!
+
t5

5!
− t7

7!
+ · · ·

cosh(t) = 1 +
t2

2!
+
t4

4!
+
t6

6!
+ · · ·

sinh(t) = t+
t3

3!
+
t5

5!
+
t7

7!
+ · · ·
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THE HISTORY OF COMPUTERS

B.1 Pascal and Leibniz

If civilization survives, historians in the distant future will undoubtedly regard the inven-
tion of computers as one of the most important steps in human cultural evolution - as
important as the invention of writing or the invention of printing. The possibilities of ar-
tificial intelligence have barely begun to be explored, but already the impact of computers
on society is enormous.

The invention of transisters was a crucial step in the history of computers, and this
invention in turn depended on the development of quantum theory. Thus quantum theory,
despite its highly abstract nature, has had an enormous impact on the modern world.

The first programmable universal computers were completed in the mid-1940’s; but
they had their roots in the much earlier ideas of Blaise Pascal (1623-1662), Gottfried
Wilhelm Leibniz (1646-1716), Joseph Marie Jacquard (1752-1834) and Charles Babbage
(1791-1871).

In 1642, the distinguished French mathematician and philosopher Blaise Pascal com-
pleted a working model of a machine for adding and subtracting. According to tradition,
the idea for his “calculating box” came to Pascal when, as a young man of 17, he sat
thinking of ways to help his father (who was a tax collector). In describing his machine,
Pascal wrote: “I submit to the public a small machine of my own invention, by means of
which you alone may, without any effort, perform all the operations of arithmetic, and may
be relieved of the work which has often times fatigued your spirit when you have worked
with the counters or with the pen.”

Pascal’s machine worked by means of toothed wheels. It was much improved by Leibniz,
who constructed a mechanical calculator which, besides adding and subtracting, could also
multiply and divide. His first machine was completed in 1671; and Leibniz’ description of
it, written in Latin, is preserved in the Royal Library at Hanover: “There are two parts
of the machine, one designed for addition (and subtraction), and the other designed for
multiplication (and division); and they should fit together. The adding (and subtracting)
machine coincides completely with the calculating box of Pascal. Something, however,
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Figure B.1: Blaise Pascal (1623-1662) was a French mathematician, physicist,
writer, inventor and theologian. Pascal, a child prodigy, was educated by his
father, who was a tax-collector. He invented his calculating box to make his
father’s work less tedious.
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Figure B.2: The German mathematician, philosopher and universal genius Got-
tfried Wilhelm von Leibniz (1646-1716) was a contemporary of Isaac Newton.
He invented differential and integral calculus independently, just as Newton
had done many years earlier. However, Newton had not published his work on
calculus, and thus a bitter controversy over priority was precipitated. When
his patron, the Elector of Hanover moved to England to become George I,
Leibniz was left behind because the Elector feared that the controversy would
alienate the English. Leibniz extended Pascal’s calculating box so that it could
perform multiplication and division. Calculators of his design were still being
used in the 1960’s.

must be added for the sake of multiplication...”

“The wheels which represent the multiplicand are all of the same size, equal to that of
the wheels of addition, and are also provided with ten teeth which, however, are movable
so that at one time there should protrude 5, at another 6 teeth, etc., according to whether
the multiplicand is to be represented five times or six times, etc.”

“For example, the multiplicand 365 consists of three digits, 3, 6, and 5. Hence the same
number of wheels is to be used. On these wheels, the multiplicand will be set if from the
right wheel there protrude 5 teeth, from the middle wheel 6, and from the left wheel 3.”

B.2 Jacquard and Babbage

By 1810, calculating machines based on Leibniz’ design were being manufactured commer-
cially; and mechanical calculators of a similar (if much improved) design could be found in
laboratories and offices until the 1960’s. The idea of a programmable universal computer
is due to the English mathematician, Charles Babbage, who was the Lucasian Professor of
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Figure B.3: Charles Babbage (1791-1871) and his analytical engine.

Mathematics at Cambridge University. (In the 17th century, Isaac Newton held this post,
and in the 20th century, P.A.M. Dirac and Stephen Hawking also held it.)

In 1812, Babbage conceived the idea of constructing a machine which could automat-
ically produce tables of functions, provided that the functions could be approximated
by polynomials. He constructed a small machine, which was able to calculate tables of
quadratic functions to eight decimal places, and in 1832 he demonstrated this machine to
the Royal Society and to representatives of the British government.

The demonstration was so successful that Babbage secured financial support for the
construction of a large machine which would tabulate sixth-order polynomials to twenty
decimal places. The large machine was never completed, and twenty years later, after
having spent seventeen thousand pounds on the project, the British government withdrew
its support. The reason why Babbage’s large machine was never finished can be understood
from the following account by Lord Moulton of a visit to the mathematician’s laboratory:

“One of the sad memories of my life is a visit to the celebrated mathematician and
inventor, Mr. Babbage. He was far advanced in age, but his mind was still as vigorous as
ever. He took me through his workrooms.”

“In the first room I saw the parts of the original Calculating Machine, which had been
shown in an incomplete state many years before, and had even been put to some use. I
asked him about its present form. ‘I have not finished it, because in working at it, I came
on the idea of my Analytical Machine, which would do all that it was capable of doing, and
much more. Indeed, the idea was so much simpler that it would have taken more work to
complete the Calculating Machine than to design and construct the other in its entirety;
so I turned my attention to the Analytical Machine.’”

“After a few minutes talk, we went into the next workroom, where he showed me the
working of the elements of the Analytical Machine. I asked if I could see it. ‘I have never
completed it,’ he said, ‘because I hit upon the idea of doing the same thing by a different
and far more effective method, and this rendered it useless to proceed on the old lines.’”
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Figure B.4: Joseph Marie Jacquard (1752-1834) invented a loom which could
be programed to produce any design by means of punched cards. News of
his invention inspired Babbage to invent a universal programmable computing
machine.

“Then we went into a third room. There lay scattered bits of mechanism, but I saw no
trace of any working machine. Very cautiously I approached the subject, and received the
dreaded answer: ‘It is not constructed yet, but I am working at it, and will take less time
to construct it altogether than it would have taken to complete the Analytical Machine
from the stage in which I left it.’ I took leave of the old man with a heavy heart.”

Babbage’s first calculating machine was a special-purpose mechanical computer, de-
signed to tabulate polynomial functions; and he abandoned this design because he had
hit on the idea of a universal programmable computer. Several years earlier, the French
inventor Joseph Marie Jacquard had constructed an automatic loom in which large wooden
“punched cards” were used to control the warp threads. Inspired by Jacquard’s invention,
Babbage planned to use punched cards to program his universal computer. (Jacquard’s
looms could be programmed to weave extremely complex patterns: A portrait of the in-
ventor, woven on one of his looms in Lyon, hung in Babbage’s drawing room.)

One of Babbage’s frequent visitors was Augusta Ada1, Countess of Lovelace (1815-
1852), the daughter of Lord and Lady Byron. She was a mathematician of considerable abil-
ity, and it is through her lucid descriptions that we know how Babbage’s never-completed
Analytical Machine was to have worked.

1 The programming language ADA is named after her.
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Figure B.5: Jacquard’s loom.
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Figure B.6: Lord Byron’s daughter, Augusta Ada, Countess of Lovelace (1815-
1852) was an accomplished mathematician and a frequent visitor to Babbage’s
workshop. It is through her lucid description of his ideas that we know how
Babbage’s universal calculating machine was to have worked. The program-
ming language ADA is named after her.
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B.3 Harvard’s sequence-controlled calculator

The next step towards modern computers was taken by Herman Hollerith, a statistician
working for the United States Bureau of the Census. He invented electromechanical ma-
chines for reading and sorting data punched onto cards. Hollerith’s machines were used to
analyze the data from the 1890 United States Census. Because the Census Bureau was a
very limited market, Hollerith branched out and began to manufacture similar machines
for use in business and administration. His company was later bought out by Thomas J.
Watson, who changed its name to International Business Machines.

In 1937, Howard Aiken, of Harvard University, became interested in combining Bab-
bage’s ideas with some of the techniques which had developed from Hollerith’s punched
card machines. He approached the International Business Machine Corporation, the largest
manufacturer of punched card equipment, with a proposal for the construction of a large,
automatic, programmable calculating machine.

Aiken’s machine, the Automatic Sequence Controlled Calculator (ASCC), was com-
pleted in 1944 and presented to Harvard University. Based on geared wheels, in the
Pascal-Leibniz-Babbage tradition, ASCC had more than three quarters of a million parts
and used 500 miles of wire. ASCC was unbelievably slow by modern standards - it took
three-tenths of a second to perform an addition - but it was one of the first programmable
general-purpose digital computers ever completed. It remained in continuous use, day and
night, for fifteen years.

Figure B.7: The Automatic Sequence-Controlled Calculator ASCC can still be
seen by visitors at Harvard’s science building and cafeteria.
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B.4 The first electronic computers

In the ASCC, binary numbers were represented by relays, which could be either on or off.
The on position represented 1, while the off position represented 0, these being the only
two digits required to represent numbers in the binary (base 2) system. Electromechanical
calculators similar to ASCC were developed independently by Konrad Zuse in Germany
and by George R. Stibitz at the Bell Telephone Laboratory.

Electronic digital computers

In 1937, the English mathematician A.M. Turing published an important article in the
Proceedings of the London Mathematical Society in which envisioned a type of calculating
machine consisting of a long row of cells (the “tape”), a reading and writing head, and a
set of instructions specifying the way in which the head should move the tape and modify
the state and “color” of the cells on the tape. According to a hypothesis which came to
be known as the “Church-Turing hypothesis”, the type of computer proposed by Turing
was capable of performing every possible type of calculation. In other words, the Turing
machine could function as a universal computer.

In 1943, a group of English engineers, inspired by the ideas of Alan Turing and those of
the mathematician M.H.A. Newman, completed the electronic digital computer Colossus.
Colossus was the first large-scale electronic computer. It was used to break the German
Enigma code; and it thus affected the course of World War II.

In 1946, ENIAC (Electronic Numerical Integrator and Calculator) became operational.
This general-purpose computer, designed by J.P. Eckert and J.W. Mauchley of the Uni-
versity of Pennsylvania, contained 18,000 vacuum tubes, one or another of which was often
out of order. However, during the periods when all its vacuum tubes were working, an
electronic computer like Colossus or ENIAC could shoot ahead of an electromechanical
machine (such as ASCC) like a hare outdistancing a tortoise.

During the summer of 1946, a course on “The Theory and Techniques of Electronic
Digital Computers” was given at the University of Pennsylvania. The ideas put forward in
this course had been worked out by a group of mathematicians and engineers headed by
J.P. Eckert, J.W. Mauchley and John von Neumann, and these ideas very much influenced
all subsequent computer design.

Cybernetics

The word “Cybernetics”, was coined by the American mathematician Norbert Wiener
(1894-1964) and his colleagues, who defined it as “the entire field of control and commu-
nication theory, whether in the machine or in the animal”. Wiener derived the word from
the Greek term for “steersman”.

Norbert Wiener began life as a child prodigy: He entered Tufts University at the age
of 11 and received his Ph.D. from Harvard at 19. He later became a professor of math-
ematics at the Massachusetts Institute of Technology. In 1940, with war on the horizon,
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Figure B.8: Alan Turing (1912-1954). He is considered to be the father of
theoretical computer science. During World War II, Turing’s work allowed the
allies to crack the German’s code. This appreciably shortened the length of
the war in Europe, and saved many lives.

Figure B.9: John von Neumann (1903-1957, right) with J. Robert Oppenheimer.
In the background is an electronic digital computer.
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Figure B.10: MIT’s Norbert Wiener (1894-1964) coined the word “Cybernetics”,
derived from a Greek word meaning “steersman”. Wiener was one of the
principle organizers of the Macy Conferences.

Wiener sent a memorandum to Vannevar Bush, another MIT professor who had done pi-
oneering work with analogue computers, and had afterwards become the chairman of the
U.S. National Defense Research Committee. Wiener’s memorandum urged the American
government to support the design and construction of electronic digital computers, which
would make use of binary numbers, vacuum tubes, and rapid memories. In such machines,
the memorandum emphasized, no human intervention should be required except when data
was to be read into or out of the machine.

Like Leo Szilard, John von Neumann, Claude Shannon and Erwin Schrödinger, Norbert
Wiener was aware of the relation between information and entropy. In his 1948 book Cy-
bernetics he wrote: “...we had to develop a statistical theory of the amount of information,
in which the unit amount of information was that transmitted by a single decision between
equally probable alternatives. This idea occurred at about the same time to several writers,
among them the statistician R.A. Fisher, Dr. Shannon of Bell Telephone Laboratories, and
the author. Fisher’s motive in studying this subject is to be found in classical statistical
theory; that of Shannon in the problem of coding information; and that of the author in
the problem of noise and message in electrical filters... The notion of the amount of in-
formation attaches itself very naturally to a classical notion in statistical mechanics: that
of entropy. Just as the amount of information in a system is a measure of its degree of
organization, so the entropy of a system is a measure of its degree of disorganization; and
the one is simply the negative of the other.”

During World War II, Norbert Wiener developed automatic systems for control of anti-
aircraft guns. His systems made use of feedback loops closely analogous to those with
which animals coordinate their movements. In the early 1940’s, he was invited to attend a
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Figure B.11: Margaret Mead (1901-1978) and Gregory Bateson (1904-1980).
They used the feedback loops studied by Wiener to explain many aspects of
human behavior. Bateson is considered to be one of the main founders of the
discipline Biosemiotics, which considers information to be the central feature
of living organisms.

series of monthly dinner parties organized by Arturo Rosenbluth, a professor of physiology
at Harvard University. The purpose of these dinners was to promote discussions and
collaborations between scientists belonging to different disciplines. The discussions which
took place at these dinners made both Wiener and Rosenbluth aware of the relatedness of
a set of problems that included homeostasis and feedback in biology, communication and
control mechanisms in neurophysiology, social communication among animals (or humans),
and control and communication involving machines.

Wiener and Rosenbluth therefore tried to bring together workers in the relevant fields
to try to develop common terminology and methods. Among the many people whom they
contacted were the anthropologists Gregory Bateson and Margaret Mead, Howard Aiken
(the designer of the Automatic Sequence Controlled Calculator), and the mathematician
John von Neumann. The Josiah Macy Jr. Foundation sponsored a series of ten yearly
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meetings, which continued until 1949 and which established cybernetics as a new research
discipline. It united areas of mathematics, engineering, biology, and sociology which had
previously been considered unrelated. Among the most important participants (in addition
to Wiener, Rosenbluth, Bateson, Mead, and von Neumann) were Heinz von Foerster, Kurt
Lewin, Warren McCulloch and Walter Pitts. The Macy conferences were small and infor-
mal, with an emphasis on discussion as opposed to the presentation of formal papers. A
stenographic record of the last five conferences has been published, edited by von Foerster.
Transcripts of the discussions give a vivid picture of the enthusiastic and creative atmo-
sphere of the meetings. The participants at the Macy Conferences perceived Cybernetics
as a much-needed bridge between the natural sciences and the humanities. Hence their
enthusiasm. Weiner’s feedback loops and von Neumann’s theory of games were used by
anthropologists Mead and Bateson to explain many aspects of human behavior.

B.5 Biosemiotics

The Oxford Dictionary of Biochemistry and Molecular Biology (Oxford University Press,
1997) defines Biosemiotics as “the study of signs, of communication, and of information in
living organisms”. The biologists Claus Emmeche and K. Kull offer another definition of
Biosemiotics: “biology that interprets living systems as sign systems”.

The American philosopher Charles Sanders Peirce (1839-1914) is considered to be one of
the founders of Semiotics (and hence also of Biosemiotics). Peirce studied philosophy and
chemistry at Harvard, where his father was a professor of mathematics and astronomy. He
wrote extensively on philosophical subjects, and developed a theory of signs and meaning
which anticipated many of the principles of modern Semiotics. Peirce built his theory on a
triad: (1) the sign, which represents (2) something to (3) somebody. For example, the sign
might be a broken stick, which represents a trail to a hunter, it might be the arched back of
a cat, which represents an aggressive attitude to another cat, it might be the waggle-dance
of a honey bee, which represents the coordinates of a source of food to her hive-mates, or
it might be a molecule of trans-10-cis-hexadecadienol, which represents irresistible sexual
temptation to a male moth of the species Bombyx mori. The sign might be a sequence of
nucleotide bases which represents an amino acid to the ribosome-transfer-RNA system, or
it might be a cell-surface antigen which represents self or non-self to the immune system.
In information technology, the sign might be the presence or absence of a pulse of voltage,
which represents a binary digit to a computer. Semiotics draws our attention to the sign
and to its function, and places much less emphasis on the physical object which forms
the sign. This characteristic of the semiotic viewpoint has been expressed by the Danish
biologist Jesper Hoffmeyer in the following words: “The sign, rather than the molecule, is
the basic unit for studying life.”

A second important founder of Biosemiotics was Jakob von Uexküll (1864-1944). He
was born in Estonia, and studied zoology at the University of Tartu. After graduation,
he worked at the Institute of Physiology at the University of Heidelberg, and later at the
Zoological Station in Naples. In 1907, he was given an honorary doctorate by Heidelberg



404 LIVES IN MATHEMATICS

Figure B.12: Charles Sanders Pearce (1839-1914).

Figure B.13: Jakob Johann Baron von Uexküll (1964-1944). Together with
Pearce and Bateson, he is one of the principle founders of Biosemiotics.
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for his studies of the physiology of muscles. Among his discoveries in this field was the first
recognized instance of negative feedback in an organism. Von Uexküll’s later work was
concerned with the way in which animals experience the world around them. To describe
the animal’s subjective perception of its environment he introduced the word Umwelt; and
in 1926 he founded the Institut fur Umweltforschung at the University of Heidelberg. Von
Uexküll visualized an animal - for example a mouse - as being surrounded by a world
of its own - the world conveyed by its own special senses organs, and processed by its
own interpretative systems. Obviously, the Umwelt will differ greatly depending on the
organism. For example, bees are able to see polarized light and ultraviolet light; electric
eels are able to sense their environment through their electric organs; many insects are
extraordinarily sensitive to pheromones; and a dog’s Umwelt far richer in smells than that
of most other animals. The Umwelt of a jellyfish is very simple, but nevertheless it exists.2

Von Uexküll’s Umwelt concept can even extend to one-celled organisms, which receive
chemical and tactile signals from their environment, and which are often sensitive to light.
The ideas and research of Jakob von Uexküll inspired the later work of the Nobel Laureate
ethologist Konrad Lorenz, and thus von Uexküll can be thought of as one of the founders of
ethology as well as of Biosemiotics. Indeed, ethology and Biosemiotics are closely related.

Biosemiotics also values the ideas of the American anthropologist Gregory Bateson
(1904-1980), who was mentioned in Chapter 7 in connection with cybernetics and with the
Macy Conferences. He was married to another celebrated anthropologist, Margaret Mead,
and together they applied Norbert Wiener’s insights concerning feedback mechanisms to
sociology, psychology and anthropology. Bateson was the originator of a famous epigram-
matic definition of information: “..a difference which makes a difference” . This definition
occurs in Chapter 3 of Bateson’s book, Mind and Nature: A Necessary Unity, Bantam,
(1980), and its context is as follows: “To produce news of a difference, i.e. information”,
Bateson wrote, “there must be two entities... such that news of their difference can be
represented as a difference inside some information-processing entity, such as a brain or,
perhaps, a computer. There is a profound and unanswerable question about the nature of
these two entities that between them generate the difference which becomes information
by making a difference. Clearly each alone is - for the mind and perception - a non-entity,
a non-being... the sound of one hand clapping. The stuff of sensation, then, is a pair of
values of some variable, presented over time to a sense organ, whose response depends on
the ratio between the members of the pair.”

Microelectronics

The problem of unreliable vacuum tubes was solved in 1948 by John Bardeen, William
Shockley and Walter Brattain of the Bell Telephone Laboratories. Application of quantum
theory to solids had lead to an understanding of the electrical properties of crystals. Like
atoms, crystals were found to have allowed and forbidden energy levels.

2 It is interesting to ask to what extent the concept of Umwelt can be equated to that of consciousness.
To the extent that these two concepts can be equated, von Uexküll’s Umweltforschung offers us the
opportunity to explore the phylogenetic evolution of the phenomenon of consciousness.
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The allowed energy levels for an electron in a crystal were known to form bands, i.e.,
some energy ranges with many allowed states (allowed bands), and other energy ranges
with none (forbidden bands). The lowest allowed bands were occupied by electrons, while
higher bands were empty. The highest filled band was called the “valence band”, and the
lowest empty band was called the “conduction band”.

According to quantum theory, whenever the valence band of a crystal is only partly
filled, the crystal is a conductor of electricity; but if the valence band is completely filled
with electrons, the crystal is an electrical insulator. (A completely filled band is analogous
to a room so packed with people that none of them can move.)

In addition to conductors and insulators, quantum theory predicted the existence of
“semiconductors” - crystals where the valence band is completely filled with electrons, but
where the energy gap between the conduction band and the valence band is very small.
For example, crystals of the elements silicon and germanium are semiconductors. For such
a crystal, thermal energy is sometimes enough to lift an electron from the valence band to
the conduction band.

Bardeen, Shockley and Brattain found ways to control the conductivity of germanium
crystals by injecting electrons into the conduction band, or alternatively by removing elec-
trons from the valence band. They could do this by “doping” the crystals with appropriate
impurities, or by injecting electrons with a special electrode. The semiconducting crystals
whose conductivity was controlled in this way could be used as electronic valves, in place
of vacuum tubes.

By the 1960’s, replacement of vacuum tubes by transistors in electronic computers had
led not only to an enormous increase in reliability and a great reduction in cost, but also
to an enormous increase in speed. It was found that the limiting factor in computer speed
was the time needed for an electrical signal to propagate from one part of the central
processing unit to another. Since electrical impulses propagate with the speed of light,
this time is extremely small; but nevertheless, it is the limiting factor in the speed of
electronic computers.

B.6 The Traitorous Eight

According to the Wikipedia article on Shockley,
“In 1956 Shockley moved from New Jersey to Mountain View, California to start Shock-

ley Semiconductor Laboratory to live closer to his ailing mother in Palo Alto, California.
The company, a division of Beckman Instruments, Inc., was the first establishment working
on silicon semiconductor devices in what came to be known as Silicon Valley.

“His way [of leading the group] could generally be summed up as domineering and
increasingly paranoid. In one well-known incident, he claimed that a secretary’s cut thumb
was the result of a malicious act and he demanded lie detector tests to find the culprit, when
in reality, the secretary had simply grabbed at a door handle that happened to have an
exposed tack on it for the purpose of hanging paper notes on. After he received the Nobel
Prize in 1956 his demeanor changed, as evidenced in his increasingly autocratic, erratic and
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Figure B.14: William Shockley (1910-1989) shared the 1956 Nobel Prize in
Physics with John Bardeen and Walter Brattain.

hard-to-please management style. In late 1957, eight of Shockley’s researchers, who would
come to be known as the ‘traitorous eight, resigned after Shockley decided not to continue
research into silicon-based semiconductors. They went on to form Fairchild Semiconductor,
a loss from which Shockley Semiconductor never recovered. Over the course of the next
20 years, more than 65 new enterprises would end up having employee connections back
to Fairchild.”
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Figure B.15: The Traitorous Eight: From left to right, Gordon Moore, C. Sheldon
Roberts, Eugene Kleiner, Robert Noyce, Victor Grinich, Julius Blank, Jean
Hoerni and Jay Last.
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B.7 Integrated circuits

In order to reduce the propagation time, computer designers tried to make the central
processing units very small; and the result was the development of integrated circuits
and microelectronics. (Another motive for miniaturization of electronics came from the
requirements of space exploration.)

Integrated circuits were developed in which single circuit elements were not manufac-
tured separately. Instead, the whole circuit was made at one time. An integrated circuit
is a sandwich-like structure, with conducting, resisting and insulating layers interspersed
with layers of germanium or silicon, “doped ” with appropriate impurities. At the start of
the manufacturing process, an engineer makes a large drawing of each layer. For example,
the drawing of a conducting layer would contain pathways which fill the role played by
wires in a conventional circuit, while the remainder of the layer would consist of areas
destined to be etched away by acid.

The next step is to reduce the size of the drawing and to multiply it photographically.
The pattern of the layer is thus repeated many times, like the design on a piece of wallpaper.
The multiplied and reduced drawing is then focused through a reversed microscope onto
the surface to be etched.

Successive layers are built up by evaporating or depositing thin films of the appropriate
substances onto the surface of a silicon or germanium wafer. If the layer being made is to be
conducting, the surface would consist of an extremely thin layer of copper, covered with a
photosensitive layer called a “photoresist”. On those portions of the surface receiving light
from the pattern, the photoresist becomes insoluble, while on those areas not receiving
light, the photoresist can be washed away.

The surface is then etched with acid, which removes the copper from those areas not
protected by photoresist. Each successive layer of a wafer is made in this way, and finally
the wafer is cut into tiny “chips”, each of which corresponds to one unit of the wallpaper-
like pattern.

Although the area of a chip may be much smaller than a square centimeter, the chip
can contain an extremely complex circuit. A typical programmable minicomputer or
“microprocessor”, manufactured during the 1970’s, could have 30,000 circuit elements, all
of which were contained on a single chip. By 1986, more than a million transistors were
being placed on a single chip.

As a result of miniaturization, the speed of computers rose steadily. In 1960, the fastest
computers could perform a hundred thousand elementary operations in a second. By 1970,
the fastest computers took less than a second to perform a million such operations. In 1987,
a computer called GF11 was designed to perform 11 billion floating-point operations (flops)
per second.

GF11 (Gigaflop 11) is a scientific parallel-processing machine constructed by IBM.
Approximately ten floating-point operations are needed for each machine instruction. Thus
GF11 runs at the rate of approximately a thousand million instructions per second (1,100
MIPS). The high speed achieved by parallel-processing machines results from dividing a job
into many sub-jobs on which a large number of processing units can work simultaneously.
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Computer memories have also undergone a remarkable development. In 1987, the
magnetic disc memories being produced could store 20 million bits of information per
square inch; and even higher densities could be achieved by optical storage devices. (A
“bit” is the unit of information. For example, the number 25, written in the binary system,
is 11001. To specify this 5-digit binary number requires 5 bits of information. To specify
an n-digit binary number requires n bits of information. Eight bits make a “byte”.)

In the 1970’s and 1980’s, computer networks were set up linking machines in various
parts of the world. It became possible (for example) for a scientist in Europe to perform
a calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for perform-
ing large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

B.8 Moore’s law

In 1965, only four years after the first integrated circuits had been produced, Dr. Gordon
E. Moore, one of the founders of Intel, made a famous prediction which has come to be
known as “Moore’s Law”. He predicted that the number of transistors per integrated
circuit would double every two years, and that this trend would continue through 1975. In
fact, the general trend predicted by Moore has continued for a much longer time. Although
the number of transistors per unit area has not continued to double every two years, the
logic density (bits per unit area) has done so, and thus a modified version of Moore’s law
still holds today. How much longer the trend can continue remains to be seen. Physical
limits to miniaturization of transistors of the present type will soon be reached; but there
is hope that further miniaturization can be achieved through “quantum dot” technology,
molecular switches, and autoassembly.

A typical programmable minicomputer or “microprocessor”, manufactured in the 1970’s,
could have 30,000 circuit elements, all of which were contained on a single chip. By 1989,
more than a million transistors were being placed on a single chip; and by 2000, the number
reached 42,000,000.

As a result of miniaturization and parallelization, the speed of computers rose expo-
nentially. In 1960, the fastest computers could perform a hundred thousand elementary
operations in a second. By 1970, the fastest computers took less than a second to per-
form a million such operations. In 1987, a massively parallel computer, with 566 parallel
processors, called GFll was designed to perform 11 billion floating-point operations per
second (flops). By 2002 the fastest computer performed 40 at teraflops, making use of
5120 parallel CPU’s.

Computer disk storage has also undergone a remarkable development. In 1987, the
magnetic disk storage being produced could store 20 million bits of information per square
inch; and even higher densities could be achieved by optical storage devices. Storage
density has until followed a law similar to Moore’s law.

In the 1970’s and 1980’s, computer networks were set up linking machines in various
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Figure B.16: Gordon E. Moore (born 1929), a founder of Intel and the author
of Moore’s Law. In 1965 he predicted that the number of components in
integrated circuits would double every year for the next 10 years”. In 1975 he
predicted the this doubling would continue, but revised the doubling rate to
“every two years. Astonishingly, Moore’s Law has held much longer than he,
or anyone else, anticipated.
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Figure B.17: Amazingly, Moore’s Law has held much longer than he, or anyone
else, anticipated. Perhaps quantum dot technologies can extend its validity
even longer.

Figure B.18: A logarithmic plot of the increase in PC hard-drive capacity in
gigabytes. An extrapolation of the rate of increase predicts that the individual
capacity of a commercially available PC will reach 10,000 gigabytes by 2015, i.e.
10,000,000,000,000 bytes. (After Hankwang and Rentar, Wikimedia Commons)
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parts of the world. It became possible (for example) for a scientist in Europe to perform
a calculation interactively on a computer in the United States just as though the distant
machine were in the same room; and two or more computers could be linked for perform-
ing large calculations. It also became possible to exchange programs, data, letters and
manuscripts very rapidly through the computer networks.

The exchange of large quantities of information through computer networks was made
easier by the introduction of fiber optics cables. By 1986, 250,000 miles of such cables had
been installed in the United States. If a ray of light, propagating in a medium with a large
refractive index, strikes the surface of the medium at a grazing angle, then the ray undergoes
total internal reflection. This phenomenon is utilized in fiber optics: A light signal can
propagate through a long, hairlike glass fiber, following the bends of the fiber without
losing intensity because of total internal reflection. However, before fiber optics could be
used for information transmission over long distances, a technological breakthrough in glass
manufacture was needed, since the clearest glass available in 1940 was opaque in lengths
more than 10 m. Through studies of the microscopic properties of glasses, the problem of
absorption was overcome. By 1987, devices were being manufactured commercially that
were capable of transmitting information through fiber-optic cables at the rate of 1.7 billion
bits per second.

B.9 Self-reinforcing information accumulation

Humans have been living on the earth for roughly two million years (more or less, depending
on where one draws the line between our human and prehuman ancestors, Table 6.1).
During almost all of this,time, our ancestors lived by hunting and food-gathering. They
were not at all numerous, and did not stand out conspicuously from other animals. Then,
suddenly, during the brief space of ten thousand years, our species exploded in numbers
from a few million to seven billion, populating all parts of the earth, and even setting foot
on the moon. This population explosion, which is still going on, has been the result of
dramatic cultural changes. Genetically we are almost identical with our hunter-gatherer
ancestors, who lived ten thousand years ago, but cultural evolution has changed our way
of life beyond recognition.

Beginning with the development of speech, human cultural evolution began to accel-
erate. It started to move faster with the agricultural revolution, and faster still with the
invention of writing and printing. Finally, modern science has accelerated the rate of social
and cultural change to a completely unprecedented speed.

The growth of modern science is accelerating because knowledge feeds on itself. A new
idea or a new development may lead to several other innovations, which can in turn start
an avalanche of change. For example, the quantum theory of atomic structure led to the in-
vention of transistors, which made high-speed digital computers possible. Computers have
not only produced further developments in quantum theory; they have also revolutionized
many other fields.

The self-reinforcing accumulation of knowledge - the information explosion - which
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characterizes modern human society is reflected not only in an explosively-growing global
population, but also in the number of scientific articles published, which doubles roughly
every ten years. Another example is Moore’s law - the doubling of the information density
of integrated circuits every two years. Yet another example is the explosive growth of
Internet traffic shown in Table 17.1.

The Internet itself is the culmination of a trend towards increasing societal information
exchange - the formation of a collective human consciousness. This collective consciousness
preserves the observations of millions of eyes, the experiments of millions of hands, the
thoughts of millions of brains; and it does not die when the individual dies.

B.10 Automation

During the last three decades, the cost of computing has decreased exponentially by be-
tween twenty and thirty percent per year. Meanwhile, the computer industry has grown
exponentially by twenty percent per year (faster than any other industry). The astonish-
ing speed of this development has been matched by the speed with which computers have
become part of the fabric of science, engineering, industry, commerce, communications,
transport, publishing, education and daily life in the industrialized parts of the world.

The speed, power and accuracy of computers has revolutionized many branches of
science. For example, before the era of computers, the determination of a simple molecular
structure by the analysis of X-ray diffraction data often took years of laborious calculation;
and complicated structures were completely out of reach. In 1949, however, Dorothy
Crowfoot Hodgkin used an electronic computer to work out the structure of penicillin from
X-ray data. This was the first application of a computer to a biochemical problem; and it
was followed by the analysis of progressively larger and more complex structures.

Proteins, DNA, and finally even the detailed structures of viruses were studied through
the application of computers in crystallography. The enormous amount of data needed for
such studies was gathered automatically by computer-controlled diffractometers; and the
final results were stored in magnetic-tape data banks, available to users through computer
networks.

The application of quantum theory to chemical problems is another field of science
which owes its development to computers. When Erwin Schrödinger wrote down his
wave equation in 1926, it became possible, in principle, to calculate most of the physical
and chemical properties of matter. However, the solutions to the Schrödinger equation
for many-particle systems can only be found approximately; and before the advent of
computers, even approximate solutions could not be found, except for the simplest systems.

When high-speed electronic digital computers became widely available in the 1960’s, it
suddenly became possible to obtain solutions to the Schrödinger equation for systems of
chemical and even biochemical interest. Quantum chemistry (pioneered by such men as
J.C. Slater, R.S. Mullikin, D.R. Hartree, V. Fock, J.H. Van Vleck, L. Pauling, E.B. Wilson,
P.O. Löwdin, E. Clementi, C.J. Ballhausen and others) developed into a rapidly-growing
field, as did solid state physics. Through the use of computers, it became possible to
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design new materials with desired chemical, mechanical, electrical or magnetic properties.
Applying computers to the analysis of reactive scattering experiments, D. Herschbach,
J. Polanyi and Y. Lee were able to achieve an understanding of the dynamics of chemical
reactions.

The successes of quantum chemistry led Albert Szent-Györgyi, A. and B. Pullman, H.
Scheraga and others to pioneer the fields of quantum biochemistry and molecular dynam-
ics. Computer programs for drug design were developed, as well as molecular-dynamics
programs which allowed the conformations of proteins to be calculated from a knowledge of
their amino acid sequences. Studies in quantum biochemistry have yielded insights into the
mechanisms of enzyme action, photosynthesis, active transport of ions across membranes,
and other biochemical processes.

In medicine, computers began to be used for monitoring the vital signs of critically ill
patients, for organizing the information flow within hospitals, for storing patients’ records,
for literature searches, and even for differential diagnosis of diseases.

The University of Pennsylvania has developed a diagnostic program called INTERNIST-
1, with a knowledge of 577 diseases and their interrelations, as well as 4,100 signs, symp-
toms and patient characteristics. This program was shown to perform almost as well as
an academic physician in diagnosing difficult cases. QMR (Quick Medical Reference), a
microcomputer adaptation of INTERNIST-1, incorporates the diagnostic functions of the
earlier program, and also offers an electronic textbook mode.

Beginning in the 1960’s, computers played an increasingly important role in engineering
and industry. For example, in the 1960’s, Rolls Royce Ltd. began to use computers not
only to design the optimal shape of turbine blades for aircraft engines, but also to control
the precision milling machines which made the blades. In this type of computer-assisted
design and manufacture, no drawings were required. Furthermore, it became possible for
an industry requiring a part from a subcontractor to send the machine-control instructions
for its fabrication through the computer network to the subcontractor, instead of sending
drawings of the part.

In addition to computer-controlled machine tools, robots were also introduced. They
were often used for hazardous or monotonous jobs, such as spray-painting automobiles; and
they could be programmed by going through the job once manually in the programming
mode. By 1987, the population of robots in the United States was between 5,000 and 7,000,
while in Japan, the Industrial Robot Association reported a robot population of 80,000.

Chemical industries began to use sophisticated computer programs to control and to
optimize the operations of their plants. In such control systems, sensors reported cur-
rent temperatures, pressures, flow rates, etc. to the computer, which then employed a
mathematical model of the plant to calculate the adjustments needed to achieve optimum
operating conditions.

Not only industry, but also commerce, felt the effects of computerization during the
postwar period. Commerce is an information-intensive activity; and in fact some of the
crucial steps in the development of information-handling technology developed because of
the demands of commerce: The first writing evolved from records of commercial trans-
actions kept on clay tablets in the Middle East; and automatic business machines, using
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punched cards, paved the way for the development of the first programmable computers.
Computerization has affected wholesaling, warehousing, retailing, banking, stockmarket

transactions, transportation of goods - in fact, all aspects of commerce. In wholesaling,
electronic data is exchanged between companies by means of computer networks, allowing
order-processing to be handled automatically; and similarly, electronic data on prices is
transmitted to buyers.

The key to automatic order-processing in wholesaling was standardization. In the
United States, the Food Marketing Institute, the Grocery Manufacturers of America, and
several other trade organizations, established the Uniform Communications System (UCS)
for the grocery industry. This system specifies a standard format for data on products,
prices and orders.

Automatic warehouse systems were designed as early as 1958. In such systems, the
goods to be stored are placed on pallets (portable platforms), which are stacked automat-
ically in aisles of storage cubicles. A computer records the position of each item for later
automatic retrieval.

In retailing, just as in wholesaling, standardization proved to be the key requirement for
automation. Items sold in supermarkets in most industrialized countries are now labeled
with a standard system of machine-readable thick and thin bars known as the Universal
Product Code (UPC). The left-hand digits of the code specify the manufacturer or packer
of the item, while the right-hand set of digits specify the nature of the item. A final digit
is included as a check, to make sure that the others were read correctly. This last digit
(called a modulo check digit) is the smallest number which yields a multiple of ten when
added to the sum of the previous digits.

When a customer goes through a check-out line, the clerk passes the purchased items
over a laser beam and photocell, thus reading the UPC code into a small embedded com-
puter or microprocessor at the checkout counter, which adds the items to the customer’s
bill. The microprocessor also sends the information to a central computer and inventory
data base. When stocks of an item become low, the central computer generates a re-
placement order. The financial book-keeping for the retailing operation is also carried out
automatically by the central computer.

In many places, a customer passing through the checkout counter of a supermarket is
able to pay for his or her purchases by means of a plastic card with a magnetic, machine-
readable identification number. The amount of the purchase is then transmitted through
a computer network and deducted automatically from the customer’s bank account. If the
customer pays by check, the supermarket clerk may use a special terminal to determine
whether a check written by the customer has ever “bounced”.

Most checks are identified by a set of numbers written in the Magnetic-Ink Character
Recognition (MICR) system. In 1958, standards for the MICR system were established,
and by 1963, 85 percent of all checks written in the United States were identified by MICR
numbers. By 1968, almost all banks had adopted this system; and thus the administration
of checking accounts was automated, as well as the complicated process by which a check,
deposited anywhere in the world, returns to the payers bank.

Container ships were introduced in the late 1950’s, and since that time, container sys-
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tems have increased cargo-handling speeds in ports by at least an order of magnitude.
Computer networks contributed greatly to the growth of the container system of trans-
portation by keeping track of the position, ownership and contents of the containers.

In transportation, just as in wholesaling and retailing, standardization proved to be
a necessary requirement for automation. Containers of a standard size and shape could
be loaded and unloaded at ports by specialized tractors and cranes which required only
a very small staff of operators. Standard formats for computerized manifests, control
documents, and documents for billing and payment, were instituted by the Transportation
Data Coordinating Committee, a non-profit organization supported by dues from shipping
firms.

In the industrialized parts of the world, almost every type of work has been made
more efficient by computerization and automation. Even artists, musicians, architects
and authors find themselves making increasing use of computers: Advanced computing
systems, using specialized graphics chips, speed the work of architects and film animators.
The author’s traditional typewriter has been replaced by a word-processor, the composer’s
piano by a music synthesizer.

In the Industrial Revolution of the 18th and 19th centuries, muscles were replaced
by machines. Computerization represents a Second Industrial Revolution: Machines have
begun to perform not only tasks which once required human muscles, but also tasks which
formerly required human intelligence.

In industrial societies, the mechanization of agriculture has very much reduced the
fraction of the population living on farms. For example, in the United States, between
1820 and 1980, the fraction of workers engaged in agriculture fell from 72 percent to 3.1
percent. There are signs that computerization and automation will similarly reduce the
number of workers needed in industry and commerce.

Computerization is so recent that, at present, we can only see the beginnings of its
impact; but when the Second Industrial Revolution is complete, how will it affect society?
When our children finish their education, will they face technological unemployment?

The initial stages of the First Industrial Revolution produced much suffering, because
labor was regarded as a commodity to be bought and sold according to the laws of supply
and demand, with almost no consideration for the needs of the workers. Will we repeat
this mistake? Or will society learn from its earlier experience, and use the technology of
automation to achieve widely-shared human happiness?

The Nobel-laureate economist, Wassily W. Leontief, has made the following comment
on the problem of technological unemployment:

“Adam and Eve enjoyed, before they were expelled from Paradise, a high standard of
living without working. After their expulsion, they and their successors were condemned
to eke out a miserable existence, working from dawn to dusk. The history of technological
progress over the last 200 years is essentially the story of the human species working its
way slowly and steadily back into Paradise. What would happen, however, if we suddenly
found ourselves in it? With all goods and services provided without work, no one would
be gainfully employed. Being unemployed means receiving no wages. As a result, until ap-
propriate new income policies were formulated to fit the changed technological conditions,
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everyone would starve in Paradise.”
To say the same thing in a slightly different way: consider what will happen when

a factory which now employs a thousand workers introduces microprocessor-controlled
industrial robots and reduces its work force to only fifty. What will the nine hundred
and fifty redundant workers do? They will not be able to find jobs elsewhere in industry,
commerce or agriculture, because all over the economic landscape, the scene will be the
same.

There will still be much socially useful work to be done - for example, taking care of
elderly people, beautifying the cities, starting youth centers, planting forests, cleaning up
pollution, building schools in developing countries, and so on. These socially beneficial
goals are not commercially “profitable”. They are rather the sort of projects which gov-
ernments sometimes support if they have the funds for it. However, the money needed to
usefully employ the nine hundred and fifty workers will not be in the hands of the govern-
ment. It will be in the hands of the factory owner who has just automated his production
line.

In order to make the economic system function again, either the factory owner will have
to be persuaded to support socially beneficial but commercially unprofitable projects, or
else an appreciable fraction of his profits will have to be transferred to the government,
which will then be able to constructively re-employ the redundant workers.

The future problems of automation and technological unemployment may force us to
rethink some of our economic ideas. It is possible that helping young people to make a
smooth transition from education to secure jobs will become one of the important respon-
sibilities of governments, even in countries whose economies are based on free enterprise.
If such a change does take place in the future, while at the same time socialistic countries
are adopting a few of the better features of free enterprise, then one can hope that the
world will become less sharply divided by contrasting economic systems.

B.11 Neural networks

Physiologists have begun to make use of insights derived from computer design in their
efforts to understand the mechanism of the brain; and computer designers are beginning
to construct computers modeled after neural networks. We may soon see the development
of computers capable of learning complex ideas, generalization, value judgements, artistic
creativity, and much else that was once thought to be uniquely characteristic of the human
mind. Efforts to design such computers will undoubtedly give us a better understanding
of the way in which the brain performs its astonishing functions.

Much of our understanding of the nervous systems of higher animals is due to the
Spanish microscopist, Ramón y Cajal, and to the English physiologists, Alan Hodgkin and
Andrew Huxley. Cajal’s work, which has been confirmed and elaborated by modern
electron microscopy, showed that the central nervous system is a network of nerve cells
(neurons) and threadlike fibers growing from them. Each neuron has many input fibers
(dendrites), and one output fiber (the axon), which may have several branches.
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S It is possible the computers of the future will have pattern-recognition and learning
abilities derived from architecture inspired by our understanding of the synapse, by Young’s
model, or by other biological models. However, pattern recognition and learning can also be
achieved by programming, using computers of conventional architecture. Programs already
exist which allow computers to understand both handwriting and human speech; and a
recent chess-playing program was able to learn by studying a large number of championship
games. Having optimized its parameters by means of this learning experience, the chess-
playing program was able to win against grand masters!

Like nuclear physics and genesplicing, artificial intelligence presents a challenge: Will
society use its new powers wisely and humanely? The computer technology of the future
can liberate us from dull and repetitive work, and allow us to use our energies creatively;
or it can produce unemployment and misery, depending on how we organize our society.
Which will we choose?
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133. T. von Uexküll, Medicine and semiotics, Semiotica, 61 , 201-217 (1986).



B.11. NEURAL NETWORKS 425

134. G. Bateson, Form, substance, and difference. Nineteenth Annual Korzybski Memorial
Lecture, (1970). Reprinted in G. Bateson, Steps to an Ecology of Mind, Balentine
Books, New York, (1972), pp. 448-464.

135. G. Bateson, Mind and Nature: A Necessary Unity, Bantam Books, New York, (1980).

136. G. Bateson, Sacred Unity: Further Steps to an Ecology of Mind, Harper Collins, New
York, (1991).

137. J. Ruesch and G. Bateson, Communication, Norton, New York, (1987).

138. E.F. Yates, Semiotics as a bridge between information (biology) and dynamics (physics),
Recherches Semiotiques/Semiotic Inquiry 5, 347- 360 (1985).

139. T.A. Sebeok, Communication in animals and men, Language, 39, 448-466 (1963).

140. T.A. Sebeok, The Sign and its Masters, University of Texas Press, (1979).

141. P. Bouissac, Ecology of semiotic space: Competition, exploitation, and the evolution
of arbitrary signs, Am. J. Semiotics, 10, 145-166 (1972).

142. F. Varla, Autopoiesis: A Theory of Living Organization, North Holland, New York,
(1986).

143. R. Posner, K. Robins and T.A. Sebeok, editors, Semiotics: A Handbook of the Sign-
Theoretic Foundations of Nature and Culture, Walter de Gruyter, Berlin, (1992).

144. R. Paton, The ecologies of hereditary information, Cybernetics and Human Knowing,
5(4), 31-44 (1998).

145. T. Stonier, Information and the Internal Structure of the Universe, Springer, Berlin,
(1990).

146. T. Stonier, Information and Meaning: An Evolutionary Perspective, Springer, Berlin,
(1997).

147. N. Metropolis, J. Howlett, and Gian-Carlo Rota (editors), A History of Computing
in the Twentieth Century, Academic Press (1980).

148. S.H. Hollingdale and G.C. Tootil, Electronic Computers, Penguin Books Ltd. (1970).

149. Alan Turing, The Enigma of Intelligence, Burnett, London (1983).

150. R. Randell (editor), The Origins of Digital Computers, Selected Papers, Springer-
Verlag, New York (1973).

151. Allan R. Mackintosh, The First Electronic Computer, Physics Today, March, (1987).

152. N. Metropolis, J. Howlett, and Gian-Carlo Rota (editors), A History of Computing
in the Twentieth Century, Academic Press (1980).

153. S.H. Hollingdale and G.C. Tootil, Electronic Computers, Penguin Books Ltd. (1970).

154. R. Randell (editor), The Origins of Digital Computers, Selected Papers, Springer-
Verlag, New York (1973).

155. Allan R. Mackintosh, The First Electronic Computer, Physics Today, March, (1987).

156. H. Babbage, Babbages Calculating Engines: A Collection of Papers by Henry Prevost
Babbage, MIT Press, (1984).

157. A.M. Turing, The Enigma of Intelligence, Burnett, London (1983).

158. Ft. Penrose, The Emperor’s New Mind: Concerning Computers, Minds, and the
Laws of Physics, Oxford University Press, (1989).

159. S. Wolfram, A New Kind of Science, Wolfram Media, Champaign IL, (2002).



426 LIVES IN MATHEMATICS

160. A.M. Turing, On computable numbers, with an application to the Entscheidungsprob-
lem, Proc. Lond. Math. Soc. Ser 2, 42, (1937). Reprinted in M. David Ed., The
Undecidable, Raven Press, Hewlett N.Y., (1965).

161. N. Metropolis, J. Howlett, and Gian-Carlo Rota (editors), A History of Computing
in the Twentieth Century, Academic Press (1980).

162. J. Shurkin, Engines of the Mind: A History of Computers, W.W. Norten, (1984).
163. J. Palfreman and D. Swade, The Dream Machine: Exploring the Computer Age, BBC

Press (UK), (1991).
164. T.J. Watson, Jr. and P. Petre, Father, Son, and Co., Bantam Books, New York,

(1991).
165. A. Hodges, Alan Turing: The Enegma, Simon and Schuster, (1983).
166. H.H. Goldstein, The Computer from Pascal to Von Neumann, Princeton University

Press, (1972).
167. C.J. Bashe, L.R. Johnson, J.H. Palmer, and E.W. Pugh, IBM’s Early Computers,

Vol. 3 in the History of Computing Series, MIT Press, (1986).
168. K.D. Fishman, The Computer Establishment, McGraw-Hill, (1982).
169. S. Levy, Hackers, Doubleday, (1984).
170. S. Franklin, Artificial Minds, MIT Press, (1997).
171. P. Freiberger and M. Swaine, Fire in the Valley: The Making of the Personal Com-

puter, Osborne/MeGraw-Hill, (1984).
172. R.X. Cringely, Accidental Empires, Addison-Wesley, (1992).
173. R. Randell editor, The Origins of Digital Computers, Selected Papers, Springer-

Verlag, New York (1973).
174. H. Lukoff, From Dits to Bits, Robotics Press, (1979).
175. D.E. Lundstrom, A Few Good Men from Univac, MIT Press, (1987).
176. D. Rutland, Why Computers Are Computers (The SWAC and the PC), Wren

Publishers, (1995).
177. P.E. Ceruzzi, Reckoners: The Prehistory of the Digital Computer, from Relays to the

Stored Program Concept, 1935-1945, Greenwood Press, Westport, (1983)
178. S.G. Nash, A History of Scientific Computing, Adison-Wesley, Reading Mass., (1990).
179. P.E. Ceruzzi, Crossing the divide: Architectural issues and the emer- gence of stored

programme computers, 1935-1953, IEEE Annals of the History of Computing, 19,
5-12, January-March (1997).

