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Preface

Of the five editions of this text, this is the third edition that I have prepared. In
doing so, I have attempted to adhere to the late Jerry Marion’s original purpose of
producing a modern and reasonably complete account of the classical mechanics
of particles, systems of particles, and rigid bodies for physics students at the ad-
vanced undergraduate level. The purpose of the book continues to be threefold:

1. To present a modern treatment of classical mechanical systems in such a way
that the transition to the quantum theory of physics can be made with the
least possible difficulty.

2. To acquaint the student with new mathematical techniques wherever possi-
ble, and to give him/her sufficient practice in solving problems so that the
student may become reasonably proficient in their use.

3. To impart to the student, at the crucial period in the student’s career be-
tween “introductory” and “advanced” physics, some degree of sophistication
in handling both the formalism of the theory and the operational technique
of problem solving.

After a firm foundation in vector methods is presented in Chapter 1, further
mathematical methods are developed in the textbook as the occasion demands.
It is advisable for students to continue studying advanced mathematics in sepa-
rate courses. Mathematical rigor must be learned and appreciated by students of
physics, but where the continuity of the physics might be disturbed by insisting
on complete generality and mathematical rigor, the physics has been given
precedence.

Changes for the Fifth Edition

The comments and suggestions of many users of Classical Dynamics have been in-

corporated into this fifth edition. Without the feedback of the many instructors
v
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who have used this text, it would not be possible to produce a textbook of signif-
icant value to the physics community. After the extensive revision for the fourth
edition, the changes in this edition have been relatively minor. Only a few re-
arrangements of material have been made. But several examples, especially nu-
merical ones, and many end-of-chapter problems have been added. Users have
not wanted extensive changes in the topics covered, but more examples for stu-
dents and a wider range of problems are always requested.

A strong effort continues to be made to correct the problem solutions avail-
able in the Instructor and Student Solutions Manuals. I thank the many users
who sent comments concerning various problem solutions, and many of their
names are listed below. Answers to even-numbered problems have again been in-
cluded at the end of the book, and the selected references and general biblio-
graphy have been updated.

Course Suitability

The book is suitable for either a one-semester or two-semester upper level (jun-
ior or senior) undergraduate course in classical mechanics taken after an intro-
ductory calculus-based physics course. At the University of Virginia we teach a
one-semester course based mostly on the first 12 chapters with several omissions
of certain sections according to the Instructor’s wishes. Sections that can be
omitted without losing continuity are denoted as optional, but the instructor can
also choose to skip other sections (or entire chapters) as desired. For example,
Chapter 4 (Nonlinear Oscillations and Chaos) might be skipped in its entirety
for a one-semester course. Some instructors choose not to cover the calculus of
variations material in Chapter 6. Other instructors may want to begin with
Chapter 2, skip the mathematical introduction of Chapter 1, and introduce the
mathematics as needed. This technique of dealing with the mathematics intro-
duction is perfectly acceptable, and the community is divided on this issue with a
slight preference for the method used here. The textbook is also suitable for a
full academic year course with an emphasis on mathematical and numerical
methods as desired by the instructor.

The textbook is appropriate for those who choose to teach in the traditional
manner without computer calculations. However, more and more instructors
and students are both familiar and adept with numerical calculations, and much
can be learned by doing calculations where parameters can be varied and real-
world conditions like friction and air resistance can be included. I decided be-
fore the 4th edition to leave the choice of method to the instructor and/or stu-
dent to choose the computer techniques to be used. That decision has been
confirmed, because there are many excellent software programs (including
Mathematica, Maple, and Mathcad to mention three) available to use. In addi-
tion, some Instructors have students write computer programs, which is an im-
portant skill to obtain.
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Special Feature

The author has kept one popular feature of Jerry Marion’s original book: the ad-
dition of historical footnotes spread throughout. Several users have indicated
how valuable these historical comments have been. The history of physics has
been almost eliminated from present-day curricula, and as a result, the student is
frequently unaware of the background of a particular topic. These footnotes are
intended to whet the appetite and to encourage the student to inquire into the
history of his field.

Teaching Aids

Teaching aids to accompany the textbook are available online at
http:/info.brookscole.com/thornton. The Instructor’s Manual (ISBN 0-534-
40898-2) contains solutions to all the end-of-chapter problems in addition to
Transparency Masters of selected key figures from the text. This password-
protected resource is easily printable in .pdf format. To receive your password,
just go to the above website and register; a username and password will be sent to
you once the information you have provided is verified. The verification
procedure ensures that you are an instructor teaching this course. If you are not
able to download the Instructor’s Manual files and would like a printed copy sent
to you, please contact your local sales representative. If you do not know who
your sales representative is, please visit www.brookscole.com, and click on the
Find your Rep tab, which is located at the top of the web page. Please do not dis-
tribute the Instructor’s Manual to students, or post the solutions on the Internet.
Students are not permitted to access the Instructor’s Manual.

Student Solutions Manual

A Student Solutions Manual by Stephen T. Thornton, which contains solutions to
25% of the problems, is available for sale to the students. Instructors are encour-
aged to order the Student Solutions Manual for their students to purchase at the
school bookstore. To package the Student Solutions Manual with the text, use
ISBN 0-534-08378-1, or to order the Student Solutions Manual separately use ISBN
0-534-40897-4. Students can also purchase the manual online at the publisher’s
website www.brookscole.com/physics.
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CHAPTER

Matrices, Vectors,
and Vector Calculus

1.1 Introduction

Physical phenomena can be discussed concisely and elegantly through the use of
vector methods.* In applying physical “laws” to particular situations, the results
must be independent of whether we choose a rectangular or bipolar cylindrical
coordinate system. The results must also be independent of the exact choice of
origin for the coordinates. The use of vectors gives us this independence. A
given physical law will still be correctly represented no matter which coordinate
system we decide is most convenient to describe a particular problem. Also, the
use of vector notation provides an extremely compact method of expressing
even the most complicated results.

In elementary treatments of vectors, the discussion may start with the state-
ment that “a vector is a quantity that can be represented as a directed line seg-
ment.” To be sure, this type of development will yield correct results, and it is
even beneficial to impart a certain feeling for the physical nature of a vector. We
assume that the reader is familiar with this type of development, but we forego
the approach here because we wish to emphasize the relationship that a vector
bears to a coordinate transformation. Therefore, we introduce matrices and ma-
trix notation to describe not only the transformation but the vector as well. We
also introduce a type of notation that is readily adapted to the use of tensors, al-
though we do not encounter these objects until the normal course of events re-
quires their use (see Chapter 11).

*Josiah Willard Gibbs (1839-1903) deserves much of the credit for developing vector analysis
around 1880-1882. Much of the present-day vector notation was originated by Oliver Heaviside
(1850-1925), an English electrical engineer, and dates from about 1893.
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We do not attempt a complete exposition of vector methods; instead, we
consider only those topics necessary for a study of mechanical systems. Thus in
this chapter, we treat the fundamentals of matrix and vector algebra and vector
calculus.

1.2 Concept of a Scalar

Consider the array of particles shown in Figure 1-1a. Each particle of the array is
labeled according to its mass, say, in grams. The coordinate axes are shown so
that we can specify a particular particle by a pair of numbers (x, y). The mass M
of the particle at (x, y) can be expressed as M(x, y); thus the mass of the particle
at x = 2, y = 3 can be written as M (x = 2, y = 3) = 4. Now consider the axes ro-
tated and displaced in the manner shown in Figure 1-1b. The 4 g mass is now lo-
cated at ' = 4, y' = 3.5; that is, the mass is specified by M (x' = 4, y' = 3.5) = 4.
And, in general,

M(x y) = M(x', y") (1.1)

because the mass of any particle is not affected by a change in the coordinate
axes. Quantities that are invariant under coordinate transformation—those that obey
an equation of this type—are termed scalars.

Although we can describe the mass of a particle (or the temperature, or the
speed, etc.) relative to any coordinate system by the same number, some physical
properties associated with the particle (such as the direction of motion of the
particle or the direction of a force that may act on the particle) cannot be speci-
fied in such a simple manner. The description of these more complicated quan-
tities requires the use of vectors. Just as a scalar is defined as a quantity that re-
mains invariant under a coordinate transformation, a vector may also be defined
in terms of transformation properties. We begin by considering how the coordi-
nates of a point change when the coordinate system rotates around its origin.

(a) (b}
FIGURE 1-1 An array of particles in two different coordinate systems.
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1.3 Coordinate Transformations

Consider a point Pwith coordinates (x;, x, x3) with respect to a certain coordi-
nate system.* Next consider a different coordinate system, one that can be gen-
erated from the original system by a simple rotation; let the coordinates of the
point P with respect to the new coordinate system be (x{, x5, x3). The situation is
illustrated for a two-dimensional case in Figure 1-2.

The new coordinate x{ is the sum of the projection of x onto the x{-axis
(the line Oa) plus the projection of x onto the x{-axis (the line ab + bc); that is,

x| = %108 0 + x55in 0
™
= x,cos 0 + x2cos(§ - 0) (1.2a)

The coordinate x; is the sum of similar projections: x; = Od — de, but the
line de is also equal to the line Of. Therefore

X = —x;sin 0 + xycos 6

T
= x cos(g + 0) + xycos 0 (1.2b)

Let us introduce the following notation: we write the angle between the
x1-axis and the x,-axis as (¥, 1), and in general, the angle between the x-axis
and the x;-axis is denoted by (x;, x;). Furthermore, we define a set of numbers
A; by

— !
A = cos(x], x)) (1.3)
Xg-aXIis
x9-axis
——————————— P
% N s
2 Pt ///, : \\xll X]-axy
» a ~Th
e
o) \ !
(|
(] N .
0 g x,-axis
/”
/”
S

FIGURE 1-2 The position of a point P can be represented in two coordinate systems,
one rotated from the other.

*We label axes as x;, x5, x5 instead of x, y, z to simplify the notation when summations are performed.
For the moment, the discussion is limited to Cartesian (or rectangular) coordinate systems.
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Therefore, for Figure 1-2, we have

Ay = cos(xy, x;) = cos 6

Ap = cos(xq, x9) = cos(g - 0> =sin

” > (1.4)
Ag) = cos(xg, x;) = cos(g + 0> —sin 0

Age = cos(xg, X9) = cos 6 )
The equations of transformation (Equation 1.2) now become

x| = x;c08(xq, x;) + xg cos(x], X3)

= )\uxl + A12x2 (1.53)
x5 = %, €08(Xg, X1) T X9 cOS{x3, Xq)
= A21x1 + A22x2 (1-5b)

Thus, in general, for three dimensions we have
x1 = Appxy + Ajgxg + Aggxg
x3 = Agixy + Aggxg + Aggis (1.6)
x3 = Agix; + Aggxg + Agsxs

or, in summation notation,

3
M=g%%i=L23 1.7

The inverse transformation is
x, = x1 cos(xy, x1) + x5 cos(xg, x;) + x5 cos{xs, x;)
Anxi + Agixg + Agyxg

or, in general,

3
&=;M¢i=Lzs (1.8)

The quantity A; is called the direction cosine of the x;-axis relative to the
x;-axis. It is convenient to arrange the A; into a square array called a matrix. The
boldface symbol A denotes the totality of the individual elements A; when
arranged as follows:

Air A A
A=Ay Ay Ay (1.9)
Asi Asg Asg

Once we find the direction cosines relating the two sets of coordinate axes,
Equations 1.7 and 1.8 give the general rules for specifying the coordinates of a
point in either system.

When A is defined this way and when it specifies the transformation proper-
ties of the coordinates of a point, it is called a transformation matrix or a rota-
tion matrix.
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EXAMPLE 1.1

A point Pis represented in the (x;, xo, x3) system by P(2, 1, 3). In another coor-
dinate system, the same point is represented as P(xj, x5, x3) where x, has been
rotated toward x3 around the x;-axis by an angle of 30° (Figure 1-3). Find the
rotation matrix and determine P(x{, xj, x3).

’ X3

30°

x
x

FIGURE 1-3 Example 1.1. A point Pis represented in two coordinate.systems, one
rotated from the other by 30°.

Solution. The direction cosines A; can be determined from Figure 1-3 using
the definition of Equation 1.3.

A = cos(xq, x;) = cos(0°) =1

A = cos{x{, x9) = cos(90°) =0

A3 = cos{xq, x3) = cos(90°) =0

Ag; = cos{xy, x;) = cos(90°) =0

Ago = cos(xj, x3) = cos{30°) = 0.866

Ags = cos(xp, x3) = cos(90° — 30°) = cos(60°) = 0.5
As; = cos(xg, x;) = cos(90°) =0

Age = cos(xg, x9) = cos(90° + 30°) = —0.5
Ass = cos(xz, x3) = cos(30°) = 0.866
1 0 0

A=]|0 0866 05
0 -05 0866

and using Equation 1.7, P(x{, %3, x3) is
x{ = Allxl + A12x2 + Alsxs =X = 2
xé = A21x1 + A22x2 + A23x3 = 0.866962 + O.5x3 = 2.37
xé = )\31x1 + A32x2 + Assxs = _O.5x2 + 0.866963 = 2.10
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Notice that the rotation operator preserves the length of the position vector.

r= \/x? +x3+ 3= \/xl’2 + x2 + xi2 = 3.74

1.4 Properties of Rotation Matrices*

To begin the discussion of rotation matrices, we must recall two trigonometric
results. Consider, as in Figure 14a, a line segment extending in a certain direc-
tion in space. We choose an origin for our coordinate system that lies at some
point on the line. The line then makes certain definite angles with each of the
coordinate axes; we let the angles made with the x;-, xo-, x3-axes be «, 8, y. The
quantities of interest are the cosines of these angles; cos «, cos 8, cos y. These
quantities are called the direction cosines of the line. The first result we need is
the identity (see Problem 1-2)

cos’a + cos?B + cos?y =1 (1.10)

Second, if we have two lines with direction cosines cos &, cos 3, cos ¥ and cos o',
cos B, cos ¥, then the cosine of the angle 6 between these lines (see Figure 1-4b)
is given (see Problem 1-2) by

cos @ = cosacosa’ + cos Bcos B’ + cosycosy' (1.11)

With a set of axes x;, Xy, x3, let us now perform an arbitrary rotation about
some axis through the origin. In the new position, we label the axes x{, x3, x3.

@B.7

@B,

@.B,7"

X
(a) (b)

FIGURE 14 (a) A line segment is defined by angles («, 8, y) from the coordinate axes.
(b) Another line segment is added that is defined by angles (', B8/, v").

*Much of Sections 1.4-1.13 deals with matrix methods and transformation properties and will not be
needed by the reader until Chapter 11. Hence the reader may skip these sections until then if de-
sired. Those relations absolutely needed-—scalar and vector products, for example—should already
be familiar from introductory courses.
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The coordinate rotation may be specified by giving the cosines of all the angles
between the various axes, in other words, by the A;.

Not all of the nine quantities A; are 1ndependent in fact, six relations exist
among the A; so only three are 1ndependent We find these six relations by
using the trigonometric results stated in Equations 1.10 and 1.11.

First, the x;-axis may be considered alone to be a line in the (x;, xo, x3) coor-
dinate system; the direction cosines of this line are (Ay;, Ajg, Ay3). Similarly, the di-
rection cosines of the xy-axis in the (x;, X,, x3) system are given by (Ag;, Agg, Ags).
Because the angle between the xj-axis and the xj-axis is /2, we have, from
Equation 1.11,

A11A21 + A12A22 + A13A23 = cos 0 = COS(W/Q) = O
or*
2hyhgy =0
And, in general,
ZA iAy=0, i#k (1.12a)

Equation 1.12a gives three (one for each value of ¢ or k) of the six relations
among the A;.

Because the sum of the squares of the direction cosines of a line equals unity
(Equation 1.10), we have for the x{-axis in the (x;, %y, x3) system,

At A+ A =1
or
2= 200 =1
and, in general,
ZA =1 i=k (1.12b)

which are the remaining three relatlons among the A,
We may combine the results given by Equations 1.12a and 1.12b as

ZA Ay = (1.18)

where 8 is the Kronecker delta symbol’
0, ifi+#k
5. = 1.14
* {1, ifi=k (1.14)

The validity of Equation 1.13 depends on the coordinate axes in each of the
systems being mutually perpendicular. Such systems are said to be orthogonal,

*All summations here are understood to run from 1 to 3.
fntroduced by Leopold Kronecker (1823-1891).
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and Equation 1.13 is the orthogonality condition. The transformation matrix A
specifying the rotation of any orthogonal coordinate system must then obey
Equation 1.13.

If we were to consider the x-axes as lines in the x; coordinate system and
perform a calculation analogous to our preceding calculations, we would find
the relation

2)‘9‘)‘& = 0; (1.15)

The two orthogonality relations we have derived (Equations 1.13 and 1.15)
appear to be different. (Note: In Equation 1.13 the summation is over the second
indices of the A, whereas in Equation 1.15 the summation is over the first in-
dices.) Thus, it seems that we have an overdetermined system: twelve equations
in nine unknowns.* Such is not the case, however, because Equations 1.13 and
1.15 are not actually different. In fact, the validity of either of these equations
implies the validity of the other. This is clear on physical grounds (because the
transformations between the two coordinate systems in either direction are
equivalent), and we omit a formal proof. We regard either Equation 1.13 or 1.15
as providing the orthogonality relations for our systems of coordinates.

In the preceding discussion regarding the transformation of coordinates
and the properties of rotation matrices, we considered the point P to be fixed
and allowed the coordinate axes to be rotated. This interpretation is not unique;
we could equally well have maintained the axes fixed and allowed the point to
rotate (always keeping constant the distance to the origin). In either event, the
transformation matrix is the same. For example, consider the two cases illustrated
in Figures 1-5a and b. In Figure 1-5a, the axes x; and x, are reference axes, and
the x{- and x3-axes have been obtained by a rotation through an angle 6.

X9 *2
%
\
\
\ oF P
\
’
\ ’
\ ,
\ ’
\ //
\
Y4 !
\ x/ Y4 P
\\ 2] L% // -
- -
- Pie ’ P
\ PRe -
N P A8 i
\ P L, Ve
\
- ’ P
\ - , -
\ PRas 6 e
\ // ///

X

x1
(a) (b)
FIGURE 1-5 (a) The coordinate axes x;,%, are rotated by angle 8, but the point P

remains fixed. (b) In this case, the coordinates of point Pare rotated
to a new point P’, but not the coordinate system.

*Recall that each of the orthogonality relations represents six equations.
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Therefore, the coordinates of the point P with respect to the rotated axes may
be found (see Equations 1.2a and 1.2b) from
x] = x;cos 0 + xysin 6 }

1.16
—x;sinf + x, cos 6 ¢ )

X
However, if the axes are fixed and the point Pis allowed to rotate (as in Figure
1-5b) through an angle ¢ about the origin (but in the opposite sense from that
of the rotated axes), then the coordinates of P’ are exactly those given by
Equation 1.16. Therefore, we may elect to say either that the transformation acts
on the point giving a new state of the point expressed with respect to a fixed co-
ordinate system (Figure 1-5b) or that the transformation acts on the frame of ref-
erence (the coordinate system), as in Figure 1-5a. Mathematically, the interpreta-
tions are entirely equivalent.

1.5 Matrix Operations™

The matrix A given in Equation 1.9 has equal numbers of rows and columns and
is therefore called a square matrix. A matrix need not be square. In fact, the co-
ordinates of a point may be written as a column matrix

X1
X = | xo ‘ (1.17a)
X3
or as a row matrix
X = (x; X9 X3) (1.17b)

We must now establish rules to multiply two matrices. These rules must be
consistent with Equations 1.7 and 1.8 when we choose to express the x; and the
x; in matrix form. Let us take a column matrix for the coordinates; then we have
the following equivalent expressions:

=2 A% (1.18a)
J
X' = AX (1.18b)
x] Al A Ag X1
x| =|Aa A Ags || xe (1.18¢c)
x3 Asi Az Agg X3

X1 = Anx; + Agxe + Aysxs
xé = Alel + A22x2 + A23x3 (1.18d)
x3 = Ag1X; + AsgXy + AggXs

*The theory of matrices was first extensively developed by A. Cayley in 1855, but many of these ideas
were the work of Sir William Rowan Hamilton (1805-1865), who had discussed “linear vector opera-
tors” in 1852. The term matrix was first used by J. J. Sylvester in 1850.
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Equations 1.18a~d completely specify the operation of matrix multiplication
for a matrix of three rows and three columns operating on a matrix of three
rows and one column. (To be consistent with standard matrix convention we
choose X and X’ to be column matrices; multiplication of the type shown in
Equation 1.18¢ is not defined if X and X’ are row matrices.)* We must now ex-
tend our definition of multiplication to include matrices with arbitrary numbers
of rows and columns.

The multiplication of a matrix A and a matrix B is defined only if the num-
ber of columns of A is equal to the number of rows of B. (The number of rows of
A and the number of columns of B are each arbitrary.) Therefore, in analogy
with Equation 1.18a, the product AB is given by

C= AB (1.19)
As an example, let the two matrices A and B be
3 -2 2
A=
b=
a b ¢
B=|d ¢ f
g hJ
We multiply the two matrices by
a b ¢
3 _
AB = (4 _z i) d e f (1.20)
g b J

The product of the two matrices, C, is

C— AB = (Sa— 2d+ 2 3b— 2+ 2h 3c— 2f + 2;) (L.21)
4a—3d+5g 4b— 3¢+ 5h 4c— 3f+ 5j

To obtain the C,-j element in the ith row and jth column, we first set the two
matrices adjacent as we did in Equation 1.20 in the order A and then B. We then
multiply the individual elements in the ith row of A, one by one from left to
right, times the corresponding elements in the jth column of B, one by one
from top to bottom. We add all these products, and the sum is the C; element.
Now it is easier to see why a matrix A with m rows and » columns must be multi-
plied times another matrix B with # rows and any number of columns, say p. The
result is a matrix € of m rows and p columns.

*Although whenever we operate on X with the A matrix the coordinate matrix X must be expressed
as a column matrix, we may also write X as a row matrix (%, *s, ¥3), for other applications.
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EXAMPLE 1.2

Find the product AB of the two matrices listed below:

2 1 3
A=|-2 2 4
-1 -3 -4
-1 -2
B=| 1 2
3 4

Solution. We follow the example of Equations 1.20 and 1.21 to multiply the two
matrices together.

2 1 3\ /-1 -2

AB =| -2 2 4 1 2
-1 -3 —4 3 4
-2+14+9 —-4+2+12 8 10
AB=| 2+2+ 12 4+4+16 )| = 16 24
1-3-12 2—-6-16 —-14 -20

The result of multiplying a 3 X 3 matrix times a 3 X 2 matrix is a3 X 2 matrix.

It should be evident from Equation 1.19 that matrix multiplication is not
commutative. Thus, if A and B are both square matrices, then the sums

are both defined, but, in general, they will not be equal.

EXAMPLE 1.3

Show that the multiplication of the matrices A and B in this example is non-
commutative.

Solution. If A and B are the matrices

then
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but
—4 5
BA =
( 10 —2)

AB # BA

thus

1.6 Further Definitions

A transposed matrix is a matrix derived from an original matrix by interchange
of rows and columns. We denote the transpose of a matrix A by A’. According to
the definition, we have

AL= A, (1.22)

Evidently,
(A=A (1.23)

Equation 1.8 may therefore be written as any of the following equivalent expres-
sions:

x; = EA,-,»x; (1.24a)
J
%= ?Afj %] (1.24b)
X = Alx’ (1.24c)
X1 A Aa Ag x]
x2 = Al? A22 A32 xé (1.24(1)
X3 Ais Ags Ass/ \x3

The identity matrix is that matrix which, when multiplied by another matrix,
leaves the latter unaffected. Thus

1A=A, B1=8B (1.25)

w=(; )0 -()-

Let us consider the orthogonal rotation matrix A for the case of two dimensions:

A A
A= ( 11 12>
Aar Ay

that is,
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AAf = ()\11 )\12> ()\11 )\21>
)‘21 )‘22 )‘12 )‘22
_ ( At A Apdy + A12A22>
Agidnr + AgoApy Ay + A,

Then

Using the orthogonality relation (Equation 1.13), we find
A+ A=A+ AR =1
AgiAin F Agodis = AniAgr + Ajphey = 0
so that for the special case of the orthogonal rotation matrix A we have*
1 0
ArE = =1 .26
() 126

The inverse of a matrix is defined as that matrix which, when multiplied by
the original matrix, produces the identity matrix. The inverse of the matrix A is
denoted by A™1:

AA1=1 (1.27)
By comparing Equations 1.26 and 1.27, we find

At= )21 for orthogonal matrices ’ (1.28)

Therefore, the transpose and the inverse of the rotation matrix A are identical.
In fact, the transpose of any orthogonal matrix is equal to its inverse.
To summarize some of the rules of matrix algebra:

1. Matrix multiplication is not commutative in general:

AB = BA (1.29a)
The special case of the multiplication of a matrix and its inverse is commu-
tative:

AAl= ATA=1 (1.29b)

The identity matrix always commutes:
1A=A1=A (1.29¢)

2. Matrix multiplication is associative:

[AB]C = A[BC] (1.30)

3. Matrix addition is performed by adding corresponding elements of the two
matrices. The components of C from the addition C = A + B are

G;= Ay + By (1.31)

Addition is defined only if A and B have the same dimensions.

*This result is not valid for matrices in general. It is true only for orthogonal matrices.
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1.7 Geometrical Significance
of Transformation Matrices

Consider coordinate axes rotated counterclockwise* through an angle of 90°

about the x3-axis, as in Figure 1-6. In such a rotation, x; = Xo, x3 = —x, X3 = X3
The only nonvanishing cosines are
cos(xi, x9) = 1= Ay
COS(xé, xl) =-1= A2l
cos(xg, x3) = 1= Agg
so the A matrix for this case is
01 0
A‘l = _1 0 0
0 0 1
Next consider the counterclockwise rotation through 90° about the x;-axis,
as in Figure 1-7. We have x; = x,, x; = x3, X3 = — ¥y, and the transformation ma-
trix is

1 0 0
AL=|0 o0 1
0 -1 0

To find the transformation matrix for the combined transformation for rota-
tion about the xs-axis, followed by rotation about the new xj-axis (see Figure

1-8), we have

X' = AX
and
X" = Ax’
or
X"=A2A1X
x| 1 0 0 0 1 0\/x 0
x3]1=10 0 1]]-1 0 O]l=x|=1|0
x5 0 -1 0 0 0 1/\x; 1

(1.32a)

(1.32b)

(1.33a)

X1 X2
X9 = Xg

S O -~
S = O

X3 X1

(1.33b)

*We determine the sense of the rotation by looking along the positive portion of the axis of rotation
at the plane being rotated. This definition is then consistent with the “right-hand rule,” in which the
positive direction of advance of a right-hand screw when turned in the same sense.
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A

90° rotation
about xg-axis

X

FIGURE 16 Coordinate system X;, X9, X3 is rotated 90° counter-clockwise (ccw)
about the x3-axis. This is consistent with the right-hand rule of
rotation.

Ay

'x2 .
90° rotation
about x;-axis

X

FIGURE 1-7 Coordinate system X;, Xy, X3 is rotated 90° ccw about the x;-axis.

X3

*2
L\ % M ‘ A x{
p 90° rotation 90° rotation
1 about x3-axis ' about x{-axis

FIGURE 1-8 Coordinate system x;, xs, X3 is rotated 90° ccw about the x;-axis followed
by a 90° rotation about the intermediate x;-axis.
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Therefore, the two rotations already described may be represented by a single
transformation matrix:

01 0
A=AA=|0 0 1 (1.34)
1 0 0

and the final orientation is specified by x| = x,, x3 = x5, x§ = x,. Note that the
order in which the transformation matrices operate on X is important because
the multiplication is not commutative. In the other order,

A= AAy

0 0 1
=[-1 0 o|#a (1.35)
0 -1 0

and an entirely different orientation results. Figure 1-9 illustrates the different
final orientations of a parallelepiped that undergoes rotations corresponding to
two rotation matrices A4, Az when successive rotations are made in different
order. The upper portion of the figure represents the matrix product Az A, and
the lower portion represents the product A4 Ap.

Ay Ay
— —
90° rotation 90° rotation
about xg-axis about xy-axis
*3
*
*
}"B }"A
—

90° rotation ]: ; 90° rotation

about x,-axis about xs-axis

FIGURE 1-9 A parallelepiped undergoes two successive rotations in different order.
The results are different.
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Next, consider the coordinate rotation pictured in Figure 1-10 (which is the
same as that in Figure 1-2). The elements of the transformation matrix in two
dimensions are given by the following cosines:

cos(xi, x{) = cos § = A4

w .
cos(x], xg) = cos(g - > =sinf = Ap

cos(xg, x1) = cos(g + 0> = —sinf = Ay
COs (X9, X9) = €08 0 = Ay

Therefore, the matrix is

cosf sin@
As = (— sinf cos 0> (1.362)

If this rotation were a three-dimensional rotation with x; = x5, we would
have the following additional cosines:

cos(xi, x¥3) = 0= Ay
cos(xg, x3) = 0 = Agg
cos(xg, x3) = 1 = Agg
cos(x3, x1) = 0= Ag;
cos{x3, x9) = 0 = Agg

and the three-dimensional transformation matrix is

cos @ sinf 0
A;=| —sinf cosf O (1.36b)
0 0 1

&
i
&

FIGURE 1-10 Coordinate system x;, x5, x5 is rotated an angle 6 ccw about the x4-axis.
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(Inversion)

FIGURE 1-11 An object undergoes an inversion, which is a reflection about the origin
of all the axes.

As a final example, consider the transformation that results in the reflection
through the origin of all the axes, as in Figure 1-11. Such a transformation is

called an inversion. In such a case, x| = —x;, X3 = —xy, X3 = — x5, and
-1 0 0
Ag = 0 -1 0 (1.837)
0 0 -1

In the preceding examples, we defined the transformation matrix Az to be
the result of two successive rotations, each of which was an orthogonal transfor-
mation: A3 = A;A;. We can prove that the successive application of orthogonal
transformations always results in an orthogonal transformation. We write

oy

x| = §A %, =

Combining these expressions, we obtain
X = EJ (EiﬂkiAy'> X;

= 2[pAly

Thus, we accomplish the transformation from ¥, to x7 by operating on x; with the
(prA) matrix. The combined transformation will then be shown to be orthogonal
if (uA)! = (uA)~!. The transpose of a product matrix is the product of the
transposed matrices taken in reverse order (see Problem 1-4); that is, (AB)’ =
B’ A’. Therefore

(mA) = Alp! (1.38)
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But, because A and p are orthogonal, A’ = A™! and u’ = p~!. Multiplying the
above equation by uA from the right, we obtain

(HA) pA = ApipA
= Af1A
= AA
=1
= (uA)"'pA

Hence

(MAY) = (uA)~! (1.39)

and the pA matrix is orthogonal.

The determinants of all the rotation matrices in the preceding examples can
be calculated according to the standard rule for the evaluation of determinants
of second or third order:

A A
|A| =M 2l = AiAge = ApgAg (1.40)
Al Ay
Al Az A
A=Az A Ags
Ast Agp Agg
A A A A A A
T I NP R W (1.41)
Asg  Agg Agi Agg Ag1 Ag

where the third-order determinant has been expanded in minors of the first
row. Therefore, we find, for the rotation matrices used in this section,

|A1| = |A2| T — |A5| =1
but
|A‘6| = _1

Thus, all those transformations resulting from rotations starting from the original set
of axes have determinants equal to +1. But an inversion cannot be generated by
any series of rotations, and the determinant of an inversion matrix is equal to —1.
Orthogonal transformations, the determinant of whose matrices is +1, are
called proper rotations; those with determinants equal to —1 are called im-
proper rotations. A/l orthogonal matrices must have a determinant equal to either
+1 or —1. Here, we confine our attention to the effect of proper rotations and do
not concern ourselves with the special properties of vectors manifest in improper
rotations.
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EXAMPLE 1.4

Show that [Ay] = 1and |Ag| = —

Solution.
1 0 o 1
[Ag| =0 0 1|= +1 =0-(-1) =1
-1 0
0 -1

-1 0 0

-1 0
[Agl =| 0 -1 0= -1 0 1——1(1—0)
0 0 -1

1.8 Definitions of a Scalar and a Vector in Terms
of Transformation Properties

Consider a coordinate transformation of the type
xl= 2\, % (1.42)
j
with
EA Ay = (1.43)

If, under such a transformatmn, a quantity qb is unaffected, then ¢ is called a
scalar (or scalar invariant).

If a set of quantities (A;, Ay, As) is transformed from the x; system to the x;]
system by a transformation matrix A with the result

EAA

g5

(1.44)

then the quantities A, transform as the coordinates of a point (i.e., according to
Equation 1.42), and the quantity A = (A,, Ay, 4;) is termed a vector.

1.9 Elementary Scalar and Vector Operations

In the following, A and B are vectors (with components A; and B)) and ¢, ¢, and
£ are scalars.

Addition
A;+ B;= B, + A Commutative law (1.45)
A+ (B, + C) = (A; + B) + G Associative law (1.46)
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d+ty=y+4¢ Commutative law (1.47)
¢+ Y+ & = (p+ ¢) + ¢ Associative law (1.48)
Multiplication by a scalar ¢
(A = B isavector (1.49)
éd = isascalar (1.50)

Equation 1.49 can be proved as follows:
B = ;Aiij = ