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A general hierarchy of approximations to the many-body Schrédinger equation is presented which reduces
to the time-dependent mean-field approximation in lowest order and provides systematic corrections in
subsequent orders. The theory is applied to two interacting systems described by the Lipkin model
Hamiltonian. Comparison of the results of the lowest two orders of approximation with the exact solution
demonstrates the practicality of the method and its potential for generalizing nuclear dynamics beyond the

mean field theory.
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I. INTRODUCTION

Given the complexity of the full time-dependent
nuclear many-body problem, it is desirable to
formulate a general hierarchy of successive ap-
proximations for treating nuclear dynamics.
Ideally, the lowest order theory should provide an
intuitively motivated and physically sound approxi-

-mation for a wide range of dynamical processes.
In addition, there must certainly exist a com-
pletely systematic series of corrections so that,
at least in principle, the evaluation of an observ-
able to any order is conceptually unambiguous. In
view of the appreciable progress in the micro-
scopic theory of the ground states of finite nuclei,
it is also desirable that in the special case of
stationary states, the theory make contact with
existing theories for which convergence proper-
ties with nuclear potentials have been explored.

The natural starting point for such a theory of
nuclear dynamics is the time-dependent mean-
field approximation. The intuitive appeal of the
mean-field as the obvious mechanism to govern
collective motion and the evolution of the gross
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where /) is an M-body correlation function and
®gp is a Slater determinant. Based on experience
with the energy and radial distribution function in
liquid helium and nuclear matter,” there is every
reason to expect rapid convergence in expectation
values of few-body operators in this hierarchy.
The fundamental problem, however, is the diffi-
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behavior of the nuclear wave function is evident,
and has been discussed in some detail in the liter-
ature.! The viability of the mean-field approxi-
mation is substantiated by its successful appli-
cation to light ion collisions,? heavy ion collisions,?
and fission* as well as the success of the random
phase approximation,® which is its infinitesimal
amplitude limit.

Since virtually all general methods in fermion
many-body theory reduce to the mean-field or
Hartree-Fock (HF) approximation in lowest order
or some appropriate limit, there is no unique ser-
ies of systematic corrections to the mean-field
theory. Thus, it is useful to motivate the coupled-
cluster theory by briefly explaining why it appears
preferable to alternative methods that have been
considered.

The time-dependent variational principle yields
the time-dependent Hartree-Fock (TDHF) approxi-
mation when the trial function is restricted to the
set of all Slater determinants. The most satisfac-
tory systematic hierarchy of successive variational
approximations appears to arise from the extended
Jastrow trial functions
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culty in obtaining a sufficiently accurate expression
for the energy in terms of the correlation functions
and single-particle wave functions to use in the
variational principle. In the special case of infin-
ite matter and central forces, it is already diffi-
cult to solve the time-independent Euler-Lagrange
equations in the lowest order Fermi hypernetted
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chain (FHNC) approximation.® Given the fact the
lowest order FHNC is of marginal accuracy, state
dependent nuclear potentials have never been
treated adequately, and that calculation of finite
nuclei requires inclusion of additional terms which
vanish in the FHNC infinite-matter limit, the
present variational technology is grossly inade-
quate even for formulation of a time-dependent
variational theory containing two-body correlation
functions. V

An alternative approach is the truncation of a
suitable hierarchy of coupled equations for expec-
tation values of products of n pairs of fermion
field creation and annihilation operators. Depend-
ing upon how one specifies relative time arguments
and whether time-ordered products are introduced,
the theory may be formulated in terms of n-par-
ticle density matrices or n-body Green’s functions.
In either case, using the Heisenberg equations of
motion for the field operators, the time evolution
of the expectation value of n pairs of field oper-
ators is coupled to the mean value of (z+ 1) pairs
of field operators as well as lower order terms.®
Truncation of the hierarchy at nth order may then
be effected by a physically motivated prescription
for approximating the matrix element of (n+1)
pairs of field operators in terms of nth and lower
order expressions. The TDHF approximation is
obtained in this approach by replacing the expec-
tation value of two pairs of creation and annihi-
lation operators by the product of expectation val-
ues of single pairs of creation and annihilation op-
erators. In a density-matrix hierarchy, the TDHF
equation follows immediately:

ip=[n,p], (1.2a)
where

Pas =} To) (1.2b)
~and

haB:TaB"';: Vay,8606y - (1.2¢)

In terms of Green’s functions, the same result is
obtained by combining the equation for (8/8¢)G (x,
t;9,t)|,. .+ with its adjoint equation. The Green’s
function formulation is particularly useful in mo-
tivating higher-order truncations, both because of
its close connection to diagrammatic perturbation
theory and the straightforwardness of ensuring
general conservation laws.*®

The primary disadvantage of the Green’s func-
tion or density-matrix formulation relative to the
coupled-cluster theory described subsequently is
the computational cumbersomeness of dealing with
n-body density matrices. The integral form of the
Green’s function hierarchy is clearly inconvenient

for time-dependent problems because it involves
integrations over relative times. However, even
when the differential form of the theory has been
reduced to the special case of a single time argu-
ment, one is still faced with evolving a function of
2n spatial variables, thereby even rendering treat-
ment of two-particle correlations intractable in all
but the most oversimplified applications.

The formulation which appears most suited to
the present problem is a time-dependent general-
ization of the exp(S) or coupled-cluster approxi-
mation pioneered by Coester and Kummel*! and
subsequently applied extensively to fermion sys-
tems.'? In this theory, the full many-body wave
function is written in the form

¥ =exp(S)®, (1.3)
where
< )
S=9" Stn ; (1.4)

.and S'” represents the most general n-particle,
n-hole operator defined relative to the Slater de-
terminant of occupied states &. The time-inde-
pendent or time-dependent Schriodinger equation
implies a hierarchy of nonlinear, coupled equations
for the static or time-dependent n-particle, n-hole
amplitude, which may be truncated in the same
manner as a density-matrix or Green’s-function
hierarchy. However, the n-particle amplitude may
be expressed in terms of n spatial coordinates and
n occupied state labels rather than 2z coordinates
since S may be written

Stm :<x1x2 .o .xnls(n) [ V.V, 6o o V">
XY e P ) o9t (a0 e vy, (1.5)
where
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and ¢' (x) is the field creation operator at position
x. Thus, for finite systems, the coupled-cluster

formalism provides a particularly economical de-
scription of many-body correlations.

Whereas the basic ideas underlying the coupled-
cluster hierarchy are very simple, the technical
details involved in applying even the time-indepen-
dent theory to the most general case are some-
what tedious and notationally cumbersome.*?
Therefore, in this first paper we shall defy the
usual custom of expounding general, untested for-
malism and present only the minimal time-depen-
dent formalism required to solve a specific model.
In this way, we hope to emphasize the essential
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physics of the approach and establish its viability
sufficiently to justify exposition of the general co-
ordinate-space formulation for strong, short-
ranged potentials in a subsequent work.

The basic elements of the time-dependent cou-
pled-cluster hierarchy and a particular truncation
procedure are briefly described in Sec. II. The
model problem, comprised of two interacting sys-
tems described by the Lipkin Hamiltonian, is pre-
sented in Sec. III and solved exactly.

The first two orders of approximation for the
static and time-dependent coupled-cluster theory
are derived for the model problem in Secs. IV and
V, respectively. These approximations are com-
pared with exact solutions in Sec. VI and the gen-
eral conclusions arising from this work are pre-
sented in Sec. VIL

II. THE TIME-DEPENDENT COUPLED-CLUSTER
APPROXIMATION

Since the coupled-cluster approximation for
stationary states has recently been described in
detail,'? we shall only review a few basic features
of the theory as a foundation for the time-depen-
dent generalization.

Basic elements of time-independent theory

For stationary states, equations for the n-par-
ticle, n-hole amplitudes appearing in Eqgs. (13) and
(14) are obtained by projecting the Schridinger eq-
uation

¢ SHeS | @) =E|®) 2.1)

onto a complete set of m-particle, m-hole states.
Denoting unoccupied states by p; and occupied
states by v;, the following hierarchy of equations
arises:

(®|eSHe|@)=E, (2.2a)
(®|ala, e He®| @) =0, (2.2b)
(@|a},+=+a}, a,,  ~a, eHeS|®)=0.  (2.2¢)
From the identity
e‘”ée’:5+[5,x]+1—[[5,x],x]+u.’ (2.3)

2!
it is evident that if H contains only one and two-
body operators, repeated commutation with H can
remove at most two pairs of creation and annihi-
lation operators from the particle-hole operators
S, Thus, since ¢”*He®|®) must connect to |®) in
Eq. (2.2a) and at most two pairs of particle-hole
operators have been contracted, the resulting eq-
uation can involve only S, and S,. In fact, for the
special case of Eq. (2.2a), the exact equation

(ti)[H(S(”;%S(”S“)+S(2))|<I>> -E (2.4)

is trivially obtained by noting (& IS =0 and expand-
ing €. Similarly, Eq. (2.2b) involves amplitudes
only through S'® and in general Eq. (2.2¢) includes
amplitudes through $‘**?, The explicit form of the
general equation is somewhat complicated, but
follows straightforwardly from substitution of Eq.
(2.3), which terminates after 5 terms when O =H,
into Eq. (2.2c).

Since the resulting hierarchy of equations for the
S{m’s is equivalent to the original Schrddinger eq-
uation, physical approximations are introduced by
the method of truncation. The simplest truncation
prescription, which we shall use in this present
work, is to specify that S =0 for all #>m. This
has the effect of treating particle-hole correlations
of up to m particles exactly while retaining only
those correlations for more than m particles which
arise from products of lower order amplitudes.

In terms of familiar perturbation theory, trun-
cation at m =2 sums particle-particle and hole-
hole ladders as well as RPA ring diagrams, and
this approximation has been shown to be accurate
for a single Lipkin model and for systems with
long-range forces.’? For potentials which are in-
finitely repulsive at short distances, it is incon-
sistent to define the higher S$‘™’s to be zero and
instead one must impose a prescription which
makes the wave function vanish when »n particles
are within a hard core radius. For finite, but
strongly repulsive cores, a similar condition is
physically reasonable, and this more complicated
truncation procedure will be addressed in a subse-
quent paper.

Retaining only m nonzero amplitudes yields m
equations of the form (2.2¢) in m unknowns which
completely specify the S‘"”’s, With these ampli-
tudes, Eq. (2.2a) yields an mth order approxi-
mation to the energy which is distinct from the
expectation value of H with the wave function
exp(S™ + 8 y o001 5™)|p) since -S#S". Trun-
cation at m =1 yields the HF approximation, which
is most obvious by noting that the most general
determinant may be written exp(S‘’)|$) by Thou-
less’s theorem.'® In general, one always has the’
freedom to specify S‘*?=0 and to solve an equation
for the single-particle wave functions comprising
the determinant |<I>>.

Time-dependent theory

The time-dependent coupled-cluster theory is
obtained analogously by projecting the time-depen-
dent Schrodinger equation,

-]
e HeS| @) =jeS % ef| @), (2.5)

onto n-particle, n-hole states,



(@] eHe®| ) = i(® | e5(3/01)e’| @),
(@|aba, e He®| @) = i@ |al a, e5(3/01)e®| @)

(2.6a)

(2.6b)
(@|a} *++a} a, ***a, e He|)
=K&|d} ++val a, *+a, e 5(8/01)ef| ).
(2.6¢)
The general structure of these equations is ob-
served by noting that

9 8 . .
e —eS= — +S+—21—I[S,S]+

1 .
9t at 3—!“:8,8],5]-}-"’

(2.7

and writing S in an arbitary time-dependent ba-
sis,

Sn(t): Z(pluuopnlsn(t)hjlo-.y')

fivi
x af,l(t) .o °a:"(t)a,1(t) serq, (). (2.8)

Since

a&=;(ﬂ] ayal, (2.9)

each nonvanishing term in S ™ either contains an
at or a, term, for which [$‘™,S]=0 or contains
at most one af or a, term, in whxch case the com-
mutator [S"‘ S"] contams only a and g, operators.
Hence, in any case, the mu1t1ple commutator
([S,S], S] must vanish and

(® Ialfq. . .alm Byttt a, e-S(a/at)eS|¢>
=(@|ay * a) a, **+a, (8/0t+S+3[S,S])|®).
(2.10)

Although Eq. (2.10) yields many terms, the only
nonvanishing term involving the time derivative

of an ™ amplitude, as opposed to the derivative
of a basis function (B8|&), is (d/dt)

X (p,**°py|S™@#)|V,*** V). Thus, Eq. (2.8b) spec-
ifies (d/dtX p|S‘V(¥)|v) in terms of known functions
at time ¢, providing a first-order differential eq-
uation in time for the one-particle, one-hole am-
plitudes. In general, Eq. (2.6c) provides a first-
order equation for the m-particle, m-hole ampli-
tude, so that given initial conditions at time £=0
the amplitudes may be evolved in time by numer-
ically integrating a system of first-order equa-
tions. The first equation, Eq. (2.6a) clearly plays
no role in the time evolution since no time deriv-
atives of particle-hole amplitudes survive in the
right-hand side. It could be satisfied identically
by introducing an appropriate time-dependent
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phase in the definition of &, but since such an
overall phase is unobservable, Eq. (2.6a) is de-
void of physical content. Formally, it is satisfied
identically when the order of truncation, m, equals
the number of particles.

