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Does the gluon spin contribute in a gauge-invariant way to nucleon spin?
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Although the matrix element of the gluon spin operator in nucleon helicity states is known to be independent
of some special choices of gauge, we show that it is not invariant under a general gauge transformation. We
find that there exists a simple means of obtaining the matrix element in a different choice of gauge from a
calculation made in one specific gauge. Similar conclusions hold for other manifestly gauge-dependent opera-
tors present in the QCD angular momentum operd®0556-282(199)05123-1

PACS numbgs): 12.38.Aw, 14.20.Dh

In quantum chromodynamid®CD), the gluon spin op- tions). In addition, one can choose an arbitrary weighting
erator,ég, can be defined as functionalG (o) to integrate over the auxiliary field. With-
out loss of generality, one can assumfigDo|G(o)=1,

R .. whereD denotes the functional integration measure. Hence,

Sy= f d*xEXA, (1) the generating functional for Green’s functions in QCD reads

[3],
where we have suppressed the color indi¢ess the color 1
electric field andA is the gauge potential. The above opera- Z(J)= /T/f [Dp][Do]A(A)S(F(A)—0)G(a)
tor is manifestly gauge dependent, and therefore one expects
that its matrix element in a physical state depends on the o 4 -
gauge choice. Indeed, in RéfL] it was shown that the ma- XexP('S""f d*x[J-A+ nyt WI])’ (€©)
trix element of§g in a quark helicity state is different in the o
axial (A" =0) and covariant gauges. On the other hand, itwhere¢ denotes a collection of fields, s, andy, andSis
was claimed in Ref{2] that this matrix element in a helicity the canonical QCD action,
state is invariant under a gauge transformation. The goal of
this paper is to clarify the relationship of the two results. In 4
particular, we point out that the proof in R¢2] covers only S:f d*x
a special class of gauge transformations and the matrix ele-

ment of S is in fact gauge dependent. We then make aand the normalization constanfis

number of pertinent observations about comparing calcula-

tions in different gauges. In particular, we demonstrate that _ _ is

there exists a simple means of getting the answer in a differ- N j [DSIDIIARA AF(A) = 0)G(0)e™, (9

ent choice of gauge from calculations made in one specific ) )

gauge. so thatZ[0]=1. The Faddeev-Popov determinai(A) is
We start with general comments about calculations irdefined such that

guantum gauge theories. Because of the gauge symmetry and

the infinite number of degrees of freedom in fielo!s, it is al- AF(A)J [Dw]8(F(“A)—a)=1, (6)

ways necessary to choose a gauge for calculating Green's

functions and physical matrix elements, perhaps with the ex- ) . )

ception of lattice gauge theory in which fields are assigned a¢/nhere “A is a gauge transformation @& and [D] inte-

a finite number of spacetime points. Indeed, in a canonicagrates over the gauge group at every point of spacetime.

quantization of gauge theories, one has to choose a gauge atTo calculate the physical matrix elemeff{O(¢)|i) of

the very outset. In the path-integral formulation, a gaugean operatoO(¢), one can start with the following Green's

choice is conveniently made by selecting a set of gauge corfunction:

ditions,

, 4

— 1
YD —mg)y—ZFHF,,

(OITLI ()03 (010

FA(A)=o%(x), L

where the indexa runs over the number of generators of the :/T/’f [DAIDIARA)S(F(A)
gauge group(and will be omitted in the remaining equa-

—0)G(0)Ji($)O(¢) I ($)€'S, @)

*Permanent address: Department of Physics, Quaid-e-Azam UnwhereJ; ; are the interpolation fields or currents for the ini-
versity, Islamabad 45320, Pakistan. tial and final physical states. According to the Lehmann-
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Symanzik-Zimmermann reduction formula], (f|O(¢)|i)  independent of the choice &f(A) andG(¢) provided that
is just the residue of the Green’s function at the poles corredi(¢), Ji(¢), andO(¢) are gauge invariant. Indeed, con-
sponding to external physical states, modulo the couplingider a different choice df andG such that
constant; ; defined ag0|J; ;(0)|i,f)=\Z; ; (where a pos-
sible Lorentz structure is suppresgse@auge invariance of . ~ ~ o~
the physical matrix element means that the residue depends AE(A)J [Do]s(F(“A)=0)=1; J [Do]G(o)=1.
on a choice ofF(A) and G(o) only through the couplings (8)
Z;  when the interpolating currents are gauge dependent.