180. P.E. Ceruzzi, A History of Modern Computing, MIT Press, Cambridge MA, (1998).
181. K. Zuse, Some remarks on the history of computing in Germany, in A History of

Computing in the 20th Century, N. Metropolis et al. editors, 611-627, Academic
Press, New York, (1980).

182. A.R. Mackintosh, The First Electronic Computer, Physics Today, March, (1987).
183. S.H. Hollingdale and G.C. Tootil, Electronic Computers, Penguin Books Ltd. (1970).
184. A. Hodges, Alan Turing: The Enegma, Simon and Schuster, New York, (1983).
185. A. Turing, On computable numbers with reference to the Entscheidungsproblem, Jour-

nal of the London Mathematical Society, II, 2. 42, 230-265 (1937).
186. J. von Neumann, The Computer and the Brain, Yale University Press, (1958).



B.11. NEURAL NETWORKS 427

187. I.E. Sutherland, Microelectronics and computer science, Scientific American, 210-228,
September (1977).

188. W. Aspray, John von Neumann and the Origins of Modern Computing, M.I.T. Press,
Cambridge MA, (1990, 2nd ed. 1992).

189. W. Aspray, The history of computing within the history of information technology,
History and Technology, 11, 7-19 (1994).

190. G.F. Luger, Computation and Intelligence: Collected Readings, MIT Press, (1995).
191. Z.W. Pylyshyn, Computation and Cognition: Towards a Foundation for Cognitive

Science, MIT Press, (1986).
192. D.E. Shasha and C. Lazere, Out of Their Minds: The Creators of Computer Science,

Copernicus, New York, (1995).
193. W. Aspray, An annotated bibliography of secondary sources on the history of software,

Annals of the History of Computing 9, 291-243 (1988).
194. R. Kurzweil, The Age of Intelligent Machines, MIT Press, (1992).
195. S.L. Garfinkel and H. Abelson, eds., Architects of the Information Society: Thirty-

Five Years of the Laboratory for Computer Sciences at MIT, MIT Press, (1999).
196. J. Haugeland, Artificial Intelligence: The Very Idea, MIT Press, (1989).
197. M.A. Boden, Artificial Intelligence in Psychology: Interdisciplinary Essays, MIT

Press, (1989).
198. J.W. Cortada, A Bibliographic Guide to the History of Computer Applications, 1950-

1990, Greenwood Press, Westport Conn., (1996).
199. M. Campbell-Kelly and W. Aspry, Computer: A History of the Information Machine,

Basic Books, New York, (1996).
200. B.I. Blum and K. Duncan, editors, A History of Medical Informatics, ACM Press,

New York, (1990).
201. J.-C. Guedon, La Planete Cyber, Internet et Cyberspace, Gallimard, (1996).
202. S. Augarten, Bit by Bit: An Illustrated History of Computers, Unwin, London, (1985).
203. N. Wiener, Cybernetics; or Control and Communication in the Animal and the Ma-

chine, The Technology Press, John Wiley and Sons, New York, (1948).
204. W.R. Ashby, An Introduction to Cybernetics, Chapman and Hall, London, (1956).
205. M.A. Arbib, A partial survey of cybernetics in eastern Europe and the Soviet Union,

Behavioral Sci., 11, 193-216, (1966).
206. A. Rosenblueth, N. Weiner and J. Bigelow, Behavior, purpose and teleology, Phil.

Soc. 10 (1), 18-24 (1943).
207. N. Weiner and A. Rosenblueth, Conduction of impulses in cardiac muscle, Arch.

Inst. Cardiol. Mex., 16, 205-265 (1946).
208. H. von Foerster, editor, Cybernetics - circular, causal and feed-back mechanisms in

biological and social systems. Transactions of sixth-tenth conferences, Josiah J. Macy
Jr. Foundation, New York, (1950- 1954).

209. W.S. McCulloch and W. Pitts, A logical calculus of ideas immanent in nervous ac-
tivity, Bull. Math. Biophys., 5, 115-133 (1943).

210. W.S. McCulloch, An Account of the First Three Conferences on Teleological Mecha-
nisms, Josiah Macy Jr. Foundation, (1947).



428 LIVES IN MATHEMATICS

211. G.A. Miller, Languages and Communication, McGraw-Hill, New York, (1951).
212. G.A. Miller, Statistical behavioristics and sequences of responses, Psychol. Rev. 56,

6 (1949).
213. G. Bateson, Bali - the value system of a steady state, in M. Fortes, editor, Social Struc-

ture Studies Presented to A.R. Radcliffe-Brown, Clarendon Press, Oxford, (1949).
214. G. Bateson, Communication, the Social Matrix of Psychiatry, Norton, (1951).
215. G. Bateson, Steps to an Ecology of Mind, Chandler, San Francisco, (1972).
216. G. Bateson, Communication et Societe, Seuil, Paris, (1988).
217. S. Heims, Gregory Bateson and the mathematicians: From interdisciplinary interac-

tions to societal functions, J. History Behavioral Sci., 13, 141-159 (1977).
218. S. Heims, John von Neumann and Norbert Wiener. From Mathematics to the Tech-

nology of Life and Death, MIT Press, Cambridge MA, (1980).
219. S. Heims, The Cybernetics Group, MIT Press, Cambridge MA, (1991).
220. G. van de Vijver, New Perspectives on Cybernetics (Self-Organization, Autonomy

and Connectionism), Kluwer, Dordrecht, (1992).
221. A. Bavelas, A mathematical model for group structures, Appl. Anthrop. 7 (3), 16

(1948).
222. P. de Latil, La Pensee Artificielle - Introduction a la Cybernetique, Gallimard, Paris,

(1953).
223. L.K. Frank, G.E. Hutchinson, W.K. Livingston, W.S. McCulloch and N. Wiener,

Teleological Mechanisms, Ann. N.Y. Acad. Sci. 50, 187- 277 (1948).
224. H. von Foerster, Quantum theory of memory, in H. von Foerster, editor, Cybernetics

- circular, causal and feed-back mechanisms in biological and social systems. Trans-
actions of the sixth conferences, Josiah J. Macy Jr. Foundation, New York, (1950).

225. H. von Foerster, Observing Systems, Intersystems Publications, California, (1984).
226. H. von Foerster, Understanding Understanding: Essays on Cybernetics and Cogni-

tion, Springer, New York, (2002).
227. M. Newborn, Kasparov vs. Deep Blue: Computer Chess Comes of age, Springer

Verlag, (1996).
228. K.M. Colby, Artificial Paranoia: A Computer Simulation of the Paranoid Process,

Pergamon Press, New York, (1975).
229. J.Z. Young, Discrimination and learning in the octopus, in H. von Foerster, editor,

Cybernetics - circular, causal and feed-back mechanisms in biological and social sys-
tems. Transactions of the ninth conference, Josiah J. Macy Jr. Foundation, New
York, (1953).

230. M.J. Apter and L. Wolpert, Cybernetics and development. I. Infor- mation theory,
J. Theor. Biol. 8, 244-257 (1965).

231. H. Atlan, L’Organization Biologique et la Theorie de I’Information, Hermann, Paris,
(1972).

232. H. Atlan, On a formal definition of organization, J. Theor. Biol. 45, 295-304 (1974).
233. H. Atlan, Organization du vivant, information et auto-organization, in Volume Sym-

posium 1986 de l’Encylopediea Universalis, pp. 355-361, Paris, (1986).
234. E.R. Kandel, Nerve cells and behavior, Scientific American, 223, 57-70, July, (1970).



B.11. NEURAL NETWORKS 429

235. E.R. Kandel, Small systems of neurons, Scientific American, 241 no.3, 66-76 (1979).

236. A.K. Katchalsky et al., Dynamic patterns of brain cell assemblies, Neurosciences Res.
Prog. Bull., 12 no.1, (1974).

237. G.E. Moore, Cramming more components onto integrated circuits, Electronics, April
19, (1965).

238. P. Gelsinger, P. Gargini, G. Parker and A. Yu, Microprocessors circa 2000, IEEE
Spectrum, October, (1989).

239. P. Baron, On distributed communications networks, IEEE Trans. Comm. Systems,
March (1964).

240. V.G. Cerf and R.E. Khan, A protocol for packet network intercommunication, Trans.
Comm. Tech. COM-22, V5, 627-641, May (1974).

241. L. Kleinrock, Communication Nets: Stochastic Message Flow and Delay, McGraw-
Hill, New York, (1964).

242. L. Kleinrock, Queueing Systems: Vol. II, Computer Applications, Wiley, New York,
(1976).

243. R. Kahn, editor, Special Issue on Packet Communication Networks, Proc. IEEE, 66,
November, (1978).

244. L.G. Roberts, The evolution of packet switching, Proc. of the IEEE 66, 1307-13,
(1978).

245. J. Abbate, The electrical century: Inventing the web, Proc. IEEE 87, November,
(1999).

246. J. Abbate, Inventing the Internet, MIT Press, Cambridge MA, (1999).

247. J.C. McDonald, editor, Fundamentals of Digital Switching, 2nd Edition, Plenum,
New York, (1990).

248. B. Metcalfe, Packet Communication, Peer-to-Peer Communication, San Jose Calif,
(1996).

249. T. Berners-Lee, The Original Design and Ultimate Destiny of the World Wide Web
by its Inventor, Harper San Francisco, (1999).

250. J. Clark, Netscape Time: The Making of the Billion-Dollar Start-Up That Took On
Microsoft, St. Martin’s Press, New York, (1999).

251. J. Wallace, Overdrive: Bill Gates and the Race to Control Cyberspace, Wiley, New
York, (1997).

252. P. Cunningham and F. Froschl, The Electronic Business Revolution, Springer Verlag,
New York, (1999).

253. J.L. McKenny, Waves of Change: Business Evolution Through Information Tech-
nology, Harvard Business School Press, (1995).

254. M.A. Cosumano, Competing on Internet Time: Lessons From Netscape and Its Battle
with Microsoft, Free Press, New York, (1998).

255. F.J. Dyson, The Sun, the Genome and the Internet: Tools of Scientific Revolutions,
Oxford University Press, (1999).

256. L. Bruno, Fiber Optimism: Nortel, Lucent and Cisco are battling to win the high-
stakes fiber-optics game, Red Herring, June (2000).



430 LIVES IN MATHEMATICS

257. N. Cochrane, We’re insatiable: Now it’s 20 million million bytes a day, Melbourne
Age, January 15, (2001).

258. K.G. Coffman and A.N. Odlyzko, The size and growth rate of the Internet, First
Monday, October, (1998).

259. C.A. Eldering, M.L. Sylla, and J.A. Eisenach, Is there a Moore’s law for bandwidth?,
IEEE Comm. Mag., 2-7, October, (1999).

260. G. Gilder, Fiber keeps its promise: Get ready, bandwidth will triple each year for the
next 25 years, Forbes, April 7, (1997).

261. A.M. Noll, Does data traffic exceed voice traffic?, Comm. ACM, 121- 124, June,
(1999).

262. B. St. Arnaud, J. Coulter, J. Fitchett, and S. Mokbel, Architectural and engineering
issues for building an optical Internet, Proc. Soc. Optical Eng. (1998).

263. M. Weisner, The computer for the 21st century, Scientific American, September,
(1991).

264. R. Wright, Three Scientists and Their Gods, Time Books, (1988).
265. S. Nora and A. Mine, The Computerization of Society, MIT Press, (1981).
266. T. Forester, Computers in the Human Context: Information Theory, Productivity,

and People, MIT Press, (1989).



Appendix C

GROUP THEORY

C.1 The definition of a finite group

A finite group is defined by the following conditions:

1. If any two elements belonging to the group are multiplied together, the product is
another element belonging to the group.

2. There is an identity element.

3. Each element has an inverse.

4. Multiplication of the elements is associative1, but necessarily commutative.

5. The group contains g elements, where g is a finite positive integer called the order of
the group.

As a simple example, we might think of a molecule which is symmetric with respect
to rotations through an angle of 2π/3 about some axis but which has no other symmetry.
Then the set of geometrical operations that leave the molecule invariant form a group
containing 3 elements: the identity element; a rotation through an angle 2π/3 about the
axis of symmetry, and a rotation through an angle 4π/3 about the same axis. Let us denote
these operations respectively by E, C3, and C−1

3 . We can easily construct a multiplication
table for the group. If we do so, each element of the group will appear once and only once
in any row or column of the multiplication table. This follows from the fact that AX = B
has one and only one solution among the group elements. Since A−1 and B belong to
the group, and since the product of any two elements belongs to the group, X = A−1B
is also a uniquely-defined element. Now suppose that the element B appears more than
once in the Ath row of the multiplication table. Then AX = B will have more than one
solution which is impossible. Since no element can appear more than once, each element
must appear once because there are g elements and g places in the row, all of which have
to be filled.

1A(BC)=(AB)C

431
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C.2 Representations of geometrical symmetry groups

The elements of a geometrical symmetry group are linear coordinate transformations. Such
transformations have the form

X i =
d∑
j=1

∂X i

∂xj
xj + bi (C.1)

where ∂X i/∂xj and bi are constants.
Now consider a set of functions Φ1, Φ2, ..., ΦM . We can use equation (C.1) to express

Φ1(x) as a function of X. If we then expand the resulting function of X in terms of the
other |Φn〉’s, we shall obtain a relation of the form

Φn(x) =
∑
n′

Φn′(X)Dn′,n (C.2)

If we denote the coordinate transformation in equation (C.1) by the symbol G, we can
rewrite equations (C.1) and (C.2) in the form:

X = Gjx

Φn(x) ≡ Φn(G−1
j X) ≡ GjΦn(X)

=
∑
n′

Φn′(X)Dn′,n(G) (C.3)

In this sense, the coordinate transformation defines an operator Gj, and Dn′,n(Gj) is a
matrix representing Gj. Is can easily be shown that the matrices representing a set of
operators G1, G2,...,Gg in a given basis, obey the same multiplication table as the operators
themselves. For example, if we know that

C3C
−1
3 = E (C.4)

and that

C3Φn =
∑
n′

Φn′Dn′,n(C3)

C−1
3 Φn =

∑
n′

Φn′Dn′,n(C−1
3 )

EΦn =
∑
n′

Φn′Dn′,n(E) (C.5)

then it follows that:

C3C
−1
3 Φn =

∑
n′

C3Φn′Dn′,n(C−1
3 )

=
∑
n′′

Φn′′

{∑
n′

Dn′′,n′(C3)Dn′,n(C−1
3 )

}
= EΦn =

∑
n′′

Φn′′Dn′′,n(E) (C.6)
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so that we must have

Dn′′,n(E) =
∑
n′

Dn′′,n′(C3)Dn′,n(C−1
3 ) (C.7)

Thus given any set of basis functions Φ1, Φ2, ..., ΦM which mix together under the ele-
ments of a group G1, G2,...,Gg, we can obtain a set of matrices Dn′,n(Gj) defined by the
relationships

GjΦn =
∑
n′

Φn′Dn′,n(Gj) j = 1, 2, ..., g (C.8)

These matrices will obey the same multiplication table as the operators G1, G2,...,Gg, and
they are said to form a matrix representation of the group.

C.3 Similarity transformations

Now let us consider another representation, D′m′,m(Gj), based on a set of functions Φ′1, Φ′2,
..., Φ′M which are related to our original set Φ1, Φ2, ..., ΦM by the transformation:

Φ′m =
∑
n

ΦnSn,m

Φn =
∑
m

Φ′mS
−1
m,n (C.9)

The primed representation is defined by the relationship

GjΦ
′
m =

∑
m′

Φ′m′D
′
m′,m(Gj) j = 1, 2, ..., g (C.10)

Then from equations (C.8)-(C.10) we have

GjΦ
′
m =

∑
m′

Φ′m′D
′
m′,m(Gj)

= Gj

∑
n

ΦnSn,m

=
∑
n,n′

Φn′Dn′,n(Gj)Sn,m

=
∑
m′,n,n′

Φ′m′S
−1
m′,n′Dn′,n(Gj)Sn,m (C.11)

so that we must have

D′m′,m(Gj) =
∑
n,n′

S−1
m′,n′Dn′,n(Gj)Sn,m (C.12)

or

D′ = S−1DS (C.13)

A transformation of this type, where the matrix S need not be unitary, is called a ‘similarity
transformation’.
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C.4 Characters and reducibility

The character χ(Gj) of the matrix Dn′,n(Gj) is defined as the sum of the diagonal elements:

χ(Gj) ≡
∑
n

Dn,n(Gj) (C.14)

We would like to show that the character of each element in a representation of a finite
group is invariant under a similarity transformation. From equations (C.12) and (C.14) we
have:

χ′(Gj) ≡
∑
m

D′m,m(Gj)

=
∑
m,n,n′

S−1
m,n′Dn′,n(Gj)Sn,m

=
∑
n,n′

(∑
m

Sn,mS
−1
m,n′

)
Dn′,n(Gj)

=
∑
n,n′

δn′,nDn′,n(Gj)

=
∑
n

Dn,n(Gj) = χ(Gj) q.e.d. (C.15)

If two representations are connected by a similarity transformation, then they are said to
be ‘equivalent’. From (C.15) it follows that when two representations are equivalent, then
χ′(Gj) = χ(Gj) for j = 1, 2, ..., g.

Sometimes it is possible by means of a similarity transformation to bring all the elements
of a representation into a block-diagonal form. In other words it may be possible to bring
D′m′,m(Gj) into a form where the non-zero elements are confined blocks along the diagonal,
the blocks being the same for all the group elements. To express the same idea differently,
it is sometimes possible to go over by means of a similarity transformation from the original
basis set, Φ1, Φ2, ..., ΦM to a new basis set Φ′1, Φ′2, ..., Φ′M which can be divided into two
or more subsets, each of which mixes only with itself under the operations G1, G2,...,Gg.
A representation based on two or more subsets of basis functions which mix only with
themselves under the operations of the group is said to be ‘reduced’. Whenever it is possible
to bring a representation into a reduced form by means of a similarity transformation, it
is said to be ‘reducible’. Whenever this is not possible, the representation is said to be
‘irreducible’.
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Table A.1 Multiplication table for the group C3

E C3 C−1
3

E E C3 C−1
3

C3 C3 C−1
3 E

C−1
3 C−1

3 E C3

Table A.2 Character table for the group C3

E C3 C−1
3

A 1 1 1

Γc 1 ei(2π/3) e−i(2π/3)

Γ∗c 1 e−i(2π/3) ei(2π/3)
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C.5 The great orthogonality theorem

A unitary matrix is a matrix whose conjugate transpose (Hermitian adjoint) is equal to its
inverse. It is always possible, by means of a similarity transformation, to bring the matrix
representations of a finite group into unitary form. Now let Dα

n′,n(Gj) and Dβ
m′,m(Gj) be

two unitary irreducible representations of a finite group of order g. The great orthogonality
theorem, from which much of the power of group theory is derived, then states that

g∑
j=1

Dα∗
n′,n(Gj)D

β
m′,m(Gj) =

g

dα
δα,βδn′,m′δn,m (C.16)

where dα is the dimension of the matrices Dα
n′,n(Gj). The proof of the great orthogonality

theorem depends on Schur’s lemma, which states that if A is a matrix that commutes with
every matrix Dα

n′,n(Gj), j = 1, 2, ..., g in a unitary irreducible representation of a finite
group, then A must be a multiple of the unit matrix, i.e., if

AD(Gj)−D(Gj)A = 0, j = 1, 2, ..., g (C.17)

then

A ∼ I (C.18)

The proof of Schur’s lemma is as follows: If A commutes with Dα
n′,n(Gj), j = 1, 2, ..., g,

then so does its conjugate transpose A†. Therefore we can let A be Hermitian without loss
of generality, and we can diagonalize A by means of a unitary transformation:

UAU−1 = A(d) (C.19)

where A(d) is diagonal. Then

U−1A(d)UD(Gj)−D(Gj)U
−1A(d)U = 0, j = 1, 2, ..., g (C.20)

Multiplying on the left by U and on the right by U−1 then yields

A(d)UD(Gj)U
−1 − UD(Gj)U

−1A(d) = 0, j = 1, 2, ..., g (C.21)

Thus we can write

A(d)D′(Gj)−D′(Gj)A
(d) = 0, j = 1, 2, ..., g (C.22)

where

D′(Gj) ≡ UD(Gj)U
−1 (C.23)

Since A(d) is diagonal we can write A
(d)
n′,n = A

(d)
n δn′,n. Thus with the indices written out,

(C.22) becomes:∑
n′

(
A

(d)
n′ δn′′,n′D

′α
n′,n(Gj)−D′αn′′,n′(Gj)A

(d)
n δn′,n

)
= 0, j = 1, ..., g

(C.24)
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from which it follows that(
A

(d)
n′ − A(d)

n

)
D′αn′,n(Gj) = 0, j = 1, 2, ..., g (C.25)

Without loss of generality, we can choose U in such a way that repeated eigenvalues of A(d)

are grouped together along the diagonal. Then A
(d)
n′′ 6= A

(d)
n implies that

D′αn′,n(Gj) = D′†αn′,n(Gj) = D′αn,n′(G
−1
j ) = 0, j = 1, 2, ..., g (C.26)

Thus D′αn′,n(Gj) can only have non-zero elements in the blocks that correspond to repeated

eigenvalues of A(d) and it would therefore be reducible unless all of the eigenvalues are
equal, which would contradict the original assumption of irreducibility. This proves Schur’s
lemma.

Having demonstrated the validity of Schur’s lemma, we are now in a position to prove
the great orthogonality relation. To do so we define the matrix M by the relationship

M ≡
g∑
j=1

Dα(Gj)XD
β(G−1

j ) (C.27)

where X is an arbitrary matrix of appropriate dimensions to make matrix multiplication
possible and where Dα(Gj) and Dβ(Gj) are unitary irreducible representations of the finite
group. Then

Dα(Gi)MDβ(G−1
i ) =

g∑
j=1

Dα(Gi)D
α(Gj)XD

β(G−1
j )Dβ(G−1

i )

=

g∑
k=1

Dα(Gk)XD
β(G−1

k ) = M (C.28)

where GiGj = Gk and where we have used the fact that each group element appears once
and only once in every row of the multiplication table to replace the sum over j by a sum
over k. Multiplying (C.28) from the right by Dβ(Gi) we obtain:

Dα(Gi)M = MDβ(Gi) i = 1, 2, ..., g (C.29)

Then, according to Schur’s lemma, M must be a multiple of the unit matrix. It may of
course be a square matrix consisting entirely of zeros, since such a matrix is also a multiple
of the unit matrix. Multiplying (C.29) from the left by M−1 we obtain:

M−1Dα(Gi)M = Dβ(Gi) i = 1, 2, ..., g (C.30)

from which we can see that if M is not the null matrix, then the irreducible representations
Dα(Gi) and Dβ(Gi) must be the same, i.e., if M is not the null matrix, α = β.
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Let us first consider the case where M is the null matrix and where α 6= β. Then
putting indices into (C.27) we have:

g∑
j=1

dα∑
n=1

dβ∑
m′=1

Dα
n′,n(Gj)Xn,m′D

β
m′,m(G−1

j ) = 0 (C.31)

But Xn,m′ is arbitrary, and therefore (C.31) can only hold for all cases if

g∑
j=1

Dα
n′,n(Gj)D

β
m′,m(G−1

j ) = 0 (C.32)

Now let us consider the second possibility: Suppose that α = β. Then

δα,βM =

g∑
j=1

Dβ(Gj)XD
β(G−1

j ) (C.33)

Putting indices into (C.33) we have

δα,βMn′,m =

g∑
j=1

dβ∑
n=1

dβ∑
m′=1

Dα
n′,n(Gj)Xn,m′D

β
m′,m(G−1

j ) (C.34)

Taking the trace of both sides of (C.34) yields

δα,βtr(M) =

g∑
j=1

dβ∑
m=1

dβ∑
n=1

dβ∑
m′=1

Dβ
m,n(Gj)Xn,m′D

β
m′,m(G−1

j )

=

g∑
j=1

dβ∑
n=1

dβ∑
m′=1

δn,m′Xn,m′ = gtr(X) (C.35)

so that

Iδα,β
g

dα
trX =

g∑
j=1

dβ∑
n=1

dβ∑
m′=1

Dα
n′,n(Gj)Xn,m′D

β
m′,m(G−1

j ) (C.36)

where I is the identity matrix. Because X is arbitrary, this relationship can only hold in
all cases if (C.16) is valid.

The great orthogonality relation is very central, and almost all of the results of group
theory depend upon it. For example, combining (C.16) with the definition of characters
(C.14), we obtain:

g∑
j=1

χα∗(Gj)χ
β(Gj) ≡

g∑
j=1

{∑
n

Dα∗
n,n(Gj)

}{∑
m

Dβ
m,m(Gj)

}
=

g

dα
δα,β

∑
n

∑
m

δn,mδn,m = gδα,β (C.37)
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Equation (C.37) holds only for unitary representations, but every representation is equiva-
lent to a unitary representation since it is always possible to perform a similarity transfor-
mation that orthonormalizes the basis functions. Therefore, since characters are invariant
under similarity transformations, the orthonormality of characters

1

g

g∑
j=1

χα∗(Gj)χ
β(Gj) = εα,β ≡

{
0 if the representations are inequivlent
1 if the representations are equivlent

(C.38)

holds even for non-unitary irreducible representations.
Now consider a representation Dn′,n(Gj) which may be reducible. If we reduce it by

means of a similarity transformation, then in its reduced form it will be block-diagonal,
each block being irreducible. Taking the trace, we find that the character of an element
in the reduced representation D′n′,n(Gj) is the sum of the characters of the irreducible
representations of which it is composed. Thus

χ(Gj) ≡
d∑

n=1

D′n,n(Gj)

= χ1(Gj) + χ2(Gj) + ...

=
∑
β

nβχ
β(Gj) (C.39)

where nβ is the number of times that the irreducible representation Dβ occurs among the
diagonal blocks of D′. Then from (C.38) we have

1

g

g∑
j=1

χα∗(Gj)χ(Gj) =
∑
β

nβ

g∑
j=1

χα∗(Gj)χ
β(Gj)

=
∑
β

nβεα,β = nα (C.40)

This gives us a way to find out how many times a particular irreducible representation Dα

occurs in a reducible representation D. According to (C.40), we just have to take the scalar
product of the characters and divide by the order of the group. When we say that Dα

‘occurs’ nα times in D, we mean that it is possible by means of a similarity transformation
to bring D into block-diagonal form where Dα occurs nα times along the diagonal blocks.
The relationship is sometimes written in the form

D = n1D
1 + n1D

2 + ... (C.41)

Obviously in this decomposition we do not need to distinguish between different equivalent
forms of an irreducible representation Dα, since all of them have the same character, and
it is possible to go from one to another by means of a similarity transformation.
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C.6 Classes

Two elements of a group Gi and Gj are said to be in the same ‘class’ if there exists another
element Gl in the group such that

Gi = G−1
l GjGl (C.42)

Thus, if we start with a particular element Gj, we can generate the set of elements in the
same class by keeping j fixed in (C.42) and letting Gl run through all the elements of the
group. It also follows from (C.42) that we can construct an operator Mk which commutes
with all the elements of the group by summing the elements of a particular class:

Mk ≡
∑

class k

Gj (C.43)

Then for an arbitrary group element Gl we have

G−1
l [Mk, Gl] =

∑
class k

G−1
l [Gj, Gl]

=
∑

class k

(
G−1
l GjGl −Gj

)
=

∑
class k

(Gi −Gj) = 0 (C.44)

Equation (C.44) can hold only if [Mk, Gl] = 0. An operator, such as Mk, which commutes
with every element of the group is called an ‘invariant’. If there are r classes in a group,
there will be r linearly independent invariants that can be constructed in this way.

For any representation of two elements Gi and Gj in the same class, it follows from
(C.42) that

D(Gi) = D(G−1
l )D(Gj)D(Gl) = D(Gl)

−1D(Gj)D(Gl) (C.45)

Thus if D(Gi) and D(Gi) represent two elements in the same class, they are connected by a
similarity transformation, and therefore they have the same character. In other words, all
elements in the same class have the same character. This means that in applying equation
(C.40) we do not need to go through quite so much work. Instead of summing over all
of the elements in the group, we can take the product of characters for a representative
element in each class, multiply by the number of elements in the class, and then sum over
the classes. If gk represents the number of elements in the class k, then the orthogonality
relation for characters, equation (C.38), can be written in the form

r∑
k=1

√
gk
g
χα∗k (Gj)

√
gk
g
χβk(Gj) = δα,β (C.46)

where χαk is the character of a representative element in class k.
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C.7 Projection operators

The great orthogonality theorem, equation (C.16), can be used to construct group-theoretical
projection operators. Suppose that the sets of functions (Φ1

1,Φ
1
2, ...,Φ

1
d1

), (Φ2
1,Φ

2
2, ...Φ

2
d2

),
etc. each form the basis for an irreducible representation of a group, and that there are r′

nonequivalent irreducible representations. Then

GjΦ
β
n =

dβ∑
n′=1

Φβ
n′D

β
n′,n(Gj) (C.47)

Then from (C.16) we have

g∑
j=1

Dα∗
m,m(Gj)GjΦ

β
n =

dβ∑
n′=1

Φβ
n′

g∑
j=1

Dα∗
m,m(Gj)D

β
n′,n(Gj)

= δα,β
g

dα

dβ∑
n′=1

Φβ
n′δm,n′δm,n

= δα,β
g

dα
Φβ
mδm,n (C.48)

From (C.48) it follows that if we let

Pα
m ≡

dα
g

g∑
j=1

Dα∗
m,m(Gj)Gj (C.49)

then

Pα
mΦβ

n = δα,βδm,nΦβ
m (C.50)

In other words, when the operator Pα
m defined by equation (C.49) acts on any function in

the set (Φ1
1,Φ

1
2, ...,Φ

1
d1

), (Φ2
1,Φ

2
2, ...Φ

2
d2

),..., the function is given back unchanged, provided
that m = n and α = β. Otherwise the function is annihilated. Thus, Pα

m is a projection
operator corresponding to the mth basis function of the αth irreducible representation of
the group in a standard unitary representation. If Pα

m acts on an arbitrary function, it will
annihilate all of it except the component that transforms like the mth basis function of
Dα.

A second type of group-theoretical projection operator can be defined by the relation-
ship

Pα ≡
dα∑
m=1

Pα
m =

dα
g

g∑
j=1

dα∑
m=1

Dα∗
m,m(Gj)Gj (C.51)

which can be rewritten as

Pα ≡ dα
g

g∑
j=1

χα∗(Gj)Gj (C.52)
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From (C.50) it follows that

PαΦβ
n =

dα∑
m=1

Pα
mΦβ

n = δα,β

dα∑
m=1

δm,nΦβ
m = δα,βΦβ

n (C.53)

When Pα acts on an arbitrary function, it annihilates everything except the component
which can be expressed as a linear combination of basis functions of the irreducible repre-
sentation Dα. If we sum (C.53) over all of the irreducible representations of the group, we
obtain

r′∑
α=1

PαΦβ
n =

r′∑
α=1

δα,βΦβ
n = Φβ

n (C.54)

Therefore the sum acts like the identity operator and we can write

r′∑
α=1

Pα = E (C.55)

Combining (C.55) with (C.52), we obtain

g∑
j=1

r′∑
α=1

dα
g
χα∗(Gj)Gj = E ≡ G1 (C.56)

Since the group elements G1, ..., Gg are linearly independent, equation (C.55) implies that

r′∑
α=1

dα
g
χα∗(Gj) = δj,1 (C.57)

The character of the identity element in any representation is equal to the dimension of
that representation:

χα∗(E) = χα(E) = dα (C.58)

Therefore, when j = 1, we obtain from (C.57) the relationship

r′∑
α=1

d2
α = g (C.59)

i.e., the sum of the squares of the dimensions of the irreducible representations is equal to
the order of the group.
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C.8 The regular representation

The ‘regular representation’ of a finite group is a reducible representation Dreg in which
the basis consists of the group elements themselves:

GjGn =

g∑
n′=1

Gn′D
reg
n′,n(Gj) (C.60)

Dreg must thus be a set of g g× g matrices. If we know the multiplication table for a finite
group, we can construct the regular representation. For example, the multiplication table
for the group C3 is shown above. It can easily be verified that if we let

Dreg(E) =

 1 0 0
0 1 0
0 0 1


Dreg(C3) =

 0 0 1
1 0 0
0 1 0

 (C.61)

Dreg(C−1
3 ) =

 0 1 0
0 0 1
1 0 0


then the matrices will be the regular representation of the group C3 according to the
definition shown in (C.60) and the multiplication table (A.1). Since GiGj 6= Gj for Gi 6= E,
it follows that the character of every group element except the identity element vanishes
in the regular representation. (We can notice that this holds in the example given above.)
Therefore in the case of the regular representation, equation (C.40) becomes:

nα =
1

g

g∑
j=1

χα∗(Gj)χ
reg(Gj) =

1

g
χα∗(E)χreg(E) = dα (C.62)

Thus each irreducible representation of a finite group appears dα times in the regular
representation.

When each element of a group commutes with every other one, a group is said to be
Abelian. Then from the definition of classes, (C.42), it follows that in an Abelian group,
every element is in a class by itself, so that an Abelian group contains g classes, i.e. r = g.
We can next ask how many non-equivalent irreducible representations an Abelian group
contains. To answer this question, we remember from Schur’s lemma that the only matrix
that commutes with every matrix in an irreducible representation of a group must be a
multiple of the unit matrix. But in an Abelian group, all of the elements commute with
each other, and therefore their irreducible representations must all be multiples of the
unit matrix. This can happen only if all the irreducible representations are 1-dimensional.
Thus for an Abelian group, dα = 1, α = 1, 2, ..., r′ and r′ = g. It can be seen from
the multiplication table of the group C3 that it is Abelian. In the example of C3, (C.59)
becomes 1 + 1 + 1 = 3.
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C.9 Classification of basis functions

We can us the group-theoretical projection operators to classify basis sets into basis func-
tions for the various irreducible representations of a group. For example, we can construct
the projection operators of the group C3 from the character table:

P 1 =
1

3

(
E + C3 + C−1

3

)
P 2 =

1

3

(
E + e−i2π/3C3 + ei2π/3C−1

3

)
(C.63)

P 3 =
1

3

(
E + ei2π/3C3 + e−i2π/3C−1

3

)
Since the group C3 is Abelian, all of its irreducible representations are 1-dimensional, and
hence there is no difference between projection operators of the type Pα and those of
the type Pα

n . Notice that P 1 + P 2 + P 3 = E in accordance with (C.55), and that the
projection operators are idempotent, i.e., PαP β = δα,βP

α. All projection operators must
be idempotent, since projecting out a subspace of a Hilbert space twice has the same
effect as doing it once, and acting in succession with projection operators corresponding
to different subspaces must yield zero.

Now consider the set of functions Φm = eimϕ where m is an integer. We can use the
projection operators of (C.63) to split the Hilbert space spanned by this set of functions
into three subspaces. Using the relationships

Eeimϕ = eimϕ

C3e
imϕ = eim(ϕ−2π/3) (C.64)

C−1
3 eimϕ = eim(ϕ+2π/3)

we obtain

P 1eimϕ =
1

3
eimϕ

(
1 + e−im2π/3 + eim2π/3

)
=

{
0 if m = ±1,±2,±4,±5, ...
eimϕ if m = 0,±3,±6,±9, ...

(C.65)

and similarly

P 2eimϕ =

{
0 if m+ 1 = ±1,±2,±4,±5, ...
eimϕ if m+ 1 = 0,±3,±6,±9, ...

P 3eimϕ =

{
0 if m− 1 = ±1,±2,±4,±5, ...
eimϕ if m− 1 = 0,±3,±6,±9, ...

(C.66)

Thus the Hilbert space spanned by the functions Φm = eimϕ is divided into three subspaces
each of which consists of basis functions for one of the irreducible representations of C3. For
non-Abelian groups the Hilbert space spanned by a set of basis functions can be divided
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into still smaller subspaces through the use of projection operators of the type Pα
n defined

in equation (C.49). If we wish to have names for the the two types of projection operators,
we might call Pα

m ‘strong’ and Pα ‘weak’, since Pα
n has a stronger effect than Pα.

Now suppose that we have divided the Hilbert space spanned by a set of basis functions
into small subspaces by means of the strong projection operators Pα

n , so that

Pα
n Φj = pjΦj pj = 0 or 1 (C.67)

We will now show that if an operator T commutes with every element of the group, then
the matrix elements of T linking functions belonging to different subspaces must necessarily
vanish. The proof is as follows: Since T commutes with every element of the group, and
since the projection operators are constructed from group elements, we have

[Pα
n , T ] = 0 (C.68)

Then

〈Φj| [Pα
n , T ] |Φk〉 = (pj − pk)〈Φj|T |Φk〉 = 0 (C.69)

Thus if Φj and Φk belong to different subspaces when the basis set is classified by the
action of the projection operators Pα

n , i.e., if pj 6= pk, then 〈Φj|T |Φk〉 = 0. It follows that
a matrix representation of the operator T will be block-diagonal if it is based on functions
that have been classified by means of the projection operators Pα

n , i.e. if it is based on a
set of functions that satisfy (C.67). Such a basis set is said to be ‘symmetry-adapted’.

We can introduce a special notation to represent fully symmetry-adapted basis func-
tions. Let |ηα,nj 〉 be such a function.2 By this we indicate that the function transforms
under the action of the group elements like nth basis function of the αth standard irre-
ducible representation of the group, while the index j distinguishes between the various
linearly independent functions that have this property. With this notation we can write:

Pα
n |ηβ,mj 〉 = δα,βδn,m|ηβ,mj 〉 (C.70)

Using this notation, the statement that a matrix representation of the operator T based
on symmetry-adapted functions will be block-diagonal can be written in the form:

〈ηα,ni |T |ηβ,mj 〉 = δα,βδn,m〈ηα,ni |T |ηβ,mj 〉 (C.71)

The eigenvalues and eigenfunctions of T can also be expressed in this notation:

T |Ψα,m
κ 〉 = λα,mκ |Ψα,m

κ 〉 (C.72)

where

|Ψα,m
κ 〉 =

∑
j

|ηα,mj 〉Cj,κ (C.73)

2We also introduce the Dirac notation here, since it is useful in the discussion of matrix elements.
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In other words, a set of functions all of which transform like the nth basis function of the
αth irreducible representation of a group combine to form an eigenfunction of an operator
T that commutes with all of the group elements.

We will now try to find a relationship between the degeneracy of the root λα,nκ and
the dimension dα of the irreducible representation Dα. To do this, we introduce the ‘shift
operator’

Pα
m′,m ≡

dα
g

g∑
j=1

Dα∗
m′,m(Gj)Gj m′ 6= m (C.74)

Then by an argument similar to (C.48) we have

Pα
m′,m|ηα,mj 〉 =

dα
g

g∑
j=1

Dα∗
m′,m(Gj)Gj|ηα,mj 〉

=
dα∑

m′′=1

|ηα,m′′j 〉dα
g

g∑
j=1

Dα∗
m′,m(Gj)D

α
m′′,m(Gj)

=
dα∑

m′′=1

|ηα,m′′j 〉δm′′,m′ = |ηα,m′j 〉 (C.75)

where we have made use of the great orthogonality relation (C.16). Since Pα
m′,m is a linear

combination of group elements, it must commute with T :[
Pα
m′,m, T

]
= 0 (C.76)

Therefore

〈Ψα,m′

κ |
[
Pα
m′,m, T

]
|Ψα,m

κ 〉 =
(
λα,m

′

κ − λα,mκ
)
〈Ψα,m′

κ |Pα
m′,m|Ψα,m

κ 〉

=
(
λα,m

′

κ − λα,mκ
)

= 0 (C.77)

so that the roots corresponding to the dα eigenfunctions |Ψα,1
κ 〉, ..., |Ψα,dα

κ 〉 must be degen-
erate. Such a degeneracy is called a ‘due degeneracy’ because it is due to the symmetry
properties of the system. If there are other degeneracies, they are termed ‘accidental’.



Appendix D

Sturmian basis sets

D.1 One-electron Coulomb Sturmians

Because of their completeness properties, one-electron Sturmian basis sets have long been
used in theoretical atomic physics. Their form is identical with that of the familiar hy-
drogenlike atomic orbitals, except that the factor Z/n is replaced by a constant k. The
one-electron Coulomb Sturmians can be written as

χnlm(x) = Rnl(r)Ylm(θ, φ) (D.1)

where Ylm is a spherical harmonic, and where the radial function has the form

Rnl(r) = Nnl(2kr)le−krF (l + 1− n|2l + 2|2kr) (D.2)

Here

Nnl =
2k3/2

(2l + 1)!

√
(l + n)!

n(n− l − 1)!
(D.3)

is a normalizing constant, while

F (a|b|x) ≡
∞∑
t=0

at

t!bt
xt = 1 +

a

b
x+

a(a+ 1)

2b(b+ 1)
x2 + · · · (D.4)

is a confluent hypergeometric function. Coulomb Sturmian basis functions obey the fol-
lowing one-electron Schrödinger equation (in atomic units):[

−1

2
∇2 − nk

r
+

1

2
k2

]
χnlm(x) = 0 (D.5)

which is just the Schrödinger equation for an electron in a hydrogenlike atom with the
replacement Z/n → k. All of the functions in a such a basis set correspond to the same
energy,

ε = −1

2
k2 (D.6)

447
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Table B.1: One-electron Coulomb Sturmian radial functions. If k is replaced by Z/n they are

identical to the familiar hydrogenlike radial wave functions.

n l Rn,l(r)

1 0 2k3/2e−kr

2 0 2k3/2(1− kr)e−kr

2 1
2k3/2

√
3

kr e−kr

3 0 2k3/2

(
1− 2kr +

2(kr)2

3

)
e−kr

3 1 2k3/2 2
√

2

3
kr

(
1− kr

2

)
e−kr

3 2 2k3/2

√
2

3
√

5
(kr)2 e−kr
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In other words the basis set is isoenergetic. In the wave equation obeyed by the Sturmians,
(D.5), the potential is weighted differently for members of the basis set corresponding to
different values of n. Equation (D.5) can be written in the form:[

−1

2
∇2 − βn

Z

r
+

1

2
k2

]
χnlm(x) = 0 βn =

kn

Z
(D.7)

The weighting factors βn are chosen in such a way as to make all of the solutions isoener-
getic. All solutions correspond to the energy ε = −k2/2. In the Hamiltonian formulation of
physics, the eigenvalues of the wave equation are a spectrum of allowed energies, but here
all of the solutions of the wave equation correspond to the same energy, and the weighting
factors play the role of eigenvalues. The functions in a Coulomb Sturmian basis set can
be shown to obey and obey a potential-weighted orthonormality relation: To see this, we
consider two solutions, χnlm(x) and χn′l′m′(x), obeying the equations:[

−1

2
∇2 +

1

2
k2

]
χnlm(x) =

nk

r
χnlm(x)[

−1

2
∇2 +

1

2
k2

]
χ∗n′l′m′(x) =

n′k

r
χ∗n′l′m′(x) (D.8)

Multiplying the two equations from the left respectively by χ∗n′l′m′(x) and χnlm(x), inte-
grating over the coordinates, and subtracting the two equations, we obtain:

(n− n′)
∫
d3x χ∗n′l′m′(x)

1

r
χnlm(x) = 0 (D.9)

where we have also made use of the fact that (from Hermiticity)∫
d3x χ∗n′l′m′(x)

[
−1

2
∇2 +

1

2
k2

]
χnlm(x)

−
∫
d3x χnlm(x)

[
−1

2
∇2 +

1

2
k2

]
χ∗n′l′m′(x) = 0 (D.10)

Thus for n 6= n′, the potential-weighted scalar product vanishes, and it vanishes also when
l′ 6= l or m′ 6= m because of the orthogonality of the spherical harmonics. The Coulomb
Sturmians are normalized in such a way that the orthonormality relation is:∫

d3x χ∗n′l′m′(x)
1

r
χnlm(x) =

k

n
δn′nδl′lδm′m (D.11)

Because of their completeness and their close relationship with Coulomb potentials, Coulomb
Sturmians are widely used in atomic physics.
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D.2 Löwdin-orthogonalized Coulomb Sturmians

The Coulomb Sturmians form a complete set in the sense that any square-integrable func-
tion of x can be expanded in terms of them. For this reason, they are useful as basis
functions in many applications. Sometimes it may be convenient to use Coulomb Stur-
mian basis functions in a form that is orthonormalized in the conventional way. Let us
denote the orthogonalized Coulomb Sturmians by χ̃µ(x), where µ ≡ (n, l,m). This new
basis set is related to the original set of Coulomb Sturmians discussed above by

χ̃µ(x) =
∑
µ′

χµ(x)Wµ′,µ (D.12)

where Wµ′,µ is a transformation matrix. We wish the transformation to be such that∫
d3x χ̃∗µ′(x)χ̃µ(x) ≡ S̃µ′,µ = δµ′,µ (D.13)

Suppose that ∫
d3x χ∗µ′(x)χµ(x) = Sµ′,µ (D.14)

Then, in matrix notation, the condition that the transformation matrix W must satisfy is

W †SW = I (D.15)

where the dagger denotes the Hermitian adjoint, i.e., the conjugate transpose. Following
Löwdin and Wannier, we can choose from all the possible solutions to the matrix equation
(D.15) the one for which

W † = W (D.16)

(This is sometimes called symmetrical orthogonalization.) Then (D.15) will be satisfied if

W = S−1/2 (D.17)

In order to find the square root of the overlap matrix S, we diagonalize it, take the inverse
square root in the diagonal representation, and then transform back to the original rep-
resentation. This gives us W = S−1/2, which we then use to perform the transformation
shown in equation (D.12).
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Figure D.1: A set of 15 Löwdin-orthogonalized Coulomb Sturmians corresponding to l = 0
and k = 1. The radial parts are shown as functions of r. If an arbitrary radial function is
to be expanded in terms of this set, the value of k for the set can be adjusted in such a way
as to give maximum accuracy. Löwdin-orthogonalized Coulomb Sturmians are used in the
Hartree-Fock calculations of Chapter 2.

D.3 The Fock projection

Coulomb Sturmian basis functions and their Fourier transforms are related by

χnlm(x) =
1√

(2π)3

∫
d3x eip·xχtnlm(p) (D.18)

and by the inverse transform

χtnlm(p) =
1√

(2π)3

∫
d3x e−ip·xχnlm(x) (D.19)

By projecting momentum-space onto the surface of a 4-dimensional hypersphere, V. Fock
[?], [?] was able to show that the Fourier-transformed Coulomb Sturmians can be very sim-
ply expressed in terms of 4-dimensional hyperspherical harmonics through the relationship

χtn,l,m(p) = M(p)Yn−1,l,m(û) (D.20)

where

M(p) ≡ 4k5/2

(k2 + p2)2
(D.21)
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and

u1 =
2kp1

k2 + p2

u2 =
2kp2

k2 + p2

u3 =
2kp3

k2 + p2

u4 =
k2 − p2

k2 + p2
(D.22)

The 4-dimensional hyperspherical harmonics are given by [?], [?], [?], [?]

Yλ,l,m(û) = Nλ,lC1+l
λ−l(u4)Yl,m(u1, u2, u3) (D.23)

where Yl,m is a spherical harmonic of of the familiar type, while

Nλ,l = (−1)λil(2l)!!

√
2(λ+ 1)(λ− l)!
π(λ+ l + 1)!

(D.24)

is a normalizing constant, and

Cα
j (u4) =

[j/2]∑
t=0

(−1)tΓ(j + α− t)
t!(j − 2t)!Γ(α)

(2u4)j−2t (D.25)

is a Gegenbauer polynomial. The first few The relationships between hyperspherical har-
monics, harmonic polynomials, and harmonic projection will be discussed in Appendix C.
Table 5.1 in Chapter 5 shows the first few hyperspherical harmonics.

D.4 Generalized Sturmians and many-particle prob-

lems

In 1968, Osvaldo Goscinski [[?]] generalized the concept of Sturmian basis sets by consider-
ing isoenergetic sets of solutions to a many-particle Schrödinger equation with a weighted
potential: [

−1

2
∆ + βνV0(x)− Eκ

]
|Φν〉 = 0 (D.26)

The weighting factors βν are chosen in such a way as to make all of the functions in the
set correspond to the same energy, Eκ, and this energy is usually chosen to be that of
the quantum mechanical state which is to be represented by a superposition of generalized
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Sturmian basis functions. If the basis set is used to treat N -particle systems where the
particles have different masses, the operator ∆ in the kinetic energy term is given by

∆ ≡
N∑
j=1

1

mj

∇2
j (D.27)

while if the masses are all equal, it is given by the generalized Laplacian operator:

∆ ≡
d∑
j=1

∂2

∂x2
j

(D.28)

with d = 3N and
x = (x1, x2, ..., xd) (D.29)

Like the one-electron Coulomb Sturmians, the functions in generalized Sturmian basis sets
can be shown to obey a potential-weighted orthonormality relation [?]:

〈Φν′|V0(x)|Φν〉 = δν′,ν
2Eκ
βν

(D.30)

D.5 Use of generalized Sturmian basis sets to solve

the many-particle Schrödinger equation

If we wish to solve a many-particle Schrödinger equation of the form[
−1

2
∆ + V (x)− Eκ

]
|Ψκ〉 = 0 (D.31)

we can approximate a solution as a superposition of generalized Sturmian basis functions

|Ψκ〉 ≈
∑
ν

|Φν〉Bν,κ (D.32)

Substituting this superposition into the Schrödinger equation and remembering that each
of the basis functions satisfies eq.(D.26), we obtain:∑

ν

[
−1

2
∆ + V (x)− Eκ

]
|Φν〉Bν,κ

=
∑
ν

[V (x)− βνV0(x)] |Φν〉Bν,κ ≈ 0 (D.33)

If we multiply from the left by a conjugate function from our generalized Sturmian basis
set and integrate over all coordinates, we obtain a set of secular equations from which the
kinetic energy term has disappeared:∑

ν

〈Φ∗ν′ | [V (x)− βνV0(x)] Φν〉Bν,κ = 0 (D.34)
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If we introduce the definition

Tν′,ν ≡ −
1

pκ
〈Φ∗ν′|V (x)|Φν〉 (D.35)

where
pκ ≡

√
−2Eκ (D.36)

and make use of the potential-weighted orthonormality relations (D.30), we can rewrite
the secular equations in the form:∑

ν

[Tν′,ν − pκδν′,ν ]Bν,κ = 0 (D.37)

The generalized Sturmian secular equations are strikingly different from conventional Hamil-
tonian secular equations in several ways:

• The kinetic energy term has disappeared.

• The matrix representing the approximate potential V0(x) is diagonal.

• The roots of the secular equations are not energies, but values of the scaling parameter
pκ, from which the energy can be obtained through the relationship Eκ = −p2

κ/2.

• For Coulomb potentials, the matrix Tν′,ν is energy-independent.

D.6 Momentum-space orthonormality relations for Stur-

mian basis sets

By arguments similar to those used in equations (D.8)-(D.11), a set of generalized Sturmian
basis functions can be shown to obey a potential-weighted orthonormality relation in direct
space ∫

dx Φ∗ν′(x)V0(x)Φν(x) = δν′,ν
2Eκ
βν

= −δν′,ν
p2
κ

βν
(D.38)

where
p2
κ ≡ −2Eκ (D.39)

(In equation (D.38) and in the remainder of this appendix, we abandon the Dirac bra and
ket notation in order to distinguish between functions of x ≡ (x1,x2, ...,xN) and functions
of p ≡ (p1,p2, ...,pN)). We would now like to find the momentum-space orthonormality
relations obeyed by Fourier transforms of the generalized Sturmian basis set. Because the
Fourier transform is unitary, the inner product of any two functions in L2 is preserved
under the operation of taking their Fourier transforms, i.e.∫

dx f ∗(x)g(x) =

∫
dp f t∗(p)gt(p) (D.40)
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Using this well-known relationship with f ∗(x) = Φ∗ν′(x) and g(x) = V0(x)Φν(x), we have∫
dx Φ∗ν′(x)V0(x)Φν(x) =

∫
dp Φt∗

ν′(p) [V0Φν ]
t (p) (D.41)

In order to evaluate [V0Φν ]
t (p), we remember the Fourier convolution theorem, which

states that the Fourier transform of the product of two functions is the convolution of their
Fourier transforms. Thus if a and b are any two functions in L2,

[ab]t (p′) ≡ 1

(2π)d/2

∫
dx e−ip

′·xa(x)b(x) =
1

(2π)d/2

∫
dp at(p′ − p)bt(p) (D.42)

Letting a(x) = V0(x) and b(x) = Φν(x) we have

[V0Φν ]
t (p′) =

1

(2π)d/2

∫
dp V t

0 (p′ − p)Φt
ν(p) (D.43)

Since the momentum-space integral equation corresponding to (D.26) has the form

(p′2 + p2
κ)Φ

t
ν(p

′) = − 2βν
(2π)d/2

∫
dp V t

0 (p′ − p)Φt
ν(p) (D.44)

it follows that

[V0Φν ]
t (p) = −(p2 + p2

κ)

2βν
Φt
ν(p) (D.45)

Finally, substituting (D.45) into (D.41), we obtain the momentum-space orthonormality
relations for a set of generalized Sturmian basis functions:∫

dp Φt∗
ν′(p)

(
p2 + p2

κ

2p2
κ

)
Φt
ν(p) = δν′,ν (D.46)

Because all of the functions Φν(x) in the generalized Sturmian basis set obey equation
(D.26), the potential-weighted direct space orthonormality relations shown in equation
(D.38) can be rewritten in the form∫

dx Φ∗ν′(x)

(−∆ + p2
κ

2p2
κ

)
Φν(x) = δν′,ν (D.47)

so that the momentum-space and direct-space orthonormality relations can be seen to be
related to each other in a symmetrical way. These weighted orthonormality relations in
L2(Rd) are the usual orthonormality relations in the Sobolev space W

(1)
2 (Rd) (see [?]). For

the case of unequal masses, where

∆ ≡
d∑
j=1

1

mj

∂2

∂x2
j

(D.48)

the momentum-space orthonormality relations for generalized Sturmians (D.46) takes on
the slightly modified form∫

dp Φt∗
ν′(p)

(∑
j p

2
j/mj + p2

κ

2p2
κ

)
Φt
ν(p) = δν′,ν (D.49)
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D.7 Sturmian expansions of d-dimensional plane waves

If the set of generalized Sturmian basis functions is complete in the sense of spanning the
Sobolev space W

(1)
2 (Rd), we can use it to construct a weakly convergent expansion of a

d-dimensional plane wave (valid only in the sense of distributions). Suppose that we let

eip·x =

(
p2
κ + p2

2p2
κ

)∑
ν

Φt∗
ν (p)aν(x) (D.50)

We can then determine the unknown functions aν(x) by means of the orthonormality
relations (D.46). Multiplying (D.50) on the left by Φt∗

ν′(p) and integrating over dp making
use of (D.46), we obtain∫

dp eip·xΦt∗
ν′(p) =

∑
ν

δν′,νaν(x) = aν′(x) (D.51)

so that

aν(x) =

∫
dp eip·xΦt

ν(p) = (2π)d/2Φν(x) (D.52)

Thus finally we obtain an expansion of the form

eip·x = (2π)d/2
(
p2
κ + p2

2p2
κ

)∑
ν

Φt∗
ν (p)Φν(x) (D.53)

If the set of generalized Sturmians Φν(x) does not span W
(1)
2 (Rd), equation (D.53) becomes

P
[
eip·x

]
= (2π)d/2

(
p2
κ + p2

2p2
κ

)∑
ν

Φt∗
ν (p)Φν(x) (D.54)

where P [eip·x] is the projection of the d-dimensional plane wave onto the subspace spanned
by the set {Φν(x)}. For example, if we are considering a system of N electrons, with d =
3N , the generalized Sturmian basis set might be antisymmetric with respect to exchange of
the N electron coordinates but otherwise complete. In that case, P [eip·x] would represent
the projection of the plane wave onto that part of Hilbert space corresponding to functions
of x that are antisymmetric with respect to exchange of the N electron coordinates. Neither
the expansion shown in equation (D.53) nor that shown in equation (D.54) is point-wise
convergent. In other words, we cannot perform the sums shown on the right-hand sides of
these equations and expect them to give point-wise convergent representations of the plane
wave or its projection. However, the expansions are valid in the sense of distributions. For
the case of unequal masses, the generalized Sturmian plane wave expansion takes on the
slightly modified form

eip·x = (2π)d/2

(
p2
κ +

∑
j p

2
j/mj

2p2
κ

)∑
ν

Φt∗
ν (p)Φν(x) (D.55)
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D.8 An alternative expansion of a d-dimensional plane

wave

In the Hamiltonian formulation of physics, one typically obtains sets of functions whose
orthonormality relation has the form∫

dx Φ∗ν′(x)Φν(x) = δν′,ν (D.56)

Such a set of basis functions might, for example be the configurations resulting from the
solution of the N -electron approximate Schrödinger equation[

−1

2
∆ + V0(x)− Eν

]
Φν(x) = 0 (D.57)

with x ≡ (x1, x2, ...., xd) and d = 3N . It is interesting to notice that a d-dimensional plane
wave can also be expanded in terms of a basis set with orthonormality relations of the form
shown in equation (D.56). To see this we write

e−ip·x =
∑
ν

aν(p)Φ∗ν(x) (D.58)

Multiplying from the left by Φν′(x) and integrating over the coordinates, we obtain the
relation ∫

dx e−ip·xΦν′(x) =
∑
ν

aν(p)

∫
dx Φ∗ν(x)Φν′(x)

=
∑
ν

aν(p)δν′,ν = aν′(p) = (2π)d/2Φt
ν′(p)

(D.59)

Thus we obtain the alternative expansion

e−ip·x = (2π)d/2
∑
ν

Φt
ν′(p)Φ∗ν(x) (D.60)

or

eip·x = (2π)d/2
∑
ν

Φt∗
ν′(p)Φν(x) (D.61)

The expansion (D.53) was a consequence of the weighted orthonormality relations obeyed
by generalized Sturmian basis sets, while the expansion (D.61) resulted from the more
conventional orthonormality relations (D.56). Both forms of the expansion are used in
Chapter 8.
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Appendix E

Angular and hyperangular
integrations

The physical importance of the properties of homogeneous and harmonic polynomials
comes from their close relationship to spherical and hyperspherical harmonics, and from
their relationship to angular and hyperangular integrations. We will see that these prop-
erties lead to useful results in both atomic and molecular physics.

E.1 Monomials, homogeneous polynomials, and har-

monic polynomials

A monomial of degree n in d coordinates is a product of the form

mn = xn1
1 x

n2
2 x

n3
3 · · ·xndd (E.1)

where the nj’s are positive integers or zero and where their sum is equal to n.

n1 + n2 + · · ·+ nd = n (E.2)

For example, x3
1, x2

1x2 and x1x2x3 are all monomials of degree 3. Since

∂mn

∂xj
= njx

−1
j mn (E.3)

it follows that
d∑
j=1

xj
∂mn

∂xj
= nmn (E.4)

A homogeneous polynomial of degree n (which we will denote by the symbol fn) is a
series consisting of one or more monomials, all of which have degree n. For example,

459
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f3 = x3
1 + x2

1x2 − x1x2x3 is a homogeneous polynomial of degree 3. Since each of the
monomials in such a series obeys (E.4), it follows that

d∑
j=1

xj
∂fn
∂xj

= nfn (E.5)

This simple relationship has very far-reaching consequences: If we now introduce the gen-
eralized Laplacian operator

∆ ≡
d∑
j=1

∂2

∂x2
j

(E.6)

and the hyperradius defined by

r2 ≡
d∑
j=1

x2
j (E.7)

we can show (with a certain amount of effort!) that

∆
(
rβfα

)
= β(β + d+ 2α− 2)rβ−2fα + rβ∆fα (E.8)

where α and β are positive integers or zero, β being even. We next define a harmonic
polynomial of degree n to be a homogeneous polynomial of degree n which also satisfies the
generalized Laplace equation:

∆hn = 0 (E.9)

For example, h3 = x2
1x2− x2

3x2 + x1x2x3 is a harmonic polynomial of degree 3. Combining
(E.8) and (E.9) we obtain

∆
(
rβhα

)
= β(β + d+ 2α− 2)rβ−2hα (E.10)

E.2 The canonical decomposition of a homogeneous

polynomial

Every homogeneous polynomial fn can be decomposed into a sum of harmonic polynomials
multiplied by powers of the hyperradius. This decomposition, which is called the canonical
decomposition of a homogeneous polynomial, has the form [?]:

fn = hn + r2hn−2 + r4hn−4 + · · · (E.11)

To see how the decomposition may be performed, we can act on both sides of equation
(E.11) with the generalized Laplacian operator ∆. If we do this several times, making use
of (E.10), we obtain [?], [?], [?]:

∆fn = 2(d+ 2n− 4)hn−2 + 4(d+ 2n− 6)r2hn−4 + · · ·

∆2fn = 8(d+ 2n− 6)(d+ 2n− 8)hn−4 + · · ·

∆3fn = 48(d− 2n− 8)(d− 2n− 10)(d− 2n− 12)hn−6 + · · · (E.12)
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and in general

∆νfn =

bn2 c∑
k=ν

(2k)!!

(2k − 2ν)!!

(d+ 2n− 2k − 2)!!

(d+ 2n− 2k − 2ν − 2)!!
r2k−2νhn−2k (E.13)

where

j!! ≡


j(j − 2)(j − 4) · · · 4× 2 j = even

j(j − 2)(j − 4) · · · 3× 1 j = odd

0!! ≡ 1

(−1)!! ≡ 1 (E.14)

An important special case occurs when ν = n/2. In that case, (E.13) becomes

∆n/2fn =
n!!(d+ n− 2)!!

(d− 2)!!
h0 (E.15)

or

h0 =
(d− 2)!!

n!!(d+ n− 2)!!
∆n/2fn (E.16)

We will see below that this result leads to powerful angular and hyperangular integration
theorems.

E.3 Harmonic projection

Equations (E.12) or (E.13) form a set of simultaneous equations that can be solved to yield
expressions for the various harmonic polynomials that occur in the canonical decomposition
of a homogeneous polynomial fn. In this way we obtain the general result:

hn−2ν =
(d+ 2n− 4ν − 2)!!

(2ν)!!(d+ 2n− 2ν − 2)!!

×
bn2−νc∑
j=0

(−1)j(d+ 2n− 4ν − 2j − 4)!!

(2j)!!(d+ 2n− 4ν − 4)!!
r2j∆j+νfn (E.17)

If we let n− 2ν = λ, this becomes

Oλ[fn] = hλ =
(d+ 2λ− 2)!!

(n− λ)!!(d+ n+ λ− 2)!!

×
bλ/2c∑
j=0

(−1)j(d+ 2λ− 2j − 4)!!

(2j)!!(d+ 2λ− 4)!!
r2j∆j+ 1

2
(n−λ)fn

(E.18)

Here Oλ can be thought of as a projection operator that projects out the harmonic poly-
nomial of degree λ from the canonical decomposition of the homogeneous polynomial fn.
The projection is of course taken to be zero if λ and n have different parities or if λ > n.
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E.4 Generalized angular momentum

The generalized angular momentum operator Λ2 is defined as

Λ2 ≡ −
d∑
i>j

(
xi

∂

∂xj
− xj

∂

∂xi

)2

(E.19)

When d = 3 it reduces to the familiar orbital angular momentum operator

L2 = L2
1 + L2

2 + L2
3 (E.20)

where

L1 =
1

i

(
x2

∂

∂x3

− x3
∂

∂x2

)
(E.21)

and where L2 and L3 given by similar expressions with cyclic permutations of the coordi-
nates. If we expand the expression in (E.19), we obtain:

Λ2 = −r2∆ +
d∑

i,j=1

xixj
∂2

∂xi∂xj
+ (d− 1)

d∑
i=1

xi
∂

∂xi
(E.22)

We next allow Λ2 to act on a homogeneous polynomial fn, and make use of (E.5). This
give us:

Λ2fn = −r2∆fn + n(d− 1)fn +
d∑

i,j=1

xixj
∂2fn
∂xi∂xj

(E.23)

The relationship
d∑

i,j=1

xixj
∂2fn
∂xi∂xj

= n(n− 1)fn (E.24)

can be derived in a manner similar to the derivation of (E.5). Substituting this into (E.24)
we have:

Λ2fn = −r2∆fn + n(n+ d− 2)fn (E.25)

From (E.25) it follows that a harmonic polynomial of degree n is an eigenfunction of the
generalized angular momentum operator with the eigenvalue n(n+ d− 2), i.e.,

Λ2hn = n(n+ d− 2)hn (E.26)

It is conventional to use the symbol λ for the degree of a harmonic polynomial. Written
in this notation, we have

Λ2hλ = λ(λ+ d− 2)hλ (E.27)

When d = 3 this reduces to
L2hl = l(l + 1)hl (E.28)

We can conclude from this discussion that the canonical decomposition of a homogeneous
polynomial can be viewed as a decomposition into eigenfunctions of generalized angular
momentum.
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E.5 Angular and hyperangular integration

In a 3-dimensional space the volume element is given by dx1dx2dx3 in Cartesian coordinates
or by r2dr dΩ in spherical polar coordinates. Thus we can write

dx1dx2dx3 = r2dr dΩ (E.29)

where dΩ is the element of solid angle. Similarly, in a d-dimensional space we can write

dx1dx2 · · · dxd = rd−1dr dΩ (E.30)

where r is the hyperradius and where dΩ is the element of generalized solid angle. From
the Hermiticity of the generalized angular momentum operator Λ2, one can show that
its eigenfunctions corresponding to different eigenvalues are orthogonal with respect to
hyperangular integration. Thus from (E.27) it follows that∫

dΩ h∗λ′hλ = 0 if λ′ 6= λ (E.31)

In the particular case where λ′ = 0, this becomes∫
dΩ h∗0hλ = h∗0

∫
dΩ hλ = 0 if λ 6= 0 (E.32)

since the constant, h∗0 can be factored out of the integration over generalized solid angle.
Thus we obtain the important result:∫

dΩ hλ = 0 if λ 6= 0 (E.33)

Let us now combine this result with equation (E.11), which shows the form of the canonical
decomposition of a homogeneous polynomial fn. From (E.11) and (E.33) it follows that if
a homogeneous polynomial is integrated over generalized solid angle, the only term that
will survive is the constant term in the canonical decomposition, i.e., h0. But this term,
together with the power of the hyperradius multiplying it, can be factored out of the
integration. Thus we obtain the powerful angular and hyperangular integration theorem:

∫
dΩ fn =


rnh0

∫
dΩ n = even

0 n = odd
(E.34)

where we have used the fact that when n is odd, the constant term h0 does not occur in the
canonical decomposition. We already have an explicit expression for h0, namely equation
(E.16). The only task remaining is to evaluate the total generalized solid angle,

∫
dΩ. We

can do this by comparing the integral of e−r
2

over the whole d-dimensional space when
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performed in Cartesian coordinates with the same integral performed in generalized spher-
ical polar coordinates. Since the result must be the same, independent of the coordinate
system used, we have: ∫ ∞

0

dr rd−1e−r
2

∫
dΩ =

d∏
j=1

∫ ∞
−∞

dxj e
−x2j (E.35)

The hyperradial integral can be expressed in terms of the gamma function:∫ ∞
0

dr rd−1e−r
2

=
Γ(d/2)

2
(E.36)

as can the integral over each of the Cartesian coordinates:∫ ∞
−∞

dxj e
−x2j = Γ(1/2) = π

1
2 (E.37)

Inserting these results into (E.35) and solving for
∫
dΩ, we obtain:∫

dΩ =
2π

d
2

Γ
(
d
2

) (E.38)

Finally, combining (E.11), (E.34) and (E.38), we have an explicit expression for the integral
over generalized solid angle of any homogeneous polynomial of degree n:

∫
dΩ fn =


2πd/2rn(d− 2)!!

Γ(d/2)n!!(d+ n− 2)!!
∆

1
2
nfn n = even

0 n = odd

(E.39)

Now suppose that F (x) is any function whatever that can be expanded in a convergent
series of homogeneous polynomials. If the series has the form:

F (x) =
∞∑
n=0

fn(x) (E.40)

then it follows from (E.39) that∫
dΩ F (x) =

(d− 2)!!2πd/2

Γ
(
d
2

) ∞∑
n=0,2,..

rn

n!!(n+ d− 2)!!
∆n/2fn(x) (E.41)

We can notice that at the point x = 0, all terms in a polynomial vanish, except the constant
term. Thus we have ⌊

∆n/2F (x)
⌋
x=0

= ∆n/2fn(x) (E.42)
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This allows us to rewrite (E.41) in the form∫
dΩ F (x) =

(d− 2)!!2πd/2

Γ
(
d
2

) ∞∑
ν=0

r2ν

(2ν)!!(d+ 2ν − 2)!!
b∆νF (x)cx=0 (E.43)

where we have made the substitution n = 2ν. In the case where d = 3, this reduces to∫
dΩ F (x) = 4π

∞∑
ν=0

r2ν

(2ν + 1)!
b∆νF (x)cx=0 (E.44)

E.6 An alternative method for angular and hyperan-

gular integrations

Theorem:
Let

I(n) ≡
∫
dΩ
(x1

r

)n1
(x2

r

)n2

.........
(xd
r

)nd
(E.45)

where x1, x2, ....., xd are the Cartesian coordinates of a d-dimensional space, dΩ is the
generalized solid angle, r is the hyperradius, defined by

r2 ≡
d∑
j=1

x2
j (E.46)

and where the nj’s are positive integers or zero. Then

I(n) =


πd/2

2(n/2−1)Γ
(
d+n

2

) d∏
j=1

(nj − 1)!! if all the nj
′s are even

0 otherwise

(E.47)

where

n ≡
d∑
j=1

nj (E.48)

Proof:
We consider the integral∫ ∞

0

dr rd−1e−r
2

∫
dΩ xn1

1 x
n2
2 ........x

nd
d =

d∏
j=1

∫ ∞
−∞

dxj x
nj
j e
−x2j (E.49)

If nj is zero or a positive integer, then

∫ ∞
−∞

dxj x
nj
j e
−x2j =


(nj − 1)!!

√
π

2nj/2
if nj is even

0 if nj is odd

(E.50)
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so that the right-hand side of (E.49) becomes

d∏
j=1

∫ ∞
−∞

dxj x
nj
j e
−x2j =


πd/2

2n/2

d∏
j=1

(nj − 1)!! if all the nj
′s are even

0 otherwise

(E.51)

The left-hand side of (5) can be written in the form∫ ∞
0

dr rd+n−1e−r
2

∫
dΩ

(x1

r

)n1
(x2

r

)n2

.........
(xd
r

)nd
=
I(n)

2
Γ

(
d+ n

2

)
(E.52)

Substituting (E.51) and (E.52) into (E.49), we obtain:

I(n) =


πd/2

2(n/2−1)Γ
(
d+n

2

) d∏
j=1

(nj − 1)!! if all the nj
′s are even

0 otherwise

(E.53)

Q.E.D.

Comments:

In the special case where d=3, equation (E.47) becomes

∫
dΩ
(x1

r

)n1
(x2

r

)n2
(xd
r

)n3

=


4π

(n+ 1)!!

3∏
j=1

(nj − 1)!! all nj
′s even

0 otherwise

(E.54)

Let us now consider a general polynomial (not necessarily homogeneous) of the form:

P (x) =
∑
n

cn x
n1
1 x

n2
2 .........x

nd
d (E.55)

Then we have ∫
dΩ P (x) =

∑
n

cn

∫
dΩ xn1

1 x
n2
2 .........x

nd
d =

∑
n

cn r
nI(n) (E.56)

It can be seen that equation (E.47) can be used to evaluate the generalized angular integral
of any polynomial whatever, regardless of whether or not it is homogeneous.
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It is interesting to ask what happens if the nj’s are not required to be zero or positive
integers. If all the nj’s are real numbers greater than -1, then the right-hand side of (E.49)
can still be evaluated and it has the form

d∏
j=1

∫ ∞
−∞

dxj x
nj
j e
−x2j =

d∏
j=1

1

2

(
1 + eiπnj

)
Γ

(
nj + 1

2

)
(E.57)

Thus (E.47) becomes

I(n) =
2

Γ
(
d+n

2

) d∏
j=1

1

2

(
1 + eiπnj

)
Γ

(
nj + 1

2

)
nj > −1, j = 1, ..., d (E.58)

This more general equation reduces to (E.47) in the special case where the nj’s are required
to be either zero or positive integers.

E.7 Angular integrations by a vector-pairing method

Let us consider the following integral in a 3-dimensional space:

I =
1

4π

∫
dΩ (x̂ · Â)(x̂ · B̂) (E.59)

where Â and B̂ are unit vectors. Since the integral I must be independent of x and
invariant under rotations, it must be proportional to the scalar product, Â · B̂, which is
the only scalar that can be made out of two vectors. The constant of proportionality can
be found by considering the case where Â = B̂, and in this way, one finds that

1

4π

∫
dΩ (x̂ · Â)(x̂ · B̂) =

1

3
(Â · B̂) (E.60)

Building on this approach to angular integration, Avery, Ørmen and Michels [?], [?] were
able to show that

1

4π

∫
dΩ

N∏
j=1

(x̂ · Âj)
nj

=


1

(n+ 1)!!

∑
λ∗

(
N∏
k=1

nk!

(2λkk)!!

)
j−1∏
i=1

N∏
j=1

1

λij!
(Âi · Âj)

λij n even

0 n odd

(E.61)
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where

n ≡ n1 + n2 + n3 + ...+ nN (E.62)

In (E.61) the sum
∑

λ∗ denotes a sum over all sets of λij values which are positive integers
or zero and which fulfil the criteria

2λjj +

j−1∑
i=1

λij +
N∑

i=j+1

λji = nj j = 1, 2, ..., N (E.63)

For example, when N = 2, n1 = 3 and n2 = 3, the set of λij values

λ11 = 1 λ22 = 1 λ12 = 1 (E.64)

fulfils (E.63), and likewise

λ11 = 0 λ22 = 0 λ12 = 3 (E.65)

satisfies (E.63). These are the only possibilities, and thus the sum in (E.61) contains two
terms.

It is easy to extend these methods to spaces of higher dimension, and the relevant
formulae can be found in references [?] and [?]. It is also possible to use (E.61) to evaluate
integrals of the type

Wl,l′,l′′ ≡
1

4π

∫
dΩ Pl(x̂ · Â)Pl′(x̂ · B̂)Pl′′(x̂ · Ĉ) (E.66)

where Pl is a Legendre polynomial, and some examples are shown in the following table,
where only non-zero values are shown. In order for Wl,l′,l′′ to be nonzero, l + l′ + l′′ must
be even and |l − l′| ≤ l′′ ≤ l + l′.

Table C.1 Integrals of products of Legendre polynomials, evaluated by the vector pairing

method
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(l, l′, l′′) Wl,l′,l′′ ≡
1

4π

∫
dΩ Pl(x̂ · Â)Pl′(x̂ · B̂)Pl′′(x̂ · Ĉ)

(0, 0, 0) 1

(1, 1, 0)
1

3
(Â · B̂)

(1, 1, 2)
1

15

[
−(Â · B̂) + 3(Â · Ĉ)(B̂ · Ĉ)

]

(2, 2, 0)
1

10

[
−1 + 3(Â · B̂)2

]

(2, 2, 2)
1

35

[
2− 3(Â · B̂)2 − 3(Â · B̂)2 − 3(Â · B̂)2 + 9(Â · B̂)(Â · Ĉ)(B̂ · Ĉ)

]

(1, 2, 3)
3

70

[
−(Â · Ĉ)− 2(Â · B̂)(B̂ · Ĉ) + 5(Â · Ĉ)(B̂ · Ĉ)2

]

(3, 3, 0)
1

14

[
−3(Â · B̂) + 5(Â · B̂)3

]
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Appendix F

Harmonic functions

F.1 Harmonic functions for d=3

Harmonic functions in a 3-dimensional space are solutions to the Laplace equation

∇2φ(x) = 0 (F.1)

Let us begin by listing some of these solutions. The regular solid harmonics

Rl,m(x) ≡
√

4π

2l + 1
rlYl,m(x̂) (F.2)

satisfy the Laplace equation everywhere in space, while the irregular solid harmonics

Il,m(x) ≡
√

4π

2l + 1
r−(l+1)Yl,m(x̂) (F.3)

satisfy it everywhere except at the point r = |x| = 0. Here Yl,m(x̂) is a spherical harmonic.
From the sum-rule for spherical harmonics,

l∑
m=−l

Y ∗l,m(â)Yl,m(x̂) =
2l + 1

4π
Pl(â · x̂) (F.4)

we can see that for any constant vector a, the function

rlP ′l (â · x̂) ≡ rl
l∑

m=−l

4π

2l + 1
Y ∗l,m(â)Yl,m(x̂)

=

[n/2]∑
t=0

(−1)tΓ(1 + 1/2− t)(x2 + y2 + z2)t(2â · x)l−2t

t!(1− 2t)!Γ(1/2)

(F.5)

471
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is harmonic, i.e. it is a solution to the Laplace equation. The function P ′l (â · x̂) might be
called a “harmonic Legendre polynomial”. Harmonic polynomials are, by definition, homo-
geneous polynomials that are solutions to the Laplace equation. The functions rlYl,m(x̂)
satisfy this definition, and they are thus harmonic polynomials.

The spherical harmonics corresponding to a given value of l form an irreducible repre-
sentation of SO(3). The point groups of chemistry are subgroups of SO(3), and therefore
the spherical harmonics corresponding to a given value of l are closed under the operations
of the point groups. Thus if G is such a point group, each (2l + 1)-dimensional set of
spherical harmonics, Yl,m(x̂) can be thought of as invariant subset with respect to G in the
sense discussed elsewhere in this book. Similar considerations hold for the hyperspherical
harmonics which will be discussed below.

An alternative set of harmonic polynomials, spanning the same part of Hilbert space
as the solid harmonics, can be generated by starting with monomials of the form

fn(x) = xn1yn2zn3 nj = 0, 1, 2, 3, ... (F.6)

and acting on them several times with the Laplacian operator with appropriate coefficients,
as is discussed in Appendix C. We then obtain harmonic polynomials of the form:

hn(x) =

bn/2c∑
j=0

(−1)j(2n− 2j − 1)!!

(2j)!!(2n− 1)!!
r2j(∇2)jfn(x)

(F.7)

where n is the degree of the monomial, and also the degree of the harmonic polynomial:

n ≡ n1 + n2 + n3 (F.8)

Finally it should be mentioned that the functions

gn(x) = r−(2n+1)hn(x) (F.9)

also satisfy the Laplace equation except at the point r = |x| = 0. For some purposes the
harmonic functions hn(x) and gn(x) may be more convenient than al,m(x) and bl,m(x).

F.2 Spaces of higher dimension

In a d-dimensional space, the generalized Laplace equation has the form

∆φ(x) = 0 (F.10)

where

∆ ≡
d∑
j=1

∂2

∂xj
(F.11)
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and where

x ≡ (x1, x2, x3, ..., xd) (F.12)

is a vector whose components are the Cartesian coordinates for the space. We can introduce
the hyperradius r defined by

r2 ≡
d∑
j=1

x2
j (F.13)

and a generalized angular momentum operator

Λ2 ≡ −
d∑
i>j

d∑
j=1

(
xi

∂

∂xj
− xj

∂

∂xi

)2

(F.14)

Written in terms of the hyperradius and the generalized angular momentum operator, the
generalized Laplace operator takes the form

∆ =
1

rd−1

∂

∂r
rd−1 ∂

∂r
− Λ2

r2
(F.15)

Hyperspherical harmonics Yλ,µ(x̂), are the d-dimensional analogues of spherical harmonics.
They are defined as eigenfunctions of the generalized angular momentum operator such
that

Λ2Yλ,µ(x̂) = λ(λ+ d− 2)Yλ,µ(x̂) (F.16)

and such that rλYλ,µ(x̂) is a homogeneous polynomial. Then

∆rλYλ,µ(x̂) =

(
1

rd−1

∂

∂r
rd−1 ∂

∂r
− Λ2

r2

)
rλYλ,µ(x̂)

=

(
1

rd−1

∂

∂r
rd−1∂r

λ

∂r
− λ(λ+ d− 2)

r2
rλ
)
Yλ,µ(x̂) = 0

(F.17)

Thus it can be seen that hyperspherical harmonics are defined in such a way that rλYλ,µ(x̂)
is a harmonic polynomial in the d-dimensional space. The index µ is actually a set of d-2
indices. For hyperspherical harmonics of the standard type, these indices are organized by
means of a chain of subgroups:

SO(d) ⊃ SO(d− 1) ⊃ SO(d− 2) ⊃ · · · ⊃ SO(2) (F.18)

However, when we use hyperspherical harmonics in physical problems, it may be convenient
to organize the minor indices µ according to a different chain of subgroups. Tables H.1 and
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Figure F.1: The standard tree (left) and an alternative tree (right) for 4-dimensional
hyperspherical harmonics. The standard tree on the left corresponds to the ordering of
subgroups shown in equation (F.18), in which a harmonic polynomials are first found in
the space spanned by the coordinates x1 and x2. These are then multiplied by x3 to form
homogeneous polynomials of degree 3, from which the harmonic parts are projected out.
Finally these are coupled to x4. The right-hand tree symbolizes the alternative scheme of
equation (F.19), where harmonic polynomials are first constructed within the subspaces
(x1, x2) and (x3, x4). Finally these are coupled together, and polynomials that are harmonic
in the entire 4-dimensional space are obtained. 4-dimensional hyperspherical harmonics
corresponding to the standard tree are shown in Table 5.1, while those corresponding to
the alternative tree are shown in Tables H.1 and H.2.

H.2 show an alternative set of 4-dimensional hyperspherical harmonics where the minor
indices are organized according to the chain

SO(4) ⊃ SO(2)× SO(2) (F.19)

This alternative way of organizing the minor indices is symbolized by the right-hand tree
in Figure H.1. An excellent discussion of the method of trees in hyperspherical harmonic
theory can be found in [?].

The hyperspherical harmonics corresponding to a given value of the principal quantum
number λ form an invariant subspace with respect to all groups G that are subgroups of
SO(d). In the case where d = 3 there are 2l + 1 linearly independent functions in this
subspace. In the general case, the corresponding number of linearly independent functions
in the invariant subspace can be shown to be [?]

mλ =
(d+ 2λ− 2)(d+ λ− 3)!

λ!(d− 2)!
(F.20)

The reader can verify that for d = 3 and λ = l, this reduces to the familiar result that
there are 2l+1 linearly independent functions. When d = 4, the dimension of the invariant
subspace is (λ + 1)2. Thus for λ = 0, 1, 2, 3, ... there are respectively 1,4,9,16,... linearly
independent solutions, as is illustrated in Tables H.1, H.2 and 5.1. These dimensions corre-
spond, through Fock’s projection (Appendix B), to the number of degenerate hydrogenlike
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orbitals with principal quantum numbers n = 1, 2, 3, 4, .... Thus Fock’s projection casts
light on the puzzling n2-fold degeneracy of the hydrogenlike orbitals.

Functions of the form

Hλ,µ(x) = rλYλ,µ(x̂) (F.21)

satisfy the generalized Laplace equation everywhere in our d-dimensional space, while
functions of the form

Iλ,µ(x) = r−λ−d+2Yλ,µ(x̂) (F.22)

satisfy it at all points except the origin. Equations (F.6)-(F.9) also have d-dimensional
analogues:

fn(x) =
d∏
j=1

x
nj
j nj = 0, 1, 2, 3, ... (F.23)

hn(x) =

bn/2c∑
j=0

(−1)j(d+ 2n− 2j − 4)!!

(2j)!!(d+ 2n− 4)!!
r2j∆jfn(x) (F.24)

n =
d∑
j=1

nj (F.25)

and

gn(x) = r−2n−d+2hn(x) (F.26)

The function hn(x) satisfies the generalized Laplace equation everywhere in space, while
gn(x) is a solution everywhere except at the origin.

The harmonic functions discussed above by no means exhaust the forms that solutions
to the generalized Laplace equation in a d-dimensional space can take. Examples of other
forms include

eik·x (F.27)

where k is a d-dimensional vector of zero length. We can see that this will be a harmonic
function because

∆eik·x = −k · k eik·x = 0 (F.28)

As an example of a d-dimensional vector of zero length we can think of

k = (k1, k2, k3, ..., kd−1,±ikd)
kd =

(
k2

1 + k2
2 + ...+ k2

d−1

)1/2

k · k = k2
d − k2

d = 0 (F.29)
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In fact, if k is a d-dimensional vector of zero length, any well-behaved function of ζ ≡ k ·x
will be a solution to the generalized Laplace equation, because

∂

∂xj
F (k · x) =

∂

∂xj
F (ζ) =

∂ζ

∂xj

dF

dζ
= kj

dF

dζ
(F.30)

and

∂2

∂x2
j

F (k · x) = kj
∂

∂xj

dF

dζ
= kj

∂ζ

∂xj

d2F

dζ2
= k2

j

d2F

dζ2
(F.31)

Thus

∆F (k · x) = k · k d2F

dζ2
= 0 (F.32)

In a d-dimensional space, it is possible to define a “harmonic Gegenbauer polynomial”

rλC
′α
λ (â · x̂) ≡

[λ/2]∑
t=0

(−1)tΓ(λ+ α− t)(x2
1 + x2

2 + ...+ x2
d)
t(2â · x)l−2t

t!(λ− 2t)!Γ(α)

(F.33)

where α = d/2−1. The harmonic Gegenbauer polynomial is the d-dimensional generaliza-
tion of the harmonic Legendre polynomial, and it satisfies the generalized Laplace equation
for any constant d-dimensional vector a.
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Table H.1 Alternative 4-dimensional hyperspherical harmonics corresponding to the right-hand

tree in Figure H.1. The indices m1 and m2 are rotational quantum numbers in the subspaces

spanned respectively by (x1, x2) and (x3, x4).

λ m1 m2

√
2π Yλ,m1,m2(u)

0 0 0 1

1 1 0
√

2(u1 + iu2)

1 −1 0
√

2(u1 − iu2)

1 0 1
√

2(u3 + iu4)

1 0 −1
√

2(u3 − iu4)
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Table H.2 Alternative 4-dimensional hyperspherical harmonics (continued).

λ m1 m2

√
2π Yλ,m1,m2(u)

2 2 0
√

3(u1 + iu2)2

2 −2 0
√

3(u1 − iu2)2

2 0 2
√

3(u3 + iu4)2

2 0 −2
√

3(u3 − iu4)2

2 1 1
√

6(u1 + iu2)(u3 + iu4)

2 1 −1
√

6(u1 + iu2)(u3 − iu4)

2 −1 1
√

6(u1 − iu2)(u3 + iu4)

2 −1 −1
√

6(u1 − iu2)(u3 − iu4)

2 0 0
√

3(u2
1 + u2

2 − u32 − u42)



Appendix G

GENERALIZED STURMIANS
APPLIED TO ATOMS

G.1 Goscinskian configurations

The Generalized Sturmian Method (Appendix B) is a newly-developed direct method for
performing Configuration Interaction calculations on bound states. It avoids the initial
Hartree-Fock-Roothaan SCF calculation, and it is especially suitable for calculating large
numbers of excited states of few-electron atoms or ions.

When the Generalized Sturmian Method is applied to atoms or atomic ions, it is con-
venient to use basis functions that are Slater determinants:

|Φν〉 = |χµχµ′χµ′′ ...| ≡
1√
N !

∣∣∣∣∣∣∣∣∣
χµ(x1) χµ′(x1) χµ′′(x1) ...
χµ(x2) χµ′(x2) χµ′′(x2) ...
χµ(x3) χµ′(x3) χµ′′(x3) ...

...
...

...

∣∣∣∣∣∣∣∣∣ (G.1)

built from hydrogenlike atomic spin-orbitals of the form

χµ(xi) ≡ χn,l,m,ms(xi) ≡ Rn,l(ri)Yl,m(θi, φi)

{
αi ms = 1/2
βi ms = −1/2

(G.2)

with weighted nuclear charges Qν . In other words, the atomic spin-orbitals have the form
shown in equation (??), with radial functions given by

R1,0(r) = 2Q3/2
ν e−Qνr

R2,0(r) =
Q

3/2
ν√
2

(
1− Qνr

2

)
e−Qνr/2

R2,1(r) =
Q

5/2
ν

2
√

6
r e−Qνr/2

R3,0(r) =
2Q

3/2
ν

3
√

3

(
1− 2Qνr

3
+

2Q2
νr

2

27

)
e−Qνr/3

479
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...
...

... (G.3)

The reader will recognize these as the familiar hydrogenlike radial functions with the nu-
clear charge Z replaced by Qν . If the effective charges Qν characterizing the configurations
|Φν〉 are chosen in such a way that

Qν = βνZ =

( −2Eκ
1
n2 + 1

n′2
+ 1

n′′2
+ · · ·

)1/2

(G.4)

so that

Eκ = −Q
2
ν

2

(
1

n2
+

1

n′2
+

1

n′2
+ · · ·

)
(G.5)

the configurations will obey the approximate N -electron Schrödinger equation:[
−1

2

N∑
j=1

∇2
j + βνV0(x)− Eκ

]
|Φν〉 = 0 (G.6)

where

V0(x) = −
N∑
j=1

Z

rj
(G.7)

is the nuclear attraction potential. In equation (G.6), the energy Eκ is kept constant
for the whole basis set, while the weighting factors βν are adjusted to make the basis
set isoenergetic. Thus the weighting factors βν play the role of eigenvalues in equation
(G.6). This type of problem has been called the conjugate eigenvalue problem by Coulson,
Josephs, Goscinski and others, and it is characteristic for the equations defining generalized
Sturmian basis sets (Appendix B).

To see that with the special choice of weighted charges shown in equation (G.4) |Φν〉 will
satisfy (G.6), we first notice that the hydrogenlike atomic orbitals with weighted nuclear
charges obey the 1-electron Schrödinger equation:[

−1

2
∇2
j +

Q2
ν

2n2
− Qν

rj

]
χµ(xj) = 0 (G.8)

Since the Slater determinant |Φν〉 is an antisymmetrized product of atomic orbitals, all of
which obey (G.8), it follows that[

−1

2

N∑
j=1

∇2
j

]
|Φν〉 =

[
−
(
Q2
ν

2n2
+

Q2
ν

2n′2
+ · · ·

)
+

(
Qν

r1

+
Qν

r2

+ · · ·
)]
|Φν〉

= [Eκ − βνV0(x)] |Φν〉 (G.9)
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and thus equation (G.6) is satisfied. Each configuration |Φν〉 has its own effective nu-
clear charge Qν . Within a particular configuration, the hydrogenlike atomic orbitals are
orthonormal ∫

dτj χ
∗
µ′(xj)χµ(xj) = δµ′,µ (G.10)

and they also obey the virial relationship

−
∫
dτj |χµ(xj)|2

Qν

rj
= −Q

2
ν

n2
(G.11)

From equations (G.6), (G.10) and (G.11), it can be shown [?],[?] that the generalized
Sturmian configurations |Φν〉 obey the potential-weighted orthonormality relation

〈Φ∗ν′ |V0|Φν〉 = δν′,ν
2Eκ
βν

(G.12)

We next introduce the definitions

pκ ≡
√
−2Eκ (G.13)

and

Rν ≡
√

1

n2
+

1

n′2
+ · · · (G.14)

With the help of these definitions, equation (G.4) can be written in the form

Qν = βνZ =
pκ
Rν

(G.15)

The set of Sturmian configurations form a set of isoenergetic solutions of the approximate
Schrödinger equation (G.6), where the potential is weighted, and the weighting factors βν
are chosen in such a way as to insure that all the solutions correspond to a common energy.
From (G.13) we can see that their common energy Eκ is related to pκ by

Eκ = −p
2
κ

2
(G.16)

In previous publications we have called such atomic configurations Goscinskian configura-
tions to recognize Prof. Osvaldo Goscinski’s pioneering work in generalizing the concept of
Sturmian basis sets [?]. The non-relativistic Schrödinger equation of an N -electron atom
has the form: [

−1

2

N∑
j=1

∇2
j + V (x)− Eκ

]
|Ψκ〉 = 0 (G.17)

where

V (x) = V0(x) + V ′(x) (G.18)
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Here V0(x) is the nuclear attraction potential shown in equation (G.7) while V ′(x) is the
interelectron repulsion potential

V ′(x) =
N∑
i>j

1

rij
(G.19)

We can try to build up the wave function from a superposition of Goscinskian configura-
tions, i.e. from a superposition of isoenergetic solutions of the approximate wave equation
(G.6), where V0 is the nuclear attraction potential of the atom. Thus we write:

|Ψκ〉 ≈
∑
ν

|Φν〉Cν,κ (G.20)

Inserting this superposition into (G.17) we have∑
ν

[
−1

2
∆ + V (x)− Eκ

]
|Φν〉Cν,κ ≈ 0 (G.21)

However, each of the basis functions obeys (G.6), and therefore we can rewrite (G.21) in
the form ∑

ν

[V (x)− βνV0(x)] |Φν〉Cν,κ ≈ 0 (G.22)

The energy term Eκ is now nowhere to be seen, and a remark is perhaps needed here to
explain what has happened to it: The configurations in our Generalized Sturmian basis set
are isoenergetic. They all correspond to the same energy, Eκ, since the weighting factors
βν are chosen especially to make them do so. What we have done in going from (G.21) to
(G.22) is to choose this energy to be the same as that which appears in (G.21). In other
words, the energy to which all the members of our basis set correspond is chosen to be
equal to the energy of the state that we are trying to approximate.

If we take the scalar product of (G.22) with a conjugate function from our basis set,
we obtain the set of secular equations:∑

ν

〈Φν′| [V (x)− βνV0(x)] |Φν〉Cν,κ = 0 (G.23)

We now introduce the definitions:

T 0
ν′,ν ≡ −

1

pκ
〈Φ∗ν′|V0|Φν〉 (G.24)

and

T ′ν′,ν ≡ −
1

pκ
〈Φ∗ν′|V ′|Φν〉 (G.25)

From the potential-weighted orthonormality relations (G.12) we can see that

T 0
ν′,ν = δν′νZRν (G.26)
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Notice that the nuclear attraction matrix T 0
ν′,ν is both diagonal and energy-independent.

The interelectron repulsion matrix T ′ν′,ν can be evaluated using methods discussed in Ap-
pendix D, and it is also energy-independent. In order to see that T ′ν′,ν really is energy-
independent, we notice that it is built up from terms of the form

1

pκ
Jµ1,µ2,µ3,µ4 =

1

pκ

∫
d3x

∫
d3x′ ρµ1,µ2(x)

1

|x− x′|ρµ3,µ4(x
′) (G.27)

where densities are defined by

ρµ1,µ2(x) ≡ χ∗µ1(x)χµ2(x)

ρµ3,µ4(x
′) ≡ χ∗µ3(x

′)χµ4(x
′) (G.28)

and where the orbitals are the hydrogenlike orbitals with weighted nuclear charge shown
in equations (G.2) and (G.3). We now let

s ≡ pκx

s′ ≡ pκx
′ (G.29)

Then, making the substitution Qν → pκ/Rν in (G.3) we have

ρµ1,µ2(x) = p3
κρ̃µ1,µ2(s)

ρµ3,µ4(x
′) = p3

κρ̃µ3,µ4(s
′) (G.30)

where ρ̃µ1,µ2(s) and ρ̃µ3,µ4(s
′) are pure functions of s and s′ respectively. Finally, noticing

that

1

pκ|x− x′| =
1

|s− s′| (G.31)

we can write

1

pκ
Jµ1,µ2,µ3,µ4 =

∫
d3s

∫
d3s′ ρ̃µ1,µ2(s)

1

|s− s′| ρ̃µ3,µ4(s
′) (G.32)

Since the building-blocks from which it composed are independent of pκ, the interelectron
repulsion matrix T ′ν′,ν is also independent of pκ and hence independent of energy. The
energy-independent interelectron repulsion matrix T ′ν′,ν consists of pure numbers (in atomic
units) which can be evaluated once and for all and stored.

With the help of equations (G.24)-(G.26), the secular equation (G.23) can be rewritten
in the form: ∑

ν

[
−pκδν′,νZRν − pκT ′ν′,ν + βνpκδν′,νZRν

]
Cν,κ = 0 (G.33)

Finally, using the relationship
βνZRν = pκ (G.34)
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and dividing by pκ, and reversing the signs, we obtain∑
ν

[
δν′,νZRν + T ′ν′,ν − pκδν′,ν

]
Cν,κ = 0 (G.35)

The Generalized Sturmian secular equation for atoms and atomics ions (G.35) differs in
several remarkable ways from the secular equations that would be obtained using a Hamil-
tonian method:

1. The kinetic energy term has disappeared.

2. The nuclear attraction term, δν′,νZRν , is diagonal.

3. The interelectron repulsion matrix T ′ν′,ν is energy-independent. It consists of dimen-
sionless pure numbers.

4. Finally, the roots of the secular equations are not energies but values of the parameter
pκ, which is related to the energy spectrum through equation (G.16). The parameter
pκ = βνZRν = QνRν can be thought of as a scaling parameter, since the effective
nuclear charges associated with the Goscinskian configurations are proportional to
it.

5. The configurations |Φν〉 in the basis set are not fully determined until the secular
equations have been solved. Only the form of the basis functions is known in advance,
but not the scale. When the secular equation is solved, the resulting spectrum of
pκ values yields not only a spectrum of energies but a nearly optimum set of basis
functions for the representation of each state. The basis set for the representation
of highly excited states is diffuse, while the set for representation of tightly-bound
states is contracted. The step of optimizing Slater exponents for each problem is
thus not needed.

6. Once the energy-independent interelectron repulsion matrix T ′ν′,ν has been constructed,
the properties of an entire isoelectronic series can be calculated with almost no ad-
ditional effort.

G.2 Relativistic corrections

If the number of electrons N is kept constant while Z is allowed to increase, the energies
calculated from the Generalized Sturmian secular equation approach those found by so-
lution of the non-relativistic Schrödinger equation, but a relativistic correction must be
added in order for the energies to approach experimental values. A crude relativistic cor-
rection can be found for a multiconfigurational state Ψκ(x) =

∑
ν Φν(x)Cνκ by calculating

the ratio of the relativistic energy of the with interelectron repulsion entirely neglected to
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the non-relativistic energy, again with interelectron repulsion entirely neglected. The ratio
can be written in the form

fκ(Z) =
Eκ,rel

Eκ,nonrel

=

∑
ν C

2
νκ〈Φν |H0|Φν〉rel

−1
2
Z2
∑

ν C
2
νκR2

ν

(G.36)

Here

〈Φν |H0|Φν〉rel =
∑
µ∈ν

εµ,rel µ = (n, l,m,ms) (G.37)

is the relativistic energy of the configuration Φν(x) with interelectron repulsion entirely
neglected, while

−
∑
µ∈ν

1

2

Z2

n2
= −1

2
Z2R2

ν µ = (n, l,m,ms) (G.38)

is the nonrelativistic energy of Φν(x). The quantity εµ,rel represents the relativistic energy
of a single electron moving in the attractive Coulomb potential of a nucleus with charge
Z. This energy is easy to calculate exactly [?], if effects such as vacuum polarization and
the Lamb shift are neglected. It is given by:

εµ,rel =
c2[

1 +
(

Z
c(γ+n−|j+1/2|)

)2
]1/2
− c2 (G.39)

γ ≡
√(

j +
1

2

)2

−
(
Z

c

)2

c = 137.036 (G.40)

where j is the total angular momentum (orbital plus spin) of a single electron, i.e. l ± 1
2
.