Truncation of the time-dependent hierarchy pro-
ceeds precisely as in the time-independent theory.
In lowest order, setting all S‘™’s equal to zero for
n= 2 yields the TDHF approximation, which is
again most readily apparent by choosing the basis
in which S is identically zero. In this case, Eq.
(2.6b) becomes

(®|aa,(H -19/0%)| @) =0, (2.11)
which implies the TDHF equation
(p|id/ot|v)=(p|n|v), (2.12)

with # as defined in Eq. (1.2¢). Making the usual
arbitrary choice for hole-hole matrix elements
yield the more familiar form

igr |vy=h|v). (2.13)
Truncation at n =2 yields two closed coupled equa-
tions for S and S® in terms of S'*) and S*2
which describes the time evolution of two-body
correlations and in mth order one obtains m equa-
tions for S through S ™.,

A particularly attractive feature of the theory is
the fact that solutions to the truncated time-inde-
pendent equations at any order m are stationary
solutions to the truncated time-dependent equations
truncated at the same order by virtue of the fact
that the left-hand terms of Eqgs. (2.2) are identical
to those of Eqs. (2.6). Thus, appropriate initial
conditions for time-dependent problems can be ob-
tained by turning on interactions or arranging col-
lisions between systems which are in initial eigen-
states calculated with precisely the same approxi-
mation. A further advantage is the fact that the
static equations may actually be solved by evolving
an initial guess for a wave function in complex
time or by beginning with a solution to a one-body
Hamiltonian, H,=T +U, and adiabatically switch-
ing on the interaction H’ =V - U in the time-depen-
dent theory.

Approximation of mean values and wave functions

Finally, it is important to emphasize at the out-
set the essential difference between calculating
expectation values of few-body operators and over-
laps between N-body wave functions. Just as in
perturbation theory, to which the coupled-cluster
theory is intimately related,'? low order trun-
cations can yield excellent approximations to ex-
pectation values of few-body operators while pro-
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ducing arbitrarily poor approximations to the full
N-particle wave function. Physically the mean
value of a finite-range two-body operator, for ex-
ample, depends on the local two-body correlations
of the system. Errors in describing the behavior
of other particles far away from a correctly cor-
related pair are irrelevant and just contribute an
arbitrary normalization factor which cancels out
of the numerator and denominator of (0)
=(¥r|O | ¥) /(¥ |¥p), where ¥r is a truncated ap-
proximation to ¥. The overlap with some other
many-body wave function (& l\l'T), however, may
be arbitrarily inaccurate. An extreme example is
the lowest order of truncation, in which the mean-
field approximation represents the full wave func-
tion as a single determinant. In the familiar hypo-
thetical case in which the probability of exciting
any particle out of its normally occupied state is
some small value €, the probability that all N-par-
ticles are simultaneously in their normally occu-
pied states is evidently (1 — €)¥~¢¥, Thus, the
determinental wave function will represent expec-
tation values of one-body operators very well,
with errors only of order €, whereas the overlap
with the true wave function is exponentially small.
The distinction between mean values and over-
laps of N-body wave function is particularly cruc-
ial in addressing time-dependent problems. Slop-
piness in making the corresponding distinction for
stationary states is seldom disastrous because
virtually all experimental measurements deal with
expectation values of one- or two-body operators.
Thus, binding energies, removal energies and
charge densities don’t really probe the full wave
function, but rather just the expectation value of
the Hamiltonian and one-body density operator.
Similarly, despite loose talk about testing RPA
wave functions, in practice only transition den-
sities induced by one-body operators can be com-
pared with experiment. Time-dependent appli-
cations, howeve'r, are far more dangerous since
experimentalists insist on confronting theorists
with S-matrix elements, which are overlaps of N-
body wave functions evolved through some interac-
tion with other appropriate N-particle wave func-
tions describing final asymptotic states. From the
previous discussion, it is clear that neither per-
turbation theory nor a low order coupled-cluster
approximation has any hope of accurately describ-
ing S-matrix elements. Thus, the present theory
must be applied only to the calculation of mean
values of appropriate few-body operators. In heavy
ion collisions, such operators might include the
fragment mean proton number, neutron number,
and c.m. momentum. Because of the crucial im-
portance of distinguishing between mean values of
few-body operators and S-matrix elements and our

view that serious errors exist in the recent liter-

ature in this connection, we shall explicitly dem-

onstrate this distinction in the case of the solvable
model presented below.

III. INTERACTING LIPKIN SYSTEMS

The Lipkin model** consists of a system of N
identical but distinguishable fermions, each ferm-
ion having only two possible states, which are sep-
arated by an energy €. The second quantized Ham-
iltonian for the system is

€ ~

y_ S T v Tt

HY- 3 pz:aa,,,a”+ 3 2’: Ao Ayt o Optoolpeg» (3.1)
[ [

where p labels the N particles and o0 =+1 denotes
the upper state and 0= -1 denotes the lower state.
Operators with different particle labels commute
with each other. The interaction term scatters a
pair of particles from the same level to the other
level. A single-particle state may be represented
as a Pauli spinor, and the noninteracting ground
state with ¥V =0 is a direct product of spinors. In-
troducing the quasispin operatorsdJ,, J,, and J_

1 h g
Jz= 2 Z 08p5 Ay
po

J=2 db,a,, (3.2)
»

J.=J",

the Hamiltonian can be rewritten as
H¥=¢d,+3V(J 2+Jd2). (3.3)

The operators J,, J,, and J_ satisfy the usual ang-
ular momentum algebra, and the operator J 2=J,?
+3(J,J.+J_J,) commutes with each angular mo-
mentum component and therefore with the Hamil-
tonian. The Hamiltonian also commutes with the
parity operator # and the number operator for the
p’th fermion #,, where

o _ peind ~ i SN
T=e""5 W,=ay @y +a,a, . (3.4)

The eigenstates of H may thus be labeled by the
eigenvalues of 7 and J. Since the interaction does
not connect states of different J, the ground state
may be calculated in the J =N/2 subspace, which
contains the noninteracting ground state. Excita-
tions of single particle-hole pairs are forbidden,
and hence the Hartree Fock equations are trivially
satisfied in the noninteracting ground state basis.

