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Effect of quark antisymmetrization on the binding energy of nuclear matter
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We estimate, to leading order in the nuclear matter density, the effect of antisymmetrizing quarks
belonging to different nucleons upon the binding energy per nucleon in nuclear matter. A simple
Gaussian model for the nucleon quark wave function, together with a one-gluon-exchange potential
between quarks, is assumed. Using a linked cluster expansion developed earlier for nuclear matter,
we calculate separately the effect of quark interchanges upon the kinetic, hyperfine, Coulomb, and
contact terms in the Hamiltonian. A strong net repulsion is found which grows rapidly with the di-

mensionless parameter a = rok+, where k&. is the nuclear Fermi momentum and r„ the nucleon size.

The quark cluster model for nucleons has been used ex-
tensively in recent years for estimating nuclear properties
associated with short-distance effects in small nuclei.
(For a recent review, see Ref. 1.) The necessity of an-
tisymmetrizing the nuclear wave function at the quark
level, and the consequences of this for various nuclear ob-
servables, has been pointed out by a number of au-
thors. ' Antisymmetrization directly implies that
quarks belonging to different nucleons are exchanged in

proportion to the degree of nucleon overlap; its impor-
tance rises with increasing nuclear density and nucleon
size.

In this paper we investigate the effect of quark ex-
change upon the nuclear binding energy to leading order
in the density of spin-isospin-symmetric nuclear matter.
A simple Gaussian model for the quarks in a nucleon is
assumed, together with a potential arising from one-
gluon exchange between quarks. This model, as well as
variants of it, have been used by numerous authors in a
long series of investigations into the nucleon-nucleon
short-range interaction and deuteron properties. The
problem of a large nucleus is clearly much more compli-
cated; not only is there a vastly greater number of com-
binations by which quarks can be exchanged, but also one
is faced by certain naive divergences in the limit of large
A. To address this issue, a systematic scheme for quark
counting, together with elimination of the divergences,
was developed in Ref. 3. We shall make essential use of
that formalism in this Brief Report.

The model. We take the usual nonrelativistic quark
model wave function as an input. A nucleon with center
of mass at R is described by

oscillator confining potential which mocks up long-range

QCD effects, and V is the quark-quark potential aris-

ing from one-gluon exchange
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The hyperfine, Coulomb, and contact terms are, respec-
tively,
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The nucleon rms radius ro will be taken to be a free pa-
rameter in our calculation. We have made no attempt to
include the long-range part of the nucleon-nucleon force
arising from meson exchange into our calculations.

To enforce antisymmetrization at the quark level it is
convenient to work in a second quantized formalism as in
Ref. 3 and to write the X nucleon state as

The constituent quark mass m is taken to be one-third of
the nucleon mass, and a,, is determined by the N-5 mass
difference

6(r, +rz+r3 —3R)exp — g (r; —R)
2ro I =1

where gsTc is the spin-isospin-color wave function. The
Hamiltonian is taken to be

H —y T + I y ( Vconf+ VQGE) (2)

where T is the quark kinetic energy, V"" is a harmonic

where 4 is the nuclear wave function and a, denotes the
nucleon quantum numbers (spin, isospin, and position of
c.m. ). The nucleon creation operator 2 -q q q creates
a three-quark state coupled together by the wave function
given in Eq. (1) to the appropriate nucleon quantum num-
bers. The Hamiltonian Eq. (2). is a sum of operators of
the type q q (kinetic energy) and q q qq (potential ener-
gy). We now consider evaluation of these separately.

Kinetic energy. The expectation of the quark kinetic
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energy in the nuclear state
~
A ) is

& T &
= g (p!Tiv)K„,, , (6a)

where

& A~qtq„A &

(6b)

Here p or v denote a set of quark quantum numbers: po-
sition, spin, isospin, and color.

Evaluation of E„,requires the complete contraction of
3N+1 quark creation operators with 3N+ 1 destruction
operators. This corresponds to quarks being exchanged
between the N nucleons in (3N+1)! ways. To make the
calculation tractable, simultaneous quark exchanges be-
tween three or more nucleons will be neglected. Never-
theless, there is no constraint on the number of nucleon
pairs that can exchange quarks simultaneously (within
each pair). This causes both the numerator and denomi-
nator in K„ to diverge separately with N, and conse-
quently requires renormalization of E„. The following
renormalized result, expressed diagrammatically, was ob-
tained in Ref. 3.