The corrected energy, fκ(Z)Eκ,nonrel, agrees closely with the experimental values of energies,
especially when Z is large compared with N .

The approximate relativistic correction discussed here is by no means confined to the
Generalized Sturmian Method. It can be used in quantum calculations of every kind, per-
formed on atoms and molecules. The assumption behind the correction is that relativistic
effects are due mainly to the nuclear attraction part of the Hamiltonian, and only to a
lesser extent to interelectron repulsion terms.
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Table G.1: This table shows the relativistic correction for a single electron moving in the
field of a nucleus with charge Z, i.e. the relativistic energy without the rest energy, divided
by the non-relativistic energy. It is interesting to notice that the correction affects the 4th
significant figure of the energy for values of Z as low as 10. In all cases the effect of the
relativistic correction is to increase the binding energy.

n j Z=1 Z=10 Z=20 Z=30

1
1

2
1.00001 1.00133 1.00538 1.01228

2
1

2
1.00002 1.00167 1.00673 1.01537

2
3

2
1.00000 1.00033 1.00133 1.00301

3
1

2
1.00001 1.00133 1.00538 1.01226

3
3

2
1.00000 1.00044 1.00178 1.00402

3
5

2
1.00000 1.00015 1.00059 1.00133
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Figure G.1: This figure shows εµ/Z
2 for n=3. The non-relativistic energy is the horizontal

line εnonrel = −1/18, while the relativistic energies are shown by curves.

G.3 The large-Z approximation: Restriction of the

basis set to an R-block

If interelectron repulsion is entirely neglected, i.e. when disregarding the second term in
Eq. (G.35), the calculated energies Eκ become those of a set of N completely independent
electrons moving in the field of the bare nucleus:

Eκ = −p
2
κ

2
→ −1

2
Z2Rν

2 = − Z
2

2n2
1

− Z2

2n2
2

− · · · − Z2

2n2
N

(G.41)

In the large-Z approximation, we do not neglect interelectron repulsion, but we restrict
the basis set to those Goscinskian configurations that would be degenerate if interelectron
repulsion were entirely neglected, i.e., we restrict the basis to a set of configurations all
of which correspond to the same value of Rν . In that case, the first term in (G.35) is a
multiple of the identity matrix, and the eigenvectors Cνκ are the same as those that would
be obtained by diagonalizing the energy-independent interelectron repulsion matrix T ′ν′ν ,
since the eigenfunctions of any matrix are unchanged by adding a multiple of the unit
matrix. The simplified secular equation then becomes:∑

ν

[T ′ν′ν − λκδν′ν ]Cνκ = 0 (G.42)

The roots are shifted by an amount equal to the constant by which the identity matrix is
multiplied:

pκ = ZRν + λκ = ZRν − |λκ| (G.43)
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Figure G.2: The ground state of the carbon-like isoelectronic series, calculated in the large-
Z approximation. The energies divided by Z2 are shown as functions of Z. Experimental
values are indicates by dots, while the energies calculated from equation (G.44) are shown as
curves. The lower (solid) curve, which approaches the experimental values with increasing
Z, has been corrected for relativistic effects. The upper (dashed) curve is uncorrected.

and the energies become

Eκ = −1

2
(ZRν − |λκ|)2 (G.44)

With the relativistic correction of equation (G.36), this becomes

Eκ = −f(Z)
1

2
(ZRν − |λκ|)2 (G.45)

Since the roots λκ are always negative, we may use the form −|λκ| in place of λκ to make
explicit the fact that interelectron repulsion reduces the binding energies, as of course it
must. The roots λκ are pure numbers that can be calculated once and for all and stored.
From these roots, a great deal of information about atomic states can be found with very
little effort.

G.4 Electronic potential at the nucleus in the large-Z

approximation

The electronic potential ϕ(x1) is related to the electronic density distribution by

ϕ(x1) =

∫
d3x′1

ρ(x′1)

|x1 − x′1|
(G.46)
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If the coordinate system is centered on the nucleus, the electronic potential at the nucleus
is then given by

ϕ(0) =

∫
d3x′1

ρ(x′1)

|x′1|
(G.47)

But the electron density corresponding to the state Ψκ is defined as

ρ(x1) = N

∫
ds1

∫
d3x2

∫
ds2...

∫
d3xN

∫
dsNΨ∗κ(x)Ψκ(x) (G.48)

where the integral is taken over the spin coordinate of the first electron and over the space
and spin coordinates of all the other electrons. The wave function Ψκ(x) =

∑
ν Φκ(x)Bνκ

is a linear combination of Goscinskian configurations. Thus the density is given by

ρ(x1) =
∑
ν′,ν

ρν′ν(x1)B∗νκBνκ (G.49)

where

ρν′ν(x1) = N

∫
ds1

∫
d3x2

∫
ds2...

∫
d3xN

∫
dsNΦ∗ν′(x)Φν(x)

=


0 if ν ′ and ν differ by 2 or more orbitals

χ∗µ′(x1)χµ(x1) if ν ′ and ν differ only by µ→ µ′∑N
i=1 |χµi(x1)|2 if ν ′ = ν

(G.50)

In Equation (G.50) we have made use of the fact that within an R-block, the atomic
spin-orbitals are orthonormal.

Within the framework of the large-Z approximation we have∫
dx Ψ∗κ(x)V0(x)Ψκ(x) =

∑
ν′

∑
ν

B∗ν′κBνκ

∫
dx Φ∗ν′(x)V0(x)Φν(x)

= −p
2
κ

βν

∑
ν

|Bνκ|2 (G.51)

In the second step above, we make use of the potential weighted orthonormality relation
(G.12). Further, since

∑
ν |Bνκ|2 = 1 , Equation (G.51) reduces to∫
dτ Ψ∗κ(x)V0(x)Ψκ(x) = −p

2
κ

βν
= −pκZRν (G.52)

This result can be used to express the electronic potential at the nucleus in a very simple
form. Combining (G.47) and (G.48), we obtain

ϕ(0) = N

∫
dx

1

|x1|
Ψ∗κ(x)Ψκ(x) (G.53)
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Figure G.3: When interelectron repulsion is entirely neglected, the electronic potential
at the nucleus is given by ZRν

2, which is exactly piecewise linear in N . The effect of
interelectron repulsion is to decrease ϕ(0) and to make the dependence only approximately
piecewise linear. The figure shows ϕ(0) neglecting interelectron repulsion (upper values)
and including it (lower values). The dots are calculated from the electronic densities of
the ground state wave functions, whereas the lines are the closed form expressions found
in Equations (G.58) and (G.56).

From the definition of V0, equation (G.7), and from the fact that each term in the sum in
(G.7) gives the same contribution, we have

ϕ(0) = − 1

Z

∫
dxΨ∗κ(x)V0(x)Ψκ(x) (G.54)

Combining Equations (G.54) and (G.52) we obtain the extremely simple result:

ϕ(0) = pκRν (G.55)

which can alternatively be written in the form:

ϕ(0) = ZRν
2 − |λκ|Rν (G.56)

or in a third form:

ϕ(0) = QνRν
2 (G.57)

since Qν = Z − |λκ|/Rν . From Equations (G.55)-(G.57) it follows that for an isonuclear
series, the electronic potential at the nucleus depends on N in an approximately piecewise
linear way. For example, let us consider the isonuclear series where Z = 18. Keeping the
nuclear charge Z constant at this value, we begin to add electrons. For the ground state
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we have:

Rν
2 ≡ 1

n2
1

+
1

n2
2

+ · · ·+ 1

n2
N

=



N
1

N ≤ 2

2
1

+ N−2
4

2 ≤ N ≤ 10

2
1

+ 8
4

+ N−10
9

10 ≤ N ≤ 18

(G.58)

G.5 Core ionization energies

The large-Z approximation can be used to calculate core-ionization energies, i.e., the en-
ergies required to remove an electron from the inner shell of an atom. From (G.44) we can
see that this energy will be given by

∆E =
1

2

[
(ZRν − |λκ|)2 − (ZRν

′ − |λ′κ|)2
]

(G.59)

where the unprimed quantities refer to the original ground state, while the primed quan-
tities refer to the core-ionized states. Since

Rν
2 −Rν

′2 = 1 (G.60)

Equation (G.59) can be written in the form

∆E − Z2

2
= Z [Rν

′|λ′κ| − Rν |λκ|] +
|λκ|2 − |λ′κ|2

2
(G.61)

Thus we can see that within the framework of the large-Z approximation, the quantity
∆E−Z2/2 is linear in Z for an isoelectronic series. This quantity represents the contribu-
tion of interelectron repulsion to the core ionization energy, since if interelectron repulsion
is completely neglected, the core ionization energy is given by ∆E = Z2/2. Core ionization
energies calculated from Equations (G.59)-(G.61) are shown in Figures G.4 through G.6.
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Figure G.4: For isoelectronic series, Equation (G.61) indicates that within the large-Z
approximation, the quantity ∆E−Z2/2 is exactly linear in Z, as is illustrated above. ∆E
is the core ionization energy.
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Figure G.5: For isonuclear series, the dependence of the core ionization energy on N
is approximately piecewise linear. Whenever a new shell starts to fill, the slope of the
line changes. The dots in the figure were calculated using Equation (G.61), where it is
not obvious that the dependence ought to be approximately piecewise linear. However,
Equations (G.58) and (G.56) can give us some insight into the approximately piecewise
linear relationship.
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Figure G.6: This figure shows the dependence of the core-ionization energy on both N and
Z for the filling of the n = 2 shell. Points with N > Z are omitted because the large-Z
approximation cannot be used for these points. The energies are in Hartrees.

G.6 Advantages and disadvantages of Goscinskian con-

figurations

We seen that when V0(x) is chosen to be the the Coulomb attraction of the bare nucleus,
the approximate Schrödinger equation[

−1

2

N∑
j=1

∇2
j + βνV0(x)− Eκ

]
|Φν〉 = 0 βνV0(x) = −

N∑
j=1

Qν

rj
(G.62)

can be solved exactly using configurations composed of hydrogenlike spin-orbitals with
the especially chosen weighted charges Qν shown in equation (G.4). There is no need to
calculate the weighting factors βν . These are obtained automatically when the secular
equation is solved. Nor is there a need to normalize the configurations. This is also
achieved automatically. Thus the choice of V0(x) as the potential of the bare nucleus has
many advantages; but it also has disadvantages. Just as is the case in perturbation theory,
convergence is most rapid if V0(x) is chosen to be as close as possible to the actual potential.
By choosing V0(x) to be the Coulomb attraction of the bare nucleus, we have neglected
interelectron repulsion. This is why the Generalized Sturmian Method with Goscinskian
configurations works best when the number of electrons in an atom or ion is small, and why
it works especially well when Z >> N , i.e., when the Coulomb attraction of the nucleus
dominates over the effects of interelectron repulsion.

To extend the range of applicability of the method to atoms and ions with large values
of N , we would need to choose a V0(x) which included some of the effects of interelec-
tron repulsion. For example, we could let it be the Hartree potential. The approximate
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Schrödinger equation (G.6) can always be solved provided that it is separable, and it is
separable whenever the approximate potential has the form

V0(x) =
N∑
j=1

v(xj) (G.63)

The separated form of (G.6) becomes:[
−1

2
∇2
j + βνv(xj)− εζ

]
ϕζ(xj) = 0 (G.64)

where the weighting factors βν must be chosen in such a way that∑
ζ∈ν

εζ = Eκ (G.65)

If the spin-orbitals ϕζ(xj) satisfy (G.64), then configurations of the form

|Φν〉 = |ϕζϕζ′ϕζ′′ ...| ≡
1√
N !

∣∣∣∣∣∣∣∣∣
ϕζ(x1) ϕζ′(x1) ϕζ′′(x1) ...
ϕζ(x2) ϕζ′(x2) ϕζ′′(x2) ...
ϕζ(x3) ϕζ′(x3) ϕζ′′(x3) ...

...
...

...

∣∣∣∣∣∣∣∣∣ (G.66)

will satisfy the approximate Schrödinger equation (G.6). Some of the neatness of the
Generalized Sturmian Method with Goscinskian configurations is certainly lost by choosing
a V0(x) that includes effects of interelectron repulsion, but it could be worth paying this
price in order to extend the method to atoms and atomic ions with larger values of N . We
are at present exploring these possibilities, and some work in this direction is also being
done by Prof. Gustavo Gasaneo and his group in Argentina.

G.7 R-blocks, invariant subsets and invariant blocks

To tie the discussion of this chapter in with the general principles discussed in Chapter 1, we
identify T with the operator whose roots and eigenfunctions we wish to study. The group
of symmetry operations G that leave the nuclear attraction and interelectron repulsion
matrix of an atom invariant consists of rotations of the entire system about the nucleus,
together with reflections and inversions that do not affect the interelectron distances. These
operations do not affect the radial parts of the atomic orbitals from which the Goscinskian
configurations are constructed, nor do they affect the spin. Thus the set of configurations,
all of which are characterized by the same value of

Rν ≡
√

1

n2
+

1

n′2
+

1

n′′2
+ · · · (G.67)
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i.e. configurations all of which are built from hydrogenlike atomic spin-orbitals with a
particular set of principal quantum numbers (n, n′, n′′, ...), is closed under G, and it cor-
responds to an invariant subset as discussed in Chapter 1. The block of T ′ based on it
corresponds to an invariant block. As expected, the eigenfunctions of interelectron repul-
sion matrix for the R-blocks are the symmetry-adapted basis functions that we desire. In
Chapter 1, we mentioned that when the roots of an invariant block are degenerate, then in
order to take full advantage of the symmetry of the problem, we need to add an extremely
small perturbation which will slightly remove the degeneracy. In the present case, this
slight perturbation is given by

Tp = aLz + bSzF (G.68)

where a and b are two very small irrational numbers. (They are chosen to be irrational
in order to avoid accidental degeneracies). When this small perturbation is added to
T ′, the degeneracy is slightly removed. The eigenfunctions of T ′ + Tp for an R-block
are then Russell-Saunders states, i.e. they are simultaneous eigenfunctions of the total
angular momentum operator L2, its z-component Lz, the total spin operator S2, and its
z-component Sz. We can ask how many linearly independent configurations there are in a
ground-state R-block. The answer is that when the Pauli principle is taken into account,
the number of configurations mk in an R-block is given by the binomial coefficient
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Table G.2: Eigenvalues of the 2-electron interelectron repulsion matrix T ′ν′,ν for S=1,
MS=1, n = 2 and n′=3, 4, 5.

n′=3 n′ = 4 n′=5
|λκ| term |λκ| term |λκ| term

.108252 3S .077484 3S .056075 3S

.134734 3P .087582 3P .065019 3P

.135408 3D .090845 3D .061128 3P

.138421 3P .093401 3P .063370 3D

.155155 3F .099235 3F .067758 3F

.160439 3P .099991 3P .067934 3P

.165613 3D .104253 3D .070494 3D

.168814 3S .106271 3D .071269 3D

.173917 3D .107976 3S .072413 3F

.186893 3P .108188 3F .072857 3S
.111210 3G .073295 3G
.111264 3F .073588 3G
.113313 3P .073920 3F
.114381 3D .074306 3G

.074578 3H

.074963 3F

.075173 3P

.075545 3D
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Table G.3: Roots of the ground state R-block of the interelectron repulsion matrix for
the Li-like, Be-like, B-like and C-like isoelectronic series.

Li-like Be-like B-like C-like
|λκ| term |λκ| term |λκ| term |λκ| term

0.681870 2S 0.986172 1S 1.40355 2P 1.88151 3P

0.729017 2P 1.02720 3P 1.44095 4P 1.89369 1D

1.06426 1P 1.47134 2D 1.90681 1S

1.09169 3P 1.49042 2S 1.91623 5S

1.10503 1D 1.49395 2P 1.995141 3D

1.13246 1S 1.52129 4S 1.96359 3P

1.54037 2D 1.98389 3S

1.55726 2P 1.98524 1D

1.99742 1P

2.04342 3P

2.05560 1D

2.07900 1S
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Table G.4: Roots of the ground state R-block of the interelectron repulsion matrix T ′ν′ν
for the N-like, O-like, F-like and Ne-like isoelectronic series.

N-like O-like F-like Ne-like
|λκ| term |λκ| term |λκ| term |λκ| term

2.41491 4S 3.02641 3P 3.68415 2P 4.38541 1S

2.43246 2D 3.03769 1D 3.78926 2S

2.44111 2P 3.05065 1S

2.49314 4P 3.11850 3P

2.52109 2D 3.14982 1P

2.53864 2S 3.24065 1S

2.54189 2P

2.61775 2P
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Table G.5: Eigenvalues of T ′ν′,ν for the carbon-like Rν =
√

3 block.

|λκ| term degen. configuration

1.88151 3P 9 .994467(1s)2(2s)2(2p)2+.105047(1s)2(2p)4

1.89369 1D 5 .994467(1s)2(2s)2(2p)2-.105047(1s)2(2p)4

1.90681 1S 1 .979686(1s)2(2s)2(2p)2+.200537(1s)2(2p)4

1.91623 5S 5 (1s)2(2s)(2p)3

1.95141 3D 15 (1s)2(2s)(2p)3

1.96359 3P 9 (1s)2(2s)(2p)3

1.98389 3S 3 (1s)2(2s)(2p)3

1.98524 1D 5 (1s)2(2s)(2p)3

1.99742 1P 3 (1s)2(2s)(2p)3

2.04342 3P 9 .105047(1s)2(2s)2(2p)2-.994467(1s)2(2p)4

2.05560 1D 5 .105047(1s)2(2s)2(2p)2+.994467(1s)2(2p)4

2.07900 1S 1 .200537(1s)2(2s)2(2p)2-.979686(1s)2(2p)4
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Appendix H

THE D-DIMENSIONAL
HARMONIC OSCILLATOR

H.1 Harmonic oscillators in one dimension

We begin by reviewing the theory of the simple harmonic oscillator in one dimension. We
wish to find solutions to the equation[

−1

2

d2

dq2
+

1

2
ω2q2 − εn

]
ψn(q) = 0 (H.1)

where ω2 is the force constant, and q is the mass-weighted coordinate. It is convenient to
introduce the dimensionless parameter ζ =

√
ωq. Then the solutions to equation (H-1)

have the form

ψn(ζ) = Nne
−ζ2/2Hn(ζ) (H.2)

Here, Hn(ζ) is a Hermite polynomial, named after the French mathematician Charles
Hermite (1822-1901), whose name is also associated with self-adjointness. The first few
Hermite polynomials are

H0(ζ) = 1

H1(ζ) = 2ζ

H2(ζ) = 4ζ2 − 2

H3(ζ) = 8ζ3 − 12ζ
...

...
... (H.3)

If the solutions are normalized in such a way that∫ ∞
−∞

dq ψn′(
√
ωq)ψn(

√
ωq) = δn′,n (H.4)

501
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Figure H.1: This figure shows the first few wave functions for a 1-dimensional harmonic
oscillator. The functions with quantum numbers n have n nodes. When n is even the
functions are symmetric with respect to inversion, while when n is odd, they are odd.

then the normalization constant is

Nn =

√ √
mω

2nn!
√
π

(H.5)

In atomic units, where ~ = 1, the corresponding energies are

εn = ω

(
n+

1

2

)
(H.6)

H.2 Creation and annihilation operators for harmonic

oscillators

Equation (H.1) can be rewritten in the form

H|n〉 = εn|n〉 (H.7)

where

H =
1

2

(
− ∂2

∂q2
+ ω2q2

)
(H.8)

If we let

p ≡ 1

i

∂

∂q
(H.9)
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then

H =
1

2

(
p2 + ω2q2

)
(H.10)

Also we can see the p and q obey the commutation relations

[p, q] = −i [p, p] = 0 [q, q] = 0 (H.11)

From these commutations relations it follows that

[H, p] =
1

2
ω2[q2, p]

=
1

2
ω2(q[q, p] + [q, p]q)

= iω2q (H.12)

and

[H, q] =
1

2
[p2, q]

=
1

2
(p[p, q] + [p, q]p)

= −ip (H.13)

Now suppose that we have found an eigenfunction of H, so that

H|n〉 = εn|n〉 (H.14)

We can show by means of the commutation relations (H.13) and (H.14) that when the
operator p± iωq acts on |n〉, the resulting function is also an eigenfunction of H:

H(p± iωq)|n〉 = {[H, p]± [H, q] + (p± iωq)H} |n〉
=

{
iω2q ± iω(−ip) + (p± iωq)εn

}
|n〉

= (εn ± ω)(p± iωq)|n〉 (H.15)

Equation (H.15) shows that the function (p±iωq)|n〉 is an eigenfunction of H corresponding
to the eigenvalue εn±ω. The operator p+iωq is thus a “raising operator”. When it acts on
|n〉, it produces a new eigenfunction, whose eigenvalue is raised by an amount ω. Similarly,
p− iωq is a lowering operator. When it acts on |n〉, it produces a new eigenfunction, whose
eigenvalue is lowered by an amount ω.

If we continue to act on |n〉 with the lowering operator p − iωq, we must eventually
come to the ground state of the harmonic oscillator, a state of minimum energy beyond
which it is impossible to lower the energy eigenvalue. Let us represent the ground state by
the symbol |0〉. The lowering operator, acting on the ground state, must give zero, since
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it cannot give an eigenfunction corresponding to a lower energy. Therefore we have the
relation:

(p− iωq)|0〉 = 0 (H.16)

Acting on (H.16) with p+ iωq, we obtain

(p+ iωq)(p− iωq)|0〉 =
(
p2 + ω2q2 + iω[p, q]

)
|0〉

= (2H − ω) |0〉
= (2ε0 − ω) |0〉 = 0 (H.17)

Thus the energy of the ground state is given by

ε0 =
ω

2
(H.18)

Combining (H.18) and (H.15), we can see that the energy of a general state |n〉 is given by

εn = ω

(
n+

1

2

)
(H.19)

It is convenient to define a normalized raising operator, which we will call a “creation
operator”,

a† ≡ N (−ip+ ωq) (H.20)

and a normalized lowering operator, which we will call an “annihilation operator”.

a ≡ N (ip+ ωq) (H.21)

The constant of normalization is chosen in such a way that

a†|n〉 =
√
n+ 1 |n+ 1〉 (H.22)

and

a|n+ 1〉 =
√
n+ 1 |n〉 (H.23)

Then

aa†|n〉 = a
√
n+ 1 |n+ 1〉

= (n+ 1)|n〉
= N 2(p− iωq)(p+ iωq)|n〉
= N 2 (2H + iω[p, q]) |n〉
= N 22ω(n+ 1)|n〉 (H.24)
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Solving (H.24) for N , we obtain

N =
1√
2ω

(H.25)

Thus

a† =
1√
2ω

(−ip+ ωq) (H.26)

and

a =
1√
2ω

(ip+ ωq) (H.27)

We can also solve for p and q in terms of the creation and annihilation operators:

p = i

√
ω

2
(a† − a) (H.28)

while

q = i
1√
2ω

(a† + a) (H.29)

Then, making use of (H.10) we have

H = ω

(
a†a+

1

2

)
(H.30)

From (H.28), (H.29) and (H.11), it follows that a† and a obey the commutation relations

[a, a†] = 1[
a†, a†

]
= 0

[a, a] = 0 (H.31)

H.3 A collection of harmonic oscillators

Let us now consider a system whose Hamiltonian can be represented by a sum of simple
harmonic oscillator Hamiltonians:

H =
d∑

k=1

ωk

(
a†kak +

1

2

)
(H.32)

Then the commutation relations corresponding to (H.31) will be

[ak′ , a
†
k] = δk′,k[

a†k′ , a
†
k

]
= 0

[ak′ , ak] = 0 (H.33)
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The eigenfunctions of the Hamiltonian are just products of simple harmonic oscillator
eigenfunctions, and they can be labelled by a set of numbers n1, n2, · · · , nd, one quantum
number for each normal mode of the system. If we use the symbol |n1, n2, · · · , nd〉 to denote
such a state, then we have:

H|n1, n2, · · · , nd〉 =
d∑

k=1

ωk

(
a†kak +

1

2

)
|n1, n2, · · · , nd〉

=
d∑

k=1

ωk

(
nk +

1

2

)
|n1, n2, · · · , nd〉 (H.34)

The operator a†kak is called the “number operator”, because its eigenvalues correspond to
the quantum number nk.

