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Does the gluon spin contribute in a gauge-invariant way to nucleon spin?

Pervez Hoodbhoy* and Xiangdong Ji
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 12 August 1999; published 12 November 1999!

Although the matrix element of the gluon spin operator in nucleon helicity states is known to be independent
of some special choices of gauge, we show that it is not invariant under a general gauge transformation. We
find that there exists a simple means of obtaining the matrix element in a different choice of gauge from a
calculation made in one specific gauge. Similar conclusions hold for other manifestly gauge-dependent opera-
tors present in the QCD angular momentum operator.@S0556-2821~99!05123-1#
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In quantum chromodynamics~QCD!, the gluon spin op-
erator,SW g , can be defined as

SW g5E d3xEW 3AW , ~1!

where we have suppressed the color indices,EW is the color
electric field andAW is the gauge potential. The above ope
tor is manifestly gauge dependent, and therefore one exp
that its matrix element in a physical state depends on
gauge choice. Indeed, in Ref.@1# it was shown that the ma
trix element ofSW g in a quark helicity state is different in th
axial (A150) and covariant gauges. On the other hand
was claimed in Ref.@2# that this matrix element in a helicity
state is invariant under a gauge transformation. The goa
this paper is to clarify the relationship of the two results.
particular, we point out that the proof in Ref.@2# covers only
a special class of gauge transformations and the matrix
ment of SW g is in fact gauge dependent. We then make
number of pertinent observations about comparing calc
tions in different gauges. In particular, we demonstrate t
there exists a simple means of getting the answer in a dif
ent choice of gauge from calculations made in one spec
gauge.

We start with general comments about calculations
quantum gauge theories. Because of the gauge symmetry
the infinite number of degrees of freedom in fields, it is
ways necessary to choose a gauge for calculating Gre
functions and physical matrix elements, perhaps with the
ception of lattice gauge theory in which fields are assigne
a finite number of spacetime points. Indeed, in a canon
quantization of gauge theories, one has to choose a gau
the very outset. In the path-integral formulation, a gau
choice is conveniently made by selecting a set of gauge c
ditions,

Fa~A!5sa~x!, ~2!

where the indexa runs over the number of generators of t
gauge group~and will be omitted in the remaining equa
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tions!. In addition, one can choose an arbitrary weighti
functionalG(s) to integrate over the auxiliary fields. With-
out loss of generality, one can assume*@Ds#G(s)51,
whereD denotes the functional integration measure. Hen
the generating functional for Green’s functions in QCD rea
@3#,

Z~J!5
1

NE @Df#@Ds#DF~A!d„F~A!2s…G~s!

3expS iS1 i E d4x@J•A1h̄c1c̄h# D , ~3!

wheref denotes a collection of fieldsA, c, andc̄, andS is
the canonical QCD action,

S5E d4xF c̄~ iD” 2mq!c2
1

4
FmnFmnG , ~4!

and the normalization constantN is

N5E @Df#@Ds#DF~A!d~F~A!2s!G~s!eiS, ~5!

so thatZ@0#51. The Faddeev-Popov determinantDF(A) is
defined such that

DF~A!E @Dv#d~F~vA!2s!51, ~6!

where vA is a gauge transformation ofA and @Dv# inte-
grates over the gauge group at every point of spacetime

To calculate the physical matrix element^ f uÔ(f)u i & of
an operatorÔ(f), one can start with the following Green’
function:

^0uT@Jf~x!O~y!Ji
†~0!#u0&uF,G

5
1

NE @Df#@Ds#DF~A!d„F~A!

2s…G~s!Jf~f!O~f!Ji
†~f!eiS, ~7!

whereJi , f are the interpolation fields or currents for the in
tial and final physical states. According to the Lehman

ni-
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Symanzik-Zimmermann reduction formula@3#, ^ f uÔ(f)u i &
is just the residue of the Green’s function at the poles co
sponding to external physical states, modulo the coup
constantsZi , f defined aŝ0uJi , f(0)u i , f &5AZi , f ~where a pos-
sible Lorentz structure is suppressed!. Gauge invariance o
the physical matrix element means that the residue dep
on a choice ofF(A) and G(s) only through the couplings
Zi , f when the interpolating currents are gauge dependen

Using methods available in textbooks@3#, one can show
that the Green’s function̂0uT@Jf(x)O(y)Ji

†(0)#u0&uF,G is
au
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independent of the choice ofF(A) andG(f) provided that
Ji(f), Jf(f), and O(f) are gauge invariant. Indeed, con
sider a different choice ofF̃ andG̃ such that

D F̃~A!E @Dv#d~ F̃~vA!2s̃ !51; E @Ds̃#G̃~ s̃ !51.

~8!

Multiplying both unities to the right-hand side of Eq.~7!, we
get
^0uT@Jf~x!O~y!Ji
†~0!#u0&uF,G

5
1

NE @Df#@Ds#@Ds̃#@Dv#DF~A!d„F~A!2s…G~s!Jf~f!O~f!Ji
†~f!3D F̃~A!G̃~ s̃ !d„F̃~vA!2s̃…eiS

5
1

NE @Df#@Ds#@Ds̃#@Dv#DF~A!d„F~v21
A!2s…G~s!Jf~

v21
f!O~v21

f!3Ji
†~v21

f!D F̃~A!G̃~ s̃ !d„F̃~A!2s̃…eiS

5
1

NE @Df#@Ds#@Ds̃#G~w!Jf~
v0f!O~v0f!Ji

†~v0f!D F̃~A!G̃~ s̃ !d„F̃~A!2s̃…eiS

5
1

NE @Df#@Ds̃#Jf~f!O~f!Ji
†~f!D F̃~A!G̃~ s̃ !d„F̃~A!2s̃…eiS, ~9!
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where after the second equal sign, we have made the g

transformationf→v21
f and used the fact that the measu

@Df# and determinantsDF(A) andD F̃(A) are invariant un-
der the transformation. After the third equal sign, we ha
integrated out the@Dv# by using thed-function constraint

F(v21
A)5s. For a fixedA ands, there is a specialv0 that

fulfills the constraint, and hencev0 is a specific function of
them:v05v21(A,s). After the fourth equal sign, we hav
used the assumption thatJi , f(f) and O(f) are gauge
invariant. This makes the functional integration overs
trivial. The final line establishes the gauge independe
of the Green’s function: ^0uT@Jf(x)O(y)Ji

†(0)#u0&uF,G

5^0uT@Jf(x)O(y)Ji
†(0)#u0&u F̃,G̃ .

From the above discussion, we see that gauge invaria
of a matrix element is guaranteed when the observable u
consideration, defined as a functional of physical fields in
path integral formalism, is invariant underany gauge trans-
formation v, including arbitrary dependence on the gau
potentialA itself. The notion ofA-dependent gauge transfo
mation can be found in textbooks, but it is usually discus
in the context of classical gauge theory. In a canonica
quantized theory, anA-dependentv can no longer be con
sidered as a transformation ‘‘parameter,’’ but rather a qu
tum operator in Hilbert space. Because the commutation
lations betweenv and the fundamental fields depend on t
choice of transformation itself, it is difficult to consider th
most general gauge transformations in canonically quant
theories. In fact, as we have alluded to before, canon
ge
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quantization of a gauge theory can only be carried out aft
choice of gauge, and different gauge choices often lead
different quantum Hilbert spaces. When comparing calcu
tions in different gauges, one usually compares the final
sults only—not the actual physical states and operator
those gauges. In particular, we know of no discussion in
literature about how to transform a quantum operator fr
one gauge to another.

Fortunately, in the path-integral formulation, all field var
ables are treated as classical, and a transformation from
gauge to another, performed with anA-dependentv, can be
easily handled by a change of integration measure and
associated Jacobian~the Faddeev-Popov determinant!. A de-
cisive test of the gauge invariance of an observable can
done with a general gauge transformation: anv(A) solving

F(vA)5s for anyA satisfyingF̃(A)5s̃. It can happen that
certain matrix elements are invariant under a special clas
gauge transformations; in particular, those that keep
Faddeev-Popov determinant invariant. However, if they c
not pass the general test above, one cannot claim their
gauge independence.

In Ref. @2#, Chen and Wang claim to have shown that t
matrix element ofSW g in a helicity eigenstate is gauge invar
ant. What they have actually shown is that the matrix e
ment is the same in gaugesF(A)5s andF(vA)5s, where
v is an A-independent gauge transformation parameter.
outline of the proof goes as follows~using gauge-invarian
interpolating operators for external states!:
2-2
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^0uT@Jf~x!Sg~y!Ji
†~0!#u0&uF(vA),G

5
1

NE @Df#@Ds#DF~A!d@F~vA!2s#

3G~s!Jf~f!Sg~f!Ji
†~f!eiS

5
1

NE @Df#@Ds#DF~A!d@F~A!2s#

3G~s!Jf~f!Sg~v21
f!Ji

†~f!eiS, ~10!

where after the second equality one has made a gauge t
formation v21, and all thev dependence now appears
Sg . We write

Sg~v21
f![Sg~f!1dSg~f,v!. ~11!

Chen and Wang showed thatdSg(f,v) has a zero matrix
element in a helicity state and so

^0uT@Ji~x!Sg~y!Jf
†~0!#u0&uF(vA),G

5^0uT@Ji~x!Sg~y!Jf
†~0!#u0&uF(A),G . ~12!

As we have demonstrated above, Eq.~12! is not sufficient to
guarantee that that matrix element remains invariant un
an arbitrary new gauge conditionG̃(A)5s̃. Indeed, under
A-dependent gauge transformations, the proof in Ref.@2# no
longer applies.

As an example ofA-dependent gauge transformation, w
compare calculations in the covariant gauge and light-c
gauge (A150). The vacuum matrix element of a gener
operatorÔ ~which can be a time-ordered product of ope
tors at several different spacetime points! in the covariant
gauge can be written as

^0uÔu0&uL5
1

NE @Df#@Ds#DF~A!d~]•A2s!O~f!

3expS 2 i E d4xs~x!2/2l Dexp~ iS!, ~13!

where we have included the standard Gaussian weigh
function. The same matrix element in light-cone gaugeA1

50 can be expressed as

^0uÔu0&uA5
1

NE @Df#DF~A!d~A1!O~f!exp~ iS!.

~14!

Using the same method used in deriving Eq.~9!, we can
show that the matrix element in two different gauges is
lated by the following equation:

^0uÔ~f!u0&uA5^0uÔ~vf!u0&uL , ~15!

where v is a gauge transformation which brings a gau
configuration to theA150 gauge. In perturbation theor
where the couplingg is small
11404
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1

]1 Aa11O~g!. ~16!

Equation ~15! is both interesting and important—it relate
any matrix element~or Green’s function! in the axial gauge
to that of a gauge-transformed operator in the covari
gauge. For instance, using the relation one can easily rec
the gluon or quark field propagators in the light-cone gau
from those in the covariant gauge. We emphasize here
similar relations between any two independent gauges ca
derived and they are entirelynonperturbative. The relation-
ship between the covariant and axial gauge calculations
also been studied recently by Joglekar and Misra@4#. In
those studies, generalized BRST transformations are use
connect different gauge choices. Some other references
tranformation between different gauges can be found in@5#.

As an application of Eq.~15!, we consider the difference
of the SW g matrix elements in the covariant and light-con
gauges,

^ f uSgu i &uA2^ f uSgu i &uL5^ f uSg~vA!2Sg~A!u i &uL , ~17!

which can be calculated completely in the covariant gau
Given v in Eq. ~16!, one cannot show, perturbatively o
nonperturbatively, that the right-hand side vanishes when
external states have definite helicity. In fact the above eq
tion can be used to directly check the one-loop calculat
presented in Ref.@1#. Consider an ‘‘on-shell’’ quark in the
state of momentumpm and helicity 1/2. We notice that the
quark fields are not gauge invariant. However, the differe
between the original and the gauge-transformed quark fi
has no perturbative quark pole; therefore, Eq.~17! still ap-
plies. At one-loop order we find

K p1
1

2UdSg~A!Up1
1

2L 5CF

as

2p
lnS Q2

m2D , ~18!

wheredSg5Sg(vA)2Sg(A), CF5(Nc
221)/(2Nc) with Nc

being the number of colors, andQ2 andm2 are the ultraviolet
and infrared cutoffs, respectively. The above result is exa
what we found in Ref.@1#.

We have also found that in the one-loop calculation theSW g
matrix element in the covariant gauge is independent of
Feynman parameterl. By studying the relations betwee
matrix elements in]mAm5s and ]mAm5s/Al gauges, we
can show thel independence directly. Notice that the diffe
ent choice inl, like the gauge transformations considered
Ref. @2#, leaves the Faddeev-Popov determinant invarian

To summarize, we demonstrated that the general ga
independence of a physical matrix element must be chec
in the path-integral formalism through gauge-field-depend
gauge transformations. Using this, we showed that the gl
spin contribution to the nucleon spin is indeed gauge dep
dent. The conclusion also applies readily to other gau
dependent operators considered in Ref.@2#. We derived a
general relation between matrix elements in the covar
2-3
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and axial gauges. Using the relation, we calculated the o
loop difference of the gluon spin contribution to the qua
spin in the two gauges. The result confirms the explicit c
culation presented in Ref.@1#.
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