1 a r~
(T &,„,„=-exch (loa)

where

y(s) = f"f"dx dy xy

Xexp[ ——'„'(x +y )]sinh —', xy . (10b)

is the quark exchange correction to first order in the nu-

clear matter density. The reduction in kinetic energy is
equivalent to a softening of the quark momentum distri-
bution. That quark interchange does lead to such soften-

ing had been noted earlier by Hoodbhoy and Jaffe.
An uncorrelated Fermi gas is rather unrealistic for nu-

clear matter and the repulsion between nucleons prevents
them from overlapping. We include correlations, admit-
tedly in a rather crude way, by simply cutting off all in-

tegrals in the evaluation of Eq. (7) whenever the distance
between the centers of mass of two nucleons is less than
the hard-core radius r, . This, expectedly, decreases the
overlap between nucleons and reduces the exchange ki-
netic energy:
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It can be seen from the above expression that f(0)=1,
and that f (s) decreases rapidly with s. The exchange ki-
netic energy as a function of nucleon size, and for
different hard-core radii R„is given in Fig. 1.

Potential energy. The potential energy of quarks in the
nuclear state

~
A ) is

The diagrammatic representation above is directly
translatable into mathematical expressions, and
represents the renormalized sum of zero and one quark
exchanges that enter into the evaluation of an arbitrary
one-quark operator.

To evaluate ( T ) we need a model for the nuclear wave
function 4. In the first instance, this was taken to be a
Slater determinant of plane waves containing equal num-
bers of spin-up and spin-down neutrons and protons. A
lengthy evaluation, using the Gaussian nucleon wave
function in Eq. (1) and the renormalized expression in Eq.
(7), and after performing spin-isospin-color averages,
yields the following remarkably simple result for the ki-
netic energy per nucleon in nuclear matter:

k k r(T) 3 + 3 F
~ ~3/ F 0+O(k5)

2mr,' 5 2m " m

where

( A ~q~ q~ q, , q„~ A )
(1 lb)

Dropping gluon exchange diagrams that vanish because
of color conservation, the mean potential energy per
quark is calculated from the following equation.
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where a =kFro is a dimensionless quantity. The first two
terms in Eq. (8) are familiar; they represent, respectively,
the mean kinetic energy of quarks within a stationary nu-
cleon and the averaged kinetic energy of the c.m. motion
of nucleons in a free Fermi gas. The remaining term, i.e.,
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FIG. 1. Quark exchange contribution to quark kinetic energy
for spin-isospin-symmetric nuclear matter as a function of nu-

cleon size for different hard-core radii and kF =1.4 fm
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FIG. 2. Quark exchange contribution to the kinetic,
hyperfine, Coulomb, and contact terms for hard-core radius
rc =0.3 fm and k„=1.4 fm

FIG. 3. Quark exchange contribution to the kinetic,
hyperfine, Coulomb, and contact terms for hard-core radius
7, =0.5 fm and kF=1.4 fm
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Discussion. The net result of our calculations, i.e., the
sum of the kinetic and potential energy contributions that
arise from the exchange of quarks between nucleons in-

side spin-isospin-symmetric nuclear matter, is summa-
rized in Figs. 2, 3. As can be seen, the net effect of quark
exchange is to introduce a strong repulsion. The dom-
inant contribution comes from the hyperfine term in the
Hamiltonian.

The calculations outlined in this paper can be repeated
for any value of N. The case of the deuteron, %=2, is
particularly interesting and easy. As the input wave
function we used a pure s-wave sum of Gaussians,
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(14)

The quark exchange contributions to the kinetic and po-
tential terms are plotted in Fig. 4. Since the deuteron is a

The weights in Eq. (12) follow directly from the general
renormalized expansion for E„„,which wasi"&~z

developed in Ref. 3. The evaluation of the terms in this
equation, using the potential in Eq. (3), follows the same
procedure as for the kinetic energy but is considerably
more involved. The result of the calculation has the gen-
eral form
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The expressions for the functions g, are complicated and
rather unrevealing. Hence we give, in Figs. 2 and 3, only
numerical plots for the hyperfine, Coulomb, and contact
exchange energies for two different hard-core radii. We
note that the confinement term has no exchange piece.
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FIG. 4. Quark exchange contribution to the kinetic,
hyperfine, Coulomb, and contact terms for the deuteron, using
the wave function in Eq. (14).
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very dilute system, these are much smaller than in nu-

clear matter. Nevertheless, we still observe that the ex-
change hyperfine interaction dominates.

The repulsion induced by the hyperfine interaction can
be seen in rather dramatic terms if one calculates the en-

ergy of a six-quark (6q) cluster with all quarks in the
lowest s state relative to the energy of two separated
three-quark (3q) clusters. The result is

( V"" (6q)) —2( V"" (3q)) =1.29(M& —M~) . (15)

This shows that it is energetically highly preferable for a
set of six quarks to disassociate into two nucleons. The
importance of the hyperfine interaction in this regard has
been recognized by many authors.
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