Using methods available in textbook3], one can show Multiplying both unities to the right-hand side of Eg), we
that the Green’s functiof0|T[J;(x)O(y)J(0)]|0)|r ¢ is  get

(OT[I:(x)O(y)J[(0)1|0).e

1 ~ - — - .
ZJT/J [Dp[Da][Dol[Dw]Ar(A)S(F(A)—0)G(0)Ii($)O($)I]($) X A(A)G(a) S(F(“A)— o)e'S
1 ~ —1 —1 -1 -1 ~ o~ o~ ~
:NJ[D¢][DU][DU][DL‘U]AF(A)5(F(w A) = a)G(0)Ji(“ $)O(® ¢)xI(“ "$)AR(A)G(a)3(F(A)—0)e's
1 ~ _ -
:/T/f [DpI[DaI[Do]1G(W)Ir(“0d)O(“0h) I/ (“0p) AE(A)G () S(F(A) — 0)e'S

1 ~ -~ o~ -~
:/T/f [DIDT1I($)O($)I[($)AE(A)G(0) S(F (A) — o)’ 9

where after the second equal sign, we have made the gaugeantization of a gauge theory can only be carried out after a

transformationg— ¢ and used the fact that the measurechoice of gauge, and different gauge choices often lead to
[D¢] and determinantd £(A) andAg(A) are invariant un-  different quantum Hilbert spaces. When comparing calcula-
der the transformation. After the third equal sign, we havelions in different gauges, one usually compares the final re-
integrated out théDw] by using thes-function constraint ~ Sults only—not the actual physical states and operators in
F(wilA):O'. For a fixedA ando, there is a speciab, that t_hose gauges. In particular, we know of no discussion in the
fulfills the constraint, and henae, is a specific function of literature about how to transform a quantum operator from

them: wo=w 1(A,o). After the fourth equal sign, we have one gauge to another.

used the assumption thak ((¢) and O(4) are gauge Fortunately, in the path—.lntegral formulation, aII_fleId vari-
) . ; : . : . ables are treated as classical, and a transformation from one
invariant. This makes the functional integration over

trivial. The final line establishes the gauge independencg"’m.ge to another, performed W't.h Ardependento, can be
of the Green's function: (O|T[J;(x)O(y)3'(0)]|0}| easily handled by a change of integration measure and the
' f i F.G  associated Jacobidthe Faddeev-Popov determinari de-

— T -
=(0IT[I(x)O(y)J(0)]|0) | & - cisive test of the gauge invariance of an observable can be

From the above discussion, we see that gauge invariaanone with a general gauge transformation:a(#) solving
of a matrix element is guaranteed when the observable under, e~ ~
(“A) = o for any A satisfyingF(A) =o. It can happen that

consideration, defined as a functional of physical fields in th , i : ; ;

path integral formalism, is invariant undany gauge trans- certain matrix elem_ents are invariant under a special class of
formation o, including arbitrary dependence on the gauged@uge transformations; in particular, those that keep the
potentialA itself. The notion ofA-dependent gauge transfor- Faddeev-Popov determinant invariant. However,_|f they_ can-
mation can be found in textbooks, but it is usually discussed©t pass the general test above, one cannot claim their total
in the context of classical gauge theory. In a canonicallygauge independence.

quantized theory, aid-dependenw can no longer be con- In Ref.[2], Chen and Wang claim to have shown that the
sidered as a transformation “parameter,” but rather a quanmatrix element ofS; in a helicity eigenstate is gauge invari-
tum operator in Hilbert space. Because the commutation reant. What they have actually shown is that the matrix ele-
lations betweenw and the fundamental fields depend on thement is the same in gaugégA) = o andF(“A) = o, where
choice of transformation itself, it is difficult to consider the w is an A-independent gauge transformation parameter. An
most general gauge transformations in canonically quantizedutline of the proof goes as follow@sing gauge-invariant
theories. In fact, as we have alluded to before, canonicahterpolating operators for external states
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.
(O|T[I1(x)Sg(y) I (0)1[0)| £ (way,G wa=—(9i+Aa++O(g). (16)

1
- 5| @Dl A AF (A~ 0]
Equation(15) is both interesting and important—it relates
><G(cr)Jf(¢)Sg(<¢>)\]iT(¢>)eiS any matrix elementor Green’s functiopin the axial gauge
to that of a gauge-transformed operator in the covariant
gauge. For instance, using the relation one can easily recover
the gluon or quark field propagators in the light-cone gauge
. _ from those in the covariant gauge. We emphasize here that
XG(0)Ji(h)Sy(® )/ ($)€'S, (100 similar relations between any two independent gauges can be
) derived and they are entirelyonperturbative The relation-
where after the second equality one has made a gauge trangqip petween the covariant and axial gauge calculations has