The interacting eigenstates of the Hamiltonian in
the J =N/2 subspace may be expanded in the natural
basis,

[Jay =D w,olmy)|Imy). (3.5)



The expansion coefficients w;,(m ;) and the eigen-
values corresponding to the states |Ja) are deter-
mined from the solution of

det|[(Ja’ |H|JQ) - €, 844.]=0. (3.6)

To obtain a solvable model problem which bears
some analogy to a nuclear collision, we consider
the extreme caricature of two interacting Lipkin
systems. Initially, like two distantly approaching
nuclei; particles in each isolated system interact
only among themselves, with each system evolving
in its respective ground state. At time ¢=0 each
particle is allowed to interact with any particle in
either system, like nucleons within two nuclei
which are passing through each other. Finally,
after some interaction time 7, the fragments are
assumed to have separated by more than the range
of interaction and again particles are restricted to
interact only with other particles in the same sys-
tem. Although questions of c.m. motion and par-
ticle transfer are completely eliminated from the
model, one does address the essential problem of
mutual excitation of two interacting systems which
have an exceeding large number of accessible
states. ’

Distinguishing operators for particles in the two
systems by subscripts and assuming the systems
contain N, and N, particles, respectively, the Ham-
iltonian for the two interacting systems is

H(t):HN1+HN2+[®(t)—O(t—T)]Hm'r’ (3.7
where
HINTzV(Jl‘JzﬁJl_Jz_). (3.8)

For times prior to =0, the two systems are in
their respective interacting ground states,

I‘ll) = I J1a0> [Jzﬁo>
- :Zc,,(m B (3.9)

By orthogonality, we find
Cry(0) =T, 00 d, By [J7) .

The quantities (J,@J, 8,|J?) may be expressed in
terms of the eigenvectors and the Clebsch- Gordan
coefficients.

(3.10)

(JlaonBolJ'V): Z wilao(m.ll)w.rzao(m.rz)

my T,

X w;,(m;1+m,2)

X I Jmy my, lJm,la-m,z) .
(3.11)

During the interaction interval 0<¢<7, the Ham-
iltonian describes a “compound nucleus” with
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known eigenstates. Hence, application of the time
evolution operator to the initial state yields
[¥ (@) = D Cry(O)eie7t |gy) (3.12)
Ty
It should be noted that the simple form above would
have been impossible to achieve if € or ¥V had been
chosen to be different for the two systems.

We now consider transition amplitudes to ex-
cited states of the single systems at the end of the
interaction period 7. The amplitude C,4(7) for
finding the final state with system 1 in state @ and
system 2 in state 8 is clearly the analog of an S-
matrix element for this simple model and is given
by .

[% (7)) = 2,2 Cos(M[J,0) |7, 8. (3;13)

Matching Eq. (3.13) at £=7 to Eq. (3.12) and pro-
jecting, we obtain

Cap(M= 2 Cor(Oe 7' 00, BlIn) . (3.14)

This expression for the transition amplitudes
yields all the results to be compared subsequently
with appropriate solutions. Since evaluation of
C 4s(7) requires knowledge of only the single sys-
tem eigenvectors and the relevant Clebsch-Gordan
coefficients, itisfeasible to calculate solutions
for large numbers of particles.

IV. SOLUTION IN THE TDHF APPROXIMATION

The lowest order truncation of the coupled-clus-
ter equations, in the representation in which S
=0, yields the static HF equation

(¢|ata,H|p)y=0 (4.1)
and the TDHF equation
(¢ |aba,H(t)-1id/3t)|$)=0. (4.2)

A convenient parametrization for ¢ is obtained by
introducing the general unitary transformation®®

129 I cos(ia)  —isin(ia)e® a}‘,*

=i

128 -isin(3a)e t

cos(za) ay.

- (4.3)
and defining

loy=TT . |0. 4.4)
b

The noninteracting ground state, obtained by
choosing @ =% =0 is a trivial solution to Eqs. (4.1)
and (4.2), as may be noted by observing that H and
i8/8¢t do not connect the noninteracting ground
state to any one-particle, one-hole states.
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A general solution is obtained by defining the op-
erators I,, 1,, and I_ in analogy to the J operators,

_1 t
Is =2 pzoypuypa ’
g

The I operators preserve the commutation rela-
tions for angular momentum operators. As before,
operators defined for the two separate systems

are distinguished by an integer subscript and op-
erators not belonging to the same system commute.
The transformation between the two sets of oper-
ators is

4.6)

L=3% %, (4.5)
B
=0,
J
I, | cosa  —iisinae® Lisinae®
J, —isina e® 1(1+cosa) 3(1 - cosa)e?®if| 1,
J. isina e”®  L(1-cosa)e2®  L(1+cosa)

and for ¢ -0 each quasispin is simply rotated
through the same angle a about the x axis. The
Hamiltonian H(¢) can now be expressed in terms
of the I operators. The simplicity of the original
representation is lost, however, and there are now
9 nonzero coefficients for the 9 independent linear
and bilinear combinations of I, I,, and I.. We note
that the Hamiltonian will contain nondiagonal one-
body terms in this representation so that Eq. (4.4)
will not in general satisfy the TDHF equation.

The wave function for the two systems is given by

|@)= o)), (4.7)

where |¢,) and |¢,) are defined by Eq. (4.4) for
each system. Although the model may consist of
arbitrarily many particles, by symmetry in the
particle labels, each system is completely spec-
ified by the two parameters o, and ¥,.

The static HF solution for a single system is ob-
tained by noting that with |¢) defined in Eq. (4.4),
the only projections onto particle-hole states which
are not trivially zero in Eq. (4.1) are

(¢ |7, H|¢)=0. (4.8)

By sbymmetry in the particle labels, these N equa-
tions may be replaced by the single equation ob-
tained by summing over p

(o|LH|¢)=0. (4.9)

Substitution of J,, J,, and J_ from Eq. (4.6) and

the definition of H from Eq. (3.3) in Eq. (4.9) yields

the result

i4N sina e ®[e - (N = 1)V (i sin2 + cos2y cosa)] = 0
(4.10)

—

Vi | o i, sin®Gza,) -G, -~

);;i- -3(ic ;+9  sina,)e

b si i
¥y sina,)e®s

-, sin*Ga;)

The root @ =0 reproduces the noninteracting
ground state as the HF solution. This weak-cou-
pling solution exists for arbitrarily small values
of V and has energy

(¢ |H|p)=-iN€. (4.11)
The second root
€
$=0, cosaz—-——V(N_l) s (4.12)

exists only for V>¢€/(N —1) and corresponds to the
strong coupling solution. The HF energy for this
root is

€N 14
<¢IHI¢>=——(W nv7e t & -V ¢ )
(4.13)

The transition between the weak and strong cou-
pling solutions occurs at V,=€/(N — 1) with both
E(V) and (dE/dV) continuous at V.

The time evolution of the parameters a,, @,,
and ¥, ¥, is obtained from the TDHF equation,
Eq. (4.2), with H(¢) given in Eq. (3.7). As in Egs.
(4.8) and (4.9), it is useful to write the nonzero
ala, terms as 7]_7,, and sum over the particles in
the ith system, yielding the two equations.

(@1, (HE)-38/8t)|®)=0. (4.14)

The transformation Eq. (4.3) may be differentiated
with respect to time and combined with the cor-
responding inverse transformation and yields the
following equation of motion for ¥} :

1
Yoie | (4.15)
124

i=
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The time derivative of |¢,) is then given by

8 .
iﬁI‘f’i}‘ijZVT-"'Y}_'"“/'N,_|0>

=4 (0y— i sina e i, | o)
+sin*(3a;)| o))

and contains one component proportional to |¢,)

and a second component of one-particle, one-hole

(4.18)

J

(@ |1,.H(t)|®) = —4iN [ € sina,e” ™1 + VN, sina,(sin® (3o, )e” #1 %2 — cos? § ) )e™2)

+V(N, - 1) sina, (cos® § a,)e?1 — sin*(1 @

excitations. Hence

(®|1,i9/0t|)

(4.17)
The matrix element (& |1, H(t)|®) is evaluated

by substituting the Hamiltonian H(t) of Eq. (3.7)

after using the transformation Eq. (4.6) to express

it in terms of the I operators. For the interval 0
<t<T, straightforward algebra yields

=$N,(a; - ip,;sina,)e ¥i.

(4.18)
) -lsél)]

Equatmg the real and imaginary parts of Eq. (4.14) to zero yields the equations of motion for the. para-

meters a,, ¥,

N, cosp, =N, sine, siny, 0 0 a, Re® |I,_H|®)

—N, cosp, —N, sina, cosy, 0 0 zﬁl } Im(® |1, H|®) 4.19)
0 0 N,cosy, -N,sina,sind, || a, Re(® |1, H|®)
0 0 -N,cosy, -N,sina,cosd, || , Im(® |1, H|®)

The off-diagonal blocks are zero in the above eq-
uation, a feature which does not survive in ap-
proximations in higher order than the mean-field

theory. The two systems are coupled only through
J

a,)_ 2 [ cosp, —sinp, ] [Re(® |1, H(t)|®)
b | No| - Sy o (e |1, B |0)

sina; sina;

Since the noninteracting ground state trivially
satisfies the TDHF equations at all times, the only
interesting TDHF solution arises from the strong
coupling initial condition glven in Eq. (4.12). Start-
ing with the values

¥,(0)=0, a,(O):cos“[ 4.21)

€
VIN,-1) ]
and discretizing the time variable, the set of equa-
tions (4.20) may be solved numerically, thus de-
termining the TDHF approximation to the combined
state vector as a function of time. Although our
TDHF equations are equivalent to those invest-
igated by Krieger,'® the initial conditions (4.21)
and thus the physical interpretation of our results
differ significantly.

V. SOLUTION IN THE TWO-BODY CLUSTER
APPROXIMATION

The form of the most general wave function hav-
ing S‘”=0 for all >2 is especially simple for the

the appearance of both a’s and ¥’s in (® |I, H(¢)|®).
Inversion of the above matrix yields the final
form of the TDHF equations,

(4.20)

r
Lipkin systems considered in this work. One-par-
ticle, one-hole amplitudes may be omitted by us-
ing |$) and |®) of the form of Eqs. (4.4) and (4.7)
and all the physical content of S resides in the
parameters @, and $;. For a single system, by
Symmetry in the particle labels, S‘® is charac-
terized by a single parameter §®,

§@ =43 Xpp’|S? 067}, Y3, Vo Vo,
=182, - (5.1)
and for two interacting systems, the general form
of S® is

S®t) =38 (e), P+ £8P ()1,

+82 (W), 1, . (5.2)

+

Summing over particle labels as in Egs. (4.8) and
(4.4) reduces the general static and time dependent
equations (2.2) and (2.6) to the following simple
form:
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(¢p|HeS® |9y =E, (5.32)

(p|LeSPHeS |9y =0, (5.3b)
(p|12e5PHeS? | ¢) =0, (5.3¢)
and

(@ |1, e 5P @E - 38/01)e5 VD @) = 0, (5.42)
@125 PO W ~ 18/01)e5 O @) =0, (5.4b)
(@ 1,1, e S P OH-18/0t)eSP® [8)=0.  (5.4c)

The static equations (5.3) are solved by angular
momentum algebra after expressing H in terms of
the I operators, with the results :

-1 X -8.) -
E=-%¢€N cosa [cosa (1-8,) xcosa(l+$2)+2] ,
LN -1)8 (5.5a)
T %2 5.5b
cosa [1_ W=38,]x ’ ( )
(N? = TN +9)(1+ cos®a)x(8,)?
+[6x(N = 2)(1 = cos*a) +4(N - 1)cosa]s,
+(1+cos’a)x=0, (5.5¢)
where x is a dimensionless parameter
X = V(N€-— 1) . (5.6)

The last two equations above combine to give a
single quartic equation in 8, The appropriate

-s(2). i s(2) _
<<I> I,e 1 51 e lfI>> <tI>

Using Eq. (5.7), this simplifies to

<<1>

'

I'a
Llat

0
+ %8§§’<<1> III_ <11¢ o7 Lot oy

_s(@), 9 g2
eSS —ef

I 5

<I>> =1N, (&, i}, sina,)e" 1

11,,124,)
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root is real, yields a real value for @, and cor-
responds to an energy which is continuously con-
nected to the HF energy. In the approximation 8
=0, Eq. (5.5a) reduces to the corresponding weak and
strong coupling HF results. Note that when includ-
ing 8®, the transition between weak and strong
coupling solutions no‘longer occurs at x=1.¢

The time-dependent equations, Eq. (5.4), involve
a total of ten independent real functions of time:
the four parameters @, @, ¥, and the real and im-
aginary parts of the complex amplitudes 8{», 8¢
and 8{2), The initial values of these quantities are
fixed by requiring @,(0) and 8¢(0) to satisfy the
static equations, and requiring the other quantities
to be zero.

Evaluation of the time derivatives in Eqgs. (5.4)
proceeds as in Sec. II using Eq. (2.7). The time
derivative of I, is

9 .
7 1, =) (1= cosa )l
(5.7

+ (G0, -9 sina e, ,

which is established by differentiating I; and using
the operator equations of motion Eq. (4.15).

To illustrate the procedure for calculating the
matrix elements of the time derivative operator,
we shall evaluate Eq. (5.4a) and simply quote the
other results,

. ‘] 9 :
<1>> . gs;2><¢> II" (1h s ht o Ihlh) ‘q>>

«1>>. (5.8)

+1IN(N, - 1)8® (&, + Y, sina,)e™ + LN,N,8 @ (&, + iy , sina,)e 2. (5.9)

By equating the real and imaginary parts of Eq.
(5.9) to the real and imaginary parts of
@|1_e* 'Hes™ |$) and repeating with the labels
1 and 2 interchanged, we arrive at a 4 X4 matrix
equation similar in form to (4.19) but with nonzero
off-diagonal blocks. The elements of the matrix
may be easily worked out, and will not be displayed
here.

By similar manipulations, the time derivative
parts of Eqs. (5.4b) and (5.4c) are, respectively,

_s(2). 9 s(2)
(qJ (Il_ze 1 '5[ e l@)
2] .
=N,(N, - 1)<i 3{3{2’ - 283 (1 — cosa, )Y 1) ,

(5.10a)

r

9
@I, I, 55— 5P|

ot )

9 .
=N N, {z 1 82 _8{I[(1 - cosa,)p,

+(1- cosaz)zﬁz]} .
(5.10b)

On equating these results to (& [Il_ze's(z’Hes(z) |®)
and (& |I,_I, eS®HeS® |®), respectively, we ar-
rive at the equations of motion for 8{2(¢), 8{2(z),
and S{Z’(t). As shown in general in Sec. II, these
differential equations are first order in time for
8{* and 82 and are thus in a form directly suitable
for numerical evolution.
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Finally, we turn to the problem of evaluating the
matrix elements of the collision Hamiltonian in
Eqgs. (5.4). Although one can use the straightfor-
ward means employed previously in the TDHF
case, the amount of algebra is prohibitive, given
the relatively complicated form of ‘the Hamiltonian
when expressed in I operators. Hence all oper-
ators have been represented by matrices of finite
dimension, and the desired matrix elements ob-
tained numerically by matrix multiplication. As
an example, consider a typical matrix element
which we wish to evaluate,

@|1,2e 5 B M @)
=(@ |I_H{H () +[H¢),S?]

+ o7 [(H@), 59,59+ - }|a).
(5.11)

Since H(¢) is bilinear in the operators Iy, I, I,
and S® is bilinear in I;,, and since the number of
raising and lowering operators must occur in equal
numbers for each 7 in order for the matrix ele-
ment to be nonzero, the infinite series in Eq.
(5.11) terminates in finite order. In this example,
the highest power of I;, or I, which can occur is
4.

To represent the operators I, I;, I, by.finite
dimensional matrices, it is sufficient to impose
the following conditions:

(a) All matrices with i=1 commute with all ma-
trices with =2,

(b) Forn<4 andi=1,2,

TIME-DEPENDENT COUPLED-CLUSTER APPROXIMATION...
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1|60 = (=N, (5.12a)
I7]e)=[n!W;-n+1)(N,=n+2)- - N2

x 'Ii:%Nb ml,:"%Nﬁn) . (5.12p)

A set of matrices which fulfill these conditions is
explicitly given in Appendix A.

VI. NUMERICAL RESULTS FOR INTERACTING LIPKIN
SYSTEMS

In order to quantitatively assess the validity of
the lowest two orders of approximation in the
coupled-cluster hierarchy, we have compared the
approximations of Secs. IV and V with the exact
solution of Sec. III. Both of the interacting systems
were chosen to contain 14 particles, since more
than 28 particles in the combined system renders
exact solution cumbersome and costly. The level
spacing € was chosen to be 1 MeV and thus crudely
representative of nuclear energy scales. Inter-
action times up to 1.2 X 1072 sec were considered,
representing the time required for projectiles
with energies of 10-40 MeV per particle to inter-
penetrate 5-10 fm, respectively. Wide variations
in N, V, and € make little difference in the quali-
tative features of the solutions, so the limited
results reported here are in fact representative
of the general applicability of the coupled-cluster
theory for this model.

Static solutions

Figure 1 shows the exact energy, E, for a single
14-particle system and the deviation between

0.3

AE (MeV)
o
.