H.4 d-dimensional isotropic harmonic oscillators

In terms of the mass-weighted coordinates q =
√
m x, the Schrödinger equation of a

d-dimansional isotropic harmonic oscillator can be written in the form

d∑
i=1

1

2

[
− ∂2

∂q2
i

+ ω2q2
i

]
Ψn(q) = EnΨn(q) (H.35)

If we let

Ψn(q) =
d∏
i=1

ψni(qi)

En =
d∑
i=1

εni (H.36)

Then (H.35) separates into d independent equations of the form

1

2

[
− ∂2

∂q2
i

+ ω2q2
i

]
ψni(qi) = εniψni(qi) (H.37)

In other words, the isotropic d-dimensional harmonic oscillator can be treated as a system
of independent simple harmonic oscillators, all having the same frequency. so that

d∑
i=1

εni = ω

d∑
i=1

(
ni +

1

2

)
(H.38)

Alternatively we can write the Schrödinger equation in the form:[
− 1

2m
∆ +

1

2
mω2r2 − En,λ

]
χn,λ,µ(x) = 0 (H.39)
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where ∆ is the generalized Laplacian operator. We can try to find solutions which are
functions of the hyperradius multiplied by hyperspherical harmonics:

χn,λ,µ(x) = Rn,λ(r)Yλ,µ(u) (H.40)

Substitutine this into equation (H.39), we find that the hyperradial part of the solution
must obey an ordinary differential equation. If we use units for which m = 1 and make
use of equations (??) and (??), we have[

−∆ + ω2r2 − 2En,λ
]
Rn,λ(r)

=

[
− 1

rd−1

d

dr
rd−1 d

dr
− Λ2

r2
+ ω2r2 − 2En,λ

]
Rn,λ(r)

=

[
− 1

rd−1

d

dr
rd−1 d

dr
− λ(λ+ d− 2)

r2
+ ω2r2 − 2En,λ

]
Rn,λ(r) = 0

(H.41)

With the substitution ζ =
√
ωr, equation (21) becomes[

d2

dζ2
+
d− 1

ζ

d

dζ
+
λ(λ+ d− 2)

ζ2
− ζ2 + 2En,λ

]
Rn,λ(ζ) = 0 (H.42)

According to Valliéres et al. ([?]), this equation has a solution of the form

Rn,λ(ζ) =

√
2n!

Γ(λ+ n+ d/2)
ζλe−ζ

2/2Lλ+(d−2)/2
n (ζ2) (H.43)

where L is an associated Legendre polynomial and

En,λ = 2n+ λ+ d/2 (H.44)

The normalization is chosen so that∫ ∞
0

dζ ζd−1|Rn,λ(ζ)|2 = 1 (H.45)

Written in terms of the hyperradius r, rather than ζ =
√
ωr, we have

Rn,λ(r) =

√
2n!ωd/2

Γ(λ+ n+ d/2)
(
√
ωr)λe−ωr

2/2Lλ+(d−2)/2
n (ωr2) (H.46)

This radial wave function is normalized in such a way that∫ ∞
0

dr rd−1|Rn,λ(r)|2 = 1 (H.47)
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It satisfies equation (H.42) with

En,λ = ω(2n+ λ+ d/2) (H.48)

Comparing this with equation (H.38), we can see that we must make the identification

2n+ λ =
d∑
i=1

ni (H.49)

For d = 3 this becomes[
d2

dr2
+

2

r

d

dr
+
l(l + 1)

r2
− ω2r2 + 2E

]
Rn,l(r) = 0 (H.50)

which has solutions of the form

Rn,l(r) = Nn,l r
l e−ωr

2/2Ll+1/2
n (ωr2) (H.51)

where

Nn,l =

√√
ω3

4π

2n+l+3n!ωl

(2n+ 2l + 1)!!
(H.52)

is a normalizing constant, and L
l+1/2
n is an associated Legendre polynomial. Analogous

solutions can be found for higher values of d. The 3-dimensional isotropic harmonic oscil-
lator radial wave functions shown in equations (H.51) and (H.52) obey the orthonormality
relation: ∫ ∞

0

dr r2Rn′,l(r)Rn,l(r) = δn′,n (H.53)

Since they are solutions to the same differential equation (differently expressed) it must be
possible to expand these functions in terms of those solutions to (H.35) which correspond
to the same energy.

Rn,λ(r)Yλ,µ(û) =
′∑
n

Ψn(q) Un;n,λ,µ (H.54)

The prime over the sum in (H.54) indicates that it includes only those values of n that
fulfill equation (H.49).

H.5 Fourier transforms of 3-dimensional harmonic os-

cillator wave functions

Let

χn,l,m(x) = Rn,l(r)Yl,m(u) (H.55)
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be a 3-dimensional harmonic oscillator wave function expressed in spherical polar coordi-
nates. Its Fourier transform is given by

χtn,l,m(p) =
1

(2π)3/2

∫
dx χn,l,m(x) e−ip·x

=
1

(2π)3/2

∫ ∞
0

dr r2 Rn,l(r)

∫
dΩ3Yl,m(u) e−ip·x

=
4π

(2π)3/2
(−i)lYl,m(up)

∫ ∞
0

dr r2 Rn,l(r)jl(pr)

= (−i)lYl,m(up)R
t
n,l(p) (H.56)

where we have made use of the expansion

e−ip·x = 4π
∞∑
l=0

(−i)l jl(pr)
l∑

m′=−l

Yl,m′(up)Y
∗
l,m′(u) (H.57)

and where

Rt
n,l(p) =

√
2

π

∫
dr r2 Rt

n,l(p)jl(pr) (H.58)

Using equation (H.51), we can write this transform as

Rt
n,l(p) = Nn,l

√
2

π

∫ ∞
0

dr r2 rle−ωr
2/2Ll+1/2

n (ωr2)jl(pr) (H.59)

Mathematica is not able to evaluate this integral for general n or l, but it can do so if we
give it particular values of n and l. Looking at sufficiently many particular cases, we can
make the generalization:

Rt
n,l(p) = Nn,l

(−1)n

ω(l+3)/2
e−p

2/(2ω)(p2/ω)l/2Ll+1/2
n (p2/ω) (H.60)

The Bessel transformed radial functions obey the orthonormality relation∫ ∞
0

dp p2Rt
n′,l(p)R

t
n,l(p) = δn′,n (H.61)

H.6 The hyperspherical Bessel transform of the radial

function

By analogy with equations (H.46) and (H.60), we make the guess

Rt
n,λ(p)

=

√
2n!

Γ(λ+ n+ d/2)ωd/2
(−1)n e−p

2/(2ω)(p2/ω)λ/2Lλ+(d−2)/2
n (p2/ω)

(H.62)
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We can check that Rt
n,λ(p) obeys the orthonormality relation∫ ∞

0

dp pd−1Rt
n′,λ(p)R

t
n,λ(p) = δn′,n (H.63)

We can also use the expansion of a d-dimensional plane wave in terms of hyperspherical
harmonics and hyperspherical Bessel functions

e−ip·x = (d− 2)!!I(0)
∞∑
λ=0

(−i)λjdλ(pr)
∑
µ′

Y ∗λ,µ(u)Yλ,µ(up) (H.64)

to evaluate the d-dimensional Fourier-Bessel transform:

1

(2π)d/2

∫ ∞
0

dr rd−1

∫
dΩd Rn,λ(r)Yλ,µ(u)e−ip·x

= (−i)λYλ,µ(up)
(d− 2)!!I(0)

(2π)d/2

∫ ∞
0

dr rd−1 jdλ(pr)Rn,λ(r)

= (−i)λYλ,µ(up)R
t
n,λ(p) (H.65)

where I(0) is the total solid angle in the d-dimensional space. Mathematica is unable to
perform the hyperradial integral of equation (H.65) for general values of n and λ, but it
can do so for particular values, and thus we can check the hypothesis shown in equation
(H.62).

H.7 Coupling coefficients for harmonic oscillator wave

functions

The d-dimensional harmonic oscillator wave functions obey the orthonormality relation∫
dx χ∗ν′(x)χν(x) = δν′,ν (H.66)

If we double the value of the frequency ω, the relationship is the same:∫
dx χ∗ν′(2ω,x)χν(2ω,x) = δν′,ν (H.67)

We can use the orthonormality relation (H.67) to express the product of two d-dimensional
harmonic oscillator wave functions as a sum of single functions of the same kind, but with
double the frequency. Let

χ∗ν1(x)χν2(x) =
∑
ν′

χν′(2ω,x) Cν′

ν1,ν2
(H.68)
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Then, making use of (H.67), we have∫
dx χ∗ν(2ω,x)χ∗µ1(x)χµ2(x) =

∑
ν′

∫
dx χ∗ν(2ω,x)χν′(2ω,x) Cν′

ν1,ν2

=
∑
ν′

δν,ν′C
ν′

ν1,ν2
= Cν

ν1,ν2
(H.69)

The integral on the left-hand side of (H.69) can be separated into a hyperradial part and
a hyperangular part:

Cν
ν1,ν2

=

∫
dx χ∗ν(2ω,x)χ∗ν1(x)χν2(x)

=

∫ ∞
0

dr rd−1Rn,λ1+λ2(2ω, r)Rn1,λ1(r)Rn2,λ2(r)

×
∫
dΩd Y

∗
λ,µ(u)Y ∗λ1,µ1(u)Yλ2,µ2(u) (H.70)

The hyperangular integral in equation (H.70) can be evaluated rapidly and exactly by
means of our general theorem (??)-(??). The hyperradial integral can also be evaluated
exactly, and the sum in equation (H.68) terminates after a finite number of terms.

H.8 Normal modes

We next consider the small vibrations of a classical system of particles about the equilibrium
positions. Suppose that the kinetic energy of the system is given by

T =
1

2

d∑
i=1

d∑
j=1

miδi,j
dxi

dt

dxj

dt
(H.71)

while the leading term in a Taylor series expansion of the potential energy has the form

V =
1

2

d∑
i=1

d∑
j=1

Vi,jx
ixj (H.72)

The coordinates x1, x2 · · · , xd, which represent small displacements from the equilibrium
positions of the particles, are by no means the most convenient ones for solving the equa-
tions of motion of the system. We can bring the kinetic energy into a more convenient
form by going over to the mass-weighted coordinates defined by

X i ≡ √mi x
i i = 1, 2, · · · , d (H.73)

In terms of these coordinates, the kinetic energy has the form

T =
1

2

d∑
i=1

d∑
j=1

δi,j
dX i

dt

dXj

dt
(H.74)
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while the potential energy becomes

V =
1

2

d∑
i=1

d∑
j=1

Vi,j√
mimj

X iXj (H.75)

The mass-weighted coordinates are still not the most convenient ones that we can find,
since the potential energy matrix Vi,j may contain off-diagonal terms. and we would like
to get rid of these. We can find a unitary transformation which diagonalizes Vi,j/

√
mimj

by solving the secular equations

d∑
j=1

(
Vi,j√
mimj

− V(k)δi,j

)
Uj,k = 0 (H.76)

Having performed the diagonalization, we can express the potential energy and the kinetic
energy of the system in terms of the normal coordinates defined by

qk =
d∑
i=1

X iUi,k =
d∑
i=1

√
mi x

iUi,k (H.77)

When we do this, the kinetic energy retains its diagonal form because of the unitarity of
Uj,k:

T =
1

2

d∑
k=1

(
dqk

dt

)2

(H.78)

but the off-diagonal terms in the potential energy disappear:

V =
1

2

d∑
k=1

V(k)(qk)2 (H.79)

From (H.78) and (H.79) we can see that the Lagrangian of the system can be written in
the form

L = T − V =
d∑

k=1

Lk (H.80)

where

Lk =
1

2

[(
dqk

dt

)2

− V(k)(qk)2

]
(H.81)

The canonically conjugate momentum paired with the coordinate qk is defined in mechanics
to be

pk =
∂L

∂q̇k
=
dqk

dt
(H.82)
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he Hamiltonian of the system can be written in the form

H = T + V =
d∑

k=1

Hk (H.83)

where

Hk =
1

2

(
p2
k + ω2

kq
2
k

)
(H.84)

and

ωk =
√
V(k) (H.85)

In other words, when the Hamiltonian which represents small vibrations of a classical sys-
tem is expressed in terms of the normal coordinates (or normal modes), it reduces to a
sum of simple harmonic oscillator Hamiltonians. The normal coordinates are found by di-
agonalizing the mass-weighted potential energy matrix. The harmonic oscillator frequency
of each is found by taking the square root of the corresponding eigenvalue of the mass-
weighted potential energy matrix.

To illustrate this procedure, we can think of a system, whose Lagrangian is given by

L =
1

2

d∑
i=1

d∑
j=1

(
m δi,j

dxi

dt

dxj

dt
− Vi,jxixj

)
(H.86)

where Vi,j = 2κ if i = j and Vi,j = −κ if i = j ± 1, while being zero every where else in
the matrix. This Lagrangian corresponds to a linear system of point masses, each joined
elastically to the next. Then the secular equations (H.76) have the form

−κUk−1,k + [2κ− V(k)]Uk,k − κUk+1,k = 0 k = 2, . . . , d− 1 (H.87)

The trial solution

Uj,k =

√
2

d+ 1
sin(jka) (H.88)

makes all of the secular equations redundant, All of them redundantly require that

V(k) = κ [1− cos(ka)] (H.89)

Imposing homogeneous boundary conditions (i.e clamping the two ends of the line) restricts
the allowed values of k, and we must have

k =
π

(d+ 1)a
,

2π

(d+ 1)a
, · · · , πd

(d+ 1)a
(H.90)
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where (d+ 1)a is the length of the chain. The frequency spectrum of the normal modes is
given by

ωk =

√
V(k)

m
=

√
2κ [1− cos(2ka)]

m
(H.91)

In terms of the normal mode coordinates and their time derivatives, the Lagrangian of the
system becomes

L =
1

2

∑
k

[(
dqk

dt

)2

− (ωkq
k)2

]
(H.92)

which can be recognized as a sum of harmonic oscillator Lagrangians.

H.9 Molecular vibrations and rotations

In the simplest possible approximation, we can regard a molecule (or a cluster in a non-
melted state) as a collection of point masses held together by springlike bonds. When
we calculate the normal modes of such a system, we always find that there are six zero-
frequency modes. Three of these correspond to the degrees of freedom associated with
translation of the whole system, and three with rotation. Let us use the symbols Rs to
represent the equilibrium position of the atom s, and xs to represent the displacement of
the atom from its equilibrium position. Then in our simple model, the classical potential
energy of the molecule can be written in the form

V =
1

2

N∑
t>s

N∑
s=1

kst (|xs + Rs − xt −Rt| − |Rs −Rt|)2 (H.93)

Here kst represents the force constant of the “spring” which connects atom s with atom t.
Let us also introduce the notation

Rst ≡ Rs −Rt

xst ≡ xs − xt (H.94)

Then, if we assume that |xst| << |Rst| and expand V in a Taylor series, we obtain the
leading term

V ≈
N∑
t>s

N∑
s=1

kst
|Rst|2

(Rst · xst)2

≡ 1

2

N∑
t>s

N∑
s=1

3∑
µ=1

3∑
ν=1

Vs,µ;t,νxs,µxt,ν (H.95)
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where

xs ≡ (xs1, xs2, xs3) (H.96)

By diagonalizing the mass-weighted potential energy matrix

Vs,µ;t,ν√
msmt

(H.97)

we can find the normal modes of the system, and as mentioned, six of them will be zero-
frequency modes corresponding to translations and rotations of the entire system.
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Horace Bénédict de Saussure, 142
Hospitals, 415
Human cultural evolution, 112
Human emotional nature, 283
Human gene pool, 288
Human perfectibility, 164
Human progress, 165
Human rights, 158
Hungary, 208
Huperspherical coordinates, 277
Huxley, Andrew, 418
Huygens’ Principle, 106
Huygens, Christian, 101, 104, 126
Hydrodynamics, 101
Hydrogen, 320
Hydrogenlike orbitals, 447
Hydrogenlike Schrödinger equation, 447
Hydrogenlike spin-orbitals, 480, 481, 494
Hydrogenlike Sturmians, 459
Hydrogenlike wave equation, 480
Hydrostatics, 35
Hyoerspherical harmonics, 142
Hyperangular integration, 463
Hyperangular integration formula, 464, 465
Hyperangular integration theorem, 142
Hyperangular integrations, 465
Hyperboloids of revolution, 37
Hyperelliptic functions, 198
Hypergeometric functions, 356
Hyperradial integral, 464
Hyperradius, 142, 460, 463, 465, 473
Hypersphere, 142, 451
Hyperspherical Bessel functions, 510
Hyperspherical Bessel transforms, 509



INDEX 525

Hyperspherical harmonics, 452, 459, 460, 462,
473, 477

Hypotheses that underlie geometry, 208

I procured me a triangular prism, 88
IBM Corporation, 398, 409
Idempotents, 444
Identity element, 194, 431, 443
Ignorance, 166
Impurities, 409
Imternational Mathematical Olympiad, 377
Income policies, 417
Increasingly paranoid, 406
Indefinite integrals, 93, 385
Independent electrons, 487
India, 19
Inequality between men and women, 166
Inertial frames, 351
Infinite-dimensional Euclidian space, 228
Infinitely differentiable manifolds, 208
Infinitesimal element of length, 280
Infinitesimal length, 273
Information, 410
Information accumulation, 413
Information explosion, 413
Information function, 365
Information technology, 391
Information theory, 362
Inner product, 454
Inspector General of the Mint, 158
Insulator, 406
Integral calculus, 35, 84, 92, 93, 101, 104,

227
Integral equation, 455
Integrated circuits, 409
Integration, 92
Intel, 410
Interactive calculations, 410
Interelectron repulsion, 481, 487, 494
Interelectron repulsion matrix, 487, 496, 499
Interference, 102
Internal energy, 370
International Mathematical Union, 378

Internet, 414
INTERNIST-1, 415
Intolerance, 112
Intrinsic curvature, 280
Invariance under rotations, 467
Invariant blocks, 494
Invariant properties, 227
Invariant subsets, 494
Invariants, 440
Invention of calculus, 71
Invention of computers, 391
Inventory data base, 416
Inverse, 194, 431, 436
Inverse fluxions, 92
Inverse transform, 451
Inversions, 494
Invicto patre sidera verso, 119
Invited to Isfahan, 56
Ions, 320
Iran, 377
Irrational numbers, 12, 20
Irreducible representations, 140, 436, 444
Isaac Barrow, 89
Isoenergetic basis sets, 452
Isomeric conformations, 331
Isotropic harmonic oscillator, 506

János Bolyai, 208
Jacobi, Carl Gustav, 198, 275
Jacobian, 275–277
Jacquard’s loom, 395
Jacquard, Joseph Marie, 395
James Clerk Maxwell, 207, 208, 359
Jan Vondrák, 378
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Zürich, 309
Zero points, 372
Zero-frequency modes, 515
Zuse, Konrad, 399


	PYTHAGORAS
	The Pythagorean brotherhood
	Pythagorean harmony
	Geometry as a part of religion

	EUCLID
	Alexandria
	The Museum and the Great Library of Alexandria
	Euclid is called to the Museum
	The eight books of Euclid's Elements
	Euclid's Book I, On basic plane geometry

	ARCHIMEDES
	Heiron's crown
	Invention of differential and integral calculus
	Statics and hydrostatics
	Don't disturb my circles!

	AL-KHWARIZMI
	Al-Khwarizmi's life
	The father of algebra
	Contributions to astronomy
	Contributions to geography

	OMAR KHAYYAM
	Omar's family and education
	Invited to Isfahan
	Linking algebra and geometry
	Omar Khayyam anticipates non-Euclidean geometry
	The Rubáiyát

	RENÉ DESCARTES
	Uniting geometry and algebra
	Descartes' work on Optics, physiology and philosophy
	Descartes' tragic death

	NEWTON
	Newton's early life
	Newton becomes a student at Cambridge
	Differential calculus
	Optics
	Integral calculus
	Halley visits Newton
	The conflict over priority between Leibniz and Newton
	Political philosophy of the Enlightenment
	Voltaire and Rousseau

	THE BERNOULLI'S AND EULER
	The Bernoullis and Euler
	Linear ordinary differential equations
	Second-order differential equations
	Partial differentiation; Daniel Bernoulli's wave equation
	Daniel Bernoulli's superposition principle
	The argument between Bernoulli and Euler

	FOURIER
	A poor taylor's son becomes Napoleon's friend
	Fourier's studies of heat
	Fourier analysis
	Fourier transforms
	The Fourier convolution theorem
	Harmonic analysis for non-Euclidean spaces
	Fourier's discovery of the greenhouse effect

	JOSEPH-LOUIS LAGRANGE
	A professor at the age of 19!
	Successor to Euler at the Berlin Academy
	Lagrange is called to Paris
	The calculus of variations
	Cyclic coordinates

	CONDORCET
	Condorcet becomes a mathematician
	Human rights and scientific sociology
	The French Revolution
	Drafting a new constitution for France
	Hiding from Robespierre's Terror
	Condorcet writes the Esquisse

	HAMILTON
	Uniting optics and mechanics
	Professor of Astronomy at the age of 21
	Hamilton's unified formulation
	Quaternions

	ABEL AND GALOIS
	Group theory
	Abel's family and education
	Abel's travels in Europe
	A list of mathematical topics to which Abel contributed
	The life and work of Éveriste Galois
	Mathematical contributions of Galois

	GAUSS AND RIEMANN
	Gauss contributed to many fields
	Normal distributions in probability theory
	Bernhard Riemann's life and work
	Functions of a complex variable

	HILBERT
	David Hilbert's life and work
	Hilbert space
	Generalized Fourier analysis
	Projection operators
	Some quotations from David Hilbert

	EMMY NOETHER
	Emmy Noether's family and education
	Working without pay at Erlangen
	Invited to Göttingen's Mathematical Institute
	Escape from Nazi Germany to Bryn Maur
	Noether's theorem

	EINSTEIN
	Family background
	Special relativity theory
	General relativity
	Metric tensors
	The Laplace-Beltrami operator
	Geodesics
	Einstein's letter to Freud: Why war?
	The fateful letter to Roosevelt
	The Russell-Einstein Manifesto

	ERWIN SCHRÖDINGER
	A wave equation for matter
	Felix Bloch's story about Schrödinger
	Separation of the equation
	Solutions to the radial equation
	Fock's momentum-space treatment of hydrogen
	The Pauli exclusion principle and the periodic table
	Valence bond theory
	What is life?

	DIRAC
	Dirac's relativistic wave equation
	Some equations
	Lorentz invariance and 4-vectors
	The Dirac equation for an electron in an external electromagnetic potential
	Time-independent problems
	The Dirac equation for an electron in the field of a nucleus

	SHANNON
	Maxwell's demon
	Statistical mechanics
	Information theory; Shannon's formula
	Entropy expressed as missing information
	Cybernetic information compared with thermodynamic information
	The information content of Gibbs free energy

	MARYAM MIRZAKHANI
	Family and education in Tehran
	A Ph.D. from Harvard
	Mirzakhani becomes a Stanford University professor
	The Fields Medal
	Awards, fellowships, and other honors

	TABLES OF DIFFERENTIALS, INTEGRALS AND SERIES
	THE HISTORY OF COMPUTERS
	Pascal and Leibniz
	Jacquard and Babbage
	Harvard's sequence-controlled calculator
	The first electronic computers
	Biosemiotics
	The Traitorous Eight
	Integrated circuits
	Moore's law
	Self-reinforcing information accumulation
	Automation
	Neural networks

	GROUP THEORY
	The definition of a finite group
	Representations of geometrical symmetry groups
	Similarity transformations
	Characters and reducibility
	The great orthogonality theorem
	Classes
	Projection operators
	The regular representation
	Classification of basis functions

	Sturmian basis sets
	One-electron Coulomb Sturmians
	Löwdin-orthogonalized Coulomb Sturmians
	The Fock projection
	Generalized Sturmians and many-particle problems
	Use of generalized Sturmian basis sets to solve the many-particle Schrödinger equation
	Momentum-space orthonormality relations for Sturmian basis sets
	Sturmian expansions of d-dimensional plane waves
	An alternative expansion of a d-dimensional plane wave

	Angular and hyperangular integrations
	Monomials, homogeneous polynomials, and harmonic polynomials
	The canonical decomposition of a homogeneous polynomial
	Harmonic projection
	Generalized angular momentum
	Angular and hyperangular integration
	An alternative method for angular and hyperangular integrations
	Angular integrations by a vector-pairing method

	Harmonic functions
	Harmonic functions for d=3
	Spaces of higher dimension

	GENERALIZED STURMIANS APPLIED TO ATOMS
	Goscinskian configurations
	Relativistic corrections
	The large-Z approximation: Restriction of the basis set to an R-block
	Electronic potential at the nucleus in the large-Z approximation
	Core ionization energies
	Advantages and disadvantages of Goscinskian configurations
	R-blocks, invariant subsets and invariant blocks

	THE D-DIMENSIONAL HARMONIC OSCILLATOR
	Harmonic oscillators in one dimension
	Creation and annihilation operators for harmonic oscillators
	A collection of harmonic oscillators
	d-dimensional isotropic harmonic oscillators
	Fourier transforms of 3-dimensional harmonic oscillator wave functions
	The hyperspherical Bessel transform of the radial function
	Coupling coefficients for harmonic oscillator wave functions
	Normal modes
	Molecular vibrations and rotations