1
-] eI A AFA) -0

formation @ *, and all thew dependence now appears in aiso been studied recently by Joglekar and Migth In
Sy. We write those studies, generalized BRST transformations are used to
1 connect different gauge choices. Some other references for

Sy(?  d)=S4(¢)+Sy(p,w). (11)  tranformation between different gauges can be founib]n

As an application of Eq(15), we consider the difference

of the §g matrix elements in the covariant and light-cone
gauges,

Chen and Wang showed thaB,(¢#,w) has a zero matrix
element in a helicity state and so

(O|TL3;(X)Sy(¥)IF(0)1|0) £ (.

(FISgliY a=(FISgliM L= (F[Se(“A) = S(A)[D)]L, (17)
= (0| T[3,(X)Sy(y) I} (0) 110} ay - (12

As we have demonstrated above, Etp) is not sufficient to which can be calculated completely in the covariant gauge.
guarantee that that matrix element remains invariant undépiven @ in Eq. (16), one cannot show, perturbatively or
an arbitrary new gauge conditi(fé(A)=5 Indeed. under nonperturbatively, that the right-hand side vanishes when the

X ) external states have definite helicity. In fact the above equa-
A-dependent gauge transformations, the proof in Rdfno . b d to directly check th | lculati
longer applies. tion can be used to directly check the one-loop calculation

. presented in Refl1]. Consider an “on-shell” quark in the
As an example ofA-dependent gauge transformation, we L .
: : . : state of momentunp# and helicity 1/2. We notice that the
compare calculations in the covariant gauge and light-coné , : . )
gy . quark fields are not gauge invariant. However, the difference
gauge A" =0). The vacuum matrix element of a general

N ; . between the original and the gauge-transformed quark fields
operatorO (which can be a time-ordered product of opera-pas no perturbative quark pole; therefore, ELy) still ap-
tors at several different spacetime pojnis the covariant plies. At one-loop order we find

gauge can be written as
) 1 1 1 as  [Q?
<o|o|o>|L=Nf[D¢][DU]AF(A)5(a.A—0)0(¢) P+ 5| 9Sg(A)|p+5)=Cr5_In Pl (18

Xex;{—ij d*xa(x)%/2\ |exp(iS), (13 where 6S;= Sy(“A) — Sy(A), C,:=(N§—1)/(2NC) with N,

being the number of colors, ai@f andu? are the ultraviolet
where we have included the standard Gaussian weightin nd infrared cutpffs, respectively. The above result is exactly
function. The same matrix element in light-cone gadge ‘vhat we found in Ref[1]. )
=0 can be expressed as We have also found that in the one-loop calculationShe
matrix element in the covariant gauge is independent of the
. 1 N ) Feynman parametex. By studying the relations between
(0|0[0)[a= K/f [DPJAR(A)S(AT)O(P)exp(isS). matrix elements i*A,= o and 3“A,=a/\\ gauges, we
(14)  can show the\ independence directly. Notice that the differ-
ent choice in\, like the gauge transformations considered in
Using the same method used in deriving E8), we can Ref.[2], leaves the Faddeev-Popov determinant invariant.
show that the matrix element in two different gauges is re- To summarize, we demonstrated that the general gauge

lated by the following equation: independence of a physical matrix element must be checked
in the path-integral formalism through gauge-field-dependent
(0]O()|0)a=(0]O(“$)|0)], , (15  gauge transformations. Using this, we showed that the gluon

spin contribution to the nucleon spin is indeed gauge depen-
where o is a gauge transformation which brings a gaugedent. The conclusion also applies readily to other gauge-
configuration to theA™ =0 gauge. In perturbation theory dependent operators considered in H&i. We derived a
where the couplingy is small general relation between matrix elements in the covariant
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and axial gauges. Using the relation, we calculated the one- The authors wish to acknowledge the support of the U.S.
loop difference of the gluon spin contribution to the quarkNational Science Foundation under Grant No. INT9820072,
spin in the two gauges. The result confirms the explicit cal-and the U.S. Department of Energy under Grant No. DE-
culation presented in Reff1]. FG02-93ER-40762.
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