0.1

E(Mev)

I’ / \\
ol | | T —
Q.1 0.2 0.3 0.4
V (MeV)

FIG. 1. The exact ground state energy E (solid line), deviation from E of the HF energy (short dashes), and deviation
. from E of the coupled-cluster energy including S® (long dashes). Note that E is referred to the scale at the right and the

energy deviations use the scale at the left,
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KJIz> LI -<KIp?
& HF -1, 51 3.34
o Exp(S2) -1.54 4.92
— Exact -1.58 5.00
0.3 —
T=0
Ay
0.2 s
o —
o B
Pwm 6 N
o
ol o
N b
- o )
2 A
o [+]
hod ° 4 O‘—oﬂ
T T T T T T T T T T
-7 -5 -3 -1 | 3 5 7

FIG. 2. Probability P =[(1N, M,|y)[* of projecting a
component with M, from the exact, HF, and second-
order coupled cluster stationary-state wave functions.

truncated approximations to (#) and E as a func-
tion of interaction strength V. Since we use (H)
instead of the approximate energy in Eq. (5.5a),
it is clear by the variational principle that the
deviation is positive definite, The error in the HF
approximation near the transition point, V, =€/
(N =1)~0.077 denoted by the arrow in Fig. 1,
is at most 5%, and in the strong coupling limit
the deviation increases with V. Including 8, sig-
nificantly decreases the deviation, not only in
the weak coupling limit explored by Liilhrmann, '’
but also even more dramatically in the strong coup-
ling limit. For the time-dependent calculations,
we have selected NV=5 MeV, so that the potential
strength V=0.36 is well into the strong coupling
region and yields a nontrivial TDHF solution.
Other observables besides the energy for the static
solutions with N=14 and NV =5 are presented in
Fig. 2 and as the T =0 results in the time-depen-
dent solutions.

Figure 2 displays the probability of observing
the ground state in each state of the natural basis
of Eq. (3.5)

Py, =lom, 0.

Since H commutes with J2, the only nonzero am-
plitudes correspond to J =4N and this label is sup-
pressed for notational convenience. Because V
only excites pairs of particles between levels, -

(6.1)

adiabatically evolving ¥ from the noninteracting
ground state |4, —1) can only yield amplitudes
with odd values of M,. Thus, the exact solution
yields the histogram of Fig. 2 with all even pro-
babilities exactly zero and a broad, Gaussian-type
distribution for the odd probabilities. The most
essential features of the distribution are charac-
terized by the mean, (J,) and width (J,?) - (J,)*
tabulated in the figure.

The probabilities ¢/M, |exp(2s* S, |®) for trun-
cated wave functions of any order k<N differ
fundamentally from the exact probabilities. Since
only an N-particle correlation can enforce the
condition that even numbers of particles occupy
each level, there is no way of attaining the drama-
tic even-odd alternation characterizing the exact
solution. One observes this complete lack of
even-odd alternation explicitly in the numerical
results for the lowest two orders denoted by tri-
angles and circles in Fig. 2.

Figure 2 thus succinctly emphasizes the fund-
amental distinction between approximating the
wave function and expectation values of few-body
operators. In no sense do successive truncated
approximations converge to the exact probabilities.
In contrast, however, the mean values of (/,) and
%) = (J,)* shown in the top of the figure are ap-
proximated extremely well even in very low orders.

Time-dependent solutions

The projection of the wave function of one 14
particle fragment onto the natural basis after an
interaction time of 4 X102 sec is shown in Fig. 3.
As in Fig. 2, the exact solution has pronounced
odd-even staggering although nonvanishing even
M, states are now possible through excitation
of pairs comprised of one particle from each sys-
tem. As in Fig. 2, although there is no conver-
gence for the individual probabilities, good ap-
proximations are obtained for mean values of J,
and (J, - (J,))%. To the degree to which /M, |¥(?))
is a meaningful analog of an S-matrix element
in a realistic scattering problem, this example
reinforces our emphasis on approximating mean
values rather than S-matrix elements.

A quantitative comparison between exact and
approximate mean values of particularly relevant
operators as a function of interaction time is
presented in Fig. 4. The excitation energy, AE,
is defined as the mean value 3{H™ + H¥2) for the
combined system at time 7 minus the same quantity
evaluated at time 7 =0 (which is just the stationary
state energy for a single system in the same ap-
proximation,) Roughly half of the true excitation
energy is described in the mean-field approximation
and for the time scales under consideration the
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B 2> KIF>-<Ip?
o TDHF -1.27 3.38
0.3 o Exp(Sz) -1.30 4.6l
Exact -1.44 5.00
ﬁ —T T=4x10"%sec
’ s
0.2 a
o o
A
Pw L o °
O.l+— b3
o
1 L
o
- o 2
a o
° a
o 8 23 Qo
T T T T T T T T T T T T ] T 1
-7 -5 -3 -1 | 3 5 7
Mg :

FIG. 3. Same as Fig. 2 for time dependent wave
functions at time T =4x1072% s,

S®) truncation yields a reasonably accurate ap-
proximation to the full excitation energy. Sim-
ilarly for (J,%), defined as 3(J,*+J,,?) for the
combined system, when the suppressed zero of
the graph is considered, the mean-field approxi-
mation yields a result of the correct order of
magnitude and the inclusion of two-body clusters
produces quantitative agreement with the exact
solution. In both cases, the operators under con-
sideration involved two-body components so sig-
nificant contributions from S®’ should be expected
and, in fact, do arise. Whereas S’ contributes
linearly to both (H) and (J,2), since J, is diagonal
in ala,, (J,?) only depends quadratically on S‘®’,
which explains why (/%) in Fig. 3 is not as accurate
as ¢/,?) in Fig. 4 in the e @ approximation.

One-body operators should be much more accur-
ately reproduced in the mean-field approximation
than the operators discussed above containing two-
body components. Indeed, the tabulated values
for (J,) in Figs. 2 and 3 bear out this expectation.
Unfortunately, since ¢/,)=0, J, does not provide
an additional test.

One important question arising in the coupled-
cluster hierarchy is whether inaccuracy in com-

AE (MeV)

8 - —
A T -
~ e e 1
ST - -
v e

e
6 — ~ —

7
~
5 = -
4 | | | | ]
2 4 [S) 8 10
T (10722 sec)

FIG. 4. Excitation energy A E and mean value of J,
as a function of interaction time for exact, TDHF, sad
second-order coupled-cluster wave functions.

puting mean values occurs primarily from errors
in the S amplitudes arising from the fact that
they are obtained from solving a truncated Schré-
dinger equation, or whether the inaccuracy in
mean values should be attributed to the explicit
contribution of higher-order amplitudes to the
expectation value., Although we cannot provide

a general answer, the results in Tables I and II
indicate that in the present model, the dominant
error arises from explicit omission of higher
correlation amplitudes in mean values. In the
basis |®) defined in Eq. (4.7) with the param-
eters a(t) and ¥(¢) in v}, satisfying Eq. (5.4a), the
n=2 coupled cluster wave function for a symme-
tric system has the form

| ¥ @) =exp[382(1, *+1, ) + 8L, I, ]| ®).  (6.2)

In the same basis, the exact wave function, Eq.
(3.12), may be written

TABLE I. Wave function amplitudes defined in Eqs. (6.2) and (6.3).

T
10722 g) c gw 8@ gl(%> 8@
0 0.489 0.0015 0.0156 0.0151 0 0
0.66 0.489 0.0013 0.0101 0.0097 0.0107 0.0109
1.18 0.491 0.,0016 0.0024 0.0050 0.0134 10.0129
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TABLE II. Comparison of expectation values with var-
ious wave functions at times 7=0 and T=1.18 x10-22 g,

(J,(0)) (4,2(0)) (J,(1.18)) (J,2(1.18))
W -1.58 7.49 —0.74 6.44
P2 -1.54 7.28 -0.11 3.55
@ -1.56 7.40 —0.12 3.52

l)=c exp<su>(zh+12+)+§s<2>(11+2+123)

N
+82 I, + ZS‘">)|<I>>. (6.3)
n=3

By projecting the exact solution onto |®), 1, |®),
I,2|®) and I, I, | ®), the values C, 8§V, 8§ and
8{2) were obtained and are tabulated in Table I
for comparison with the corresponding coupled-
cluster amplitudes $‘”. Since the discrepancies
(8 =82 and (82’ = 0) are small relative to the
dominant amplitude at each time, we conclude that
the 8’s evolved with the truncated Schrédinger
equation are quite adequate. The normalization
constant, C, indicates that only one fourth of the
total wave function is comprised of one-particle,
one-hole, and two-particle, two-hole components.
Table II shows values of J, and J 2 calculated with
the exact wave function ¥, the coupled-cluster
wave function ¥’ defined in Eq. (6.2), and a trun-
cated wave function §®’ obtained by using the
exact 8§, 8§ and §2) amplitudes in Eq. (6.3)
and omitting 2/ ¥ S, Since y agrees much
more closely with @’ than with §, clearly the
dominant error arises from omission of the sum
Z{fﬂs("’ rather than the small discrepancies be-
tween the 8§ and § amplitudes.

VII. SUMMARY AND CONCLUSIONS

The time-dependent coupled-cluster theory
-introduced in this work provides a convenient
framework for a systematic hierarchy of correc-
tions to the intuitively appealing time-dependent
mean-field approximation. Formulated in terms
of particle-hole amplitudes, the theory represents
many-particle correlations far more economically
than the corresponding density ~matrix or Green’s
function hierarchies. The consistency between
the static and time-dependent theories renders the
considerable progress in applying the static theory
to nuclear systems directly relevant, provides
natural initial conditions utilizing strictly anal-
ogous approximations, and provides the alter-
native technique of evolution in complex time and
adiabatic switching on for solving the stationary
state equations. Although the simplest truncation
prescription of setting S™) =0 for all m >» has

been used exclusively in this work, the general
theory also admits alternative truncations more
suitable for the nuclear interaction.

Application to the specific solvable model of
two Lipkin systems explicitly demonstrates the
theory’s viability and provides valuable insight
into how it actually works in practice. The lowest
order mean-field approximation yields good re-
sults for one-body operators and qualitatively
correct behavior for two-body operators for the
interaction times investigated in this work, which
were an order of magnitude longer than the “life-
time” of a determinant'® in this model, T,=1.3

" X10°% s, Inclusion of two-particle, two-hole

amplitudes yields quantitative agreement for
observables containing two-body operators.

The crucial distinction between expectation values
of few-body operators and overlap of N-body wave
functions was emphasized theoretically and explicitly
demonstrated for the projection of the Lipkin
model wave function onto the natural basis. Al-
though it is conceivable that certain approximate
S-matrix elements defined in terms of projection
onto consistently approximated stationary states
for the final channel are more meaningful than
the projections onto the natural basis examined
in this work, there certainly exist formidable
obstacles in substantiating such a conjecture, and
in view of our pessimistic theoretical arguments
and results, the burden of proof lies upon the
proponent.

The interacting Lipkin systems considered in
this work clearly provide a highly unrealistic
caricature of colliding nuclei, and thus strong
inferences concerning realistic nuclei. are un-
warranted. In particular, since there are only
two single-particle states for each particle, each
particle interacts equally with every other par-
ticle, and there are only three distinct two-par-
ticle, two-hole amplitudes, the solution in this
model is drastically more coherent than for a
nucleus. The major emphasis of our subsequent
work will therefore be generalization of the
method to treat strongly repulsive potentials and
application to more realistic model systems.
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APPENDIX A

A representation of the algebra of Eq. (5.12) is
provided by 25 dimensional matrices acting on the
column vector |®)

[®y=|: |. (a1)
0

1

Using the convention that omitted matrix elements
are zero, we first define the following 5 X 5 ma-
trices:

(iv,+2 0 0 0 0o |
0 -3N,+3 0 0 0
A= 0 0 ~3N,+2 0 o |, (A2)
0 0 -iN,+1 0 |
0 0 0 0 -3iN,
- o
(0 [4(V,-3)]" 0 0 o
0 0 [3(N, —2) ]+~ 0 0
B=|0 0 0 2w, -npr2 o |, (A3)
0 0 0 0 (N2
0 0 0 0 0
C »
and the 5 X 5 unit matrix denoted as ¢,.
In terms of these matrices, I,, and I,, 'have the following block form:
(— )
A0000
0A000
I,={0 0A 00|, (A4)
000A40
(0000 4]
(=N, +4)e, 0 0 0 0o
0 (=3N, +3)e, 0 0 0
L,= 0 0 (=2N,+2)e, 0 0 , (A5)
0 0 0 (-3N,+1)¢, O
! 0 0 0 0 —%NZG,J
(0B0 0O
00BO0O
1,,={0 00 B O |, (A8)
0000B
00000
L J
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(0 [4(N, - 3)]2, 0 0

0 0 [3N, -2)]*"%€, 0
I,,=|0 0 0 [2(N, - 1) %€,

0 0 0 0

0 0 0 0

All other operators, such as H or S, are con-
structed as appropriate linear or bilinear com-
binations of the above matrices. This scheme of
dealing with the S’ level truncation can be easily

o )

0

o | (A7)
(V) ¢

0

r

extended to investigate any higher level of trun-
cation, whereas algebraic evaluation would be
almost impossible beyond the two-body approxi-
mation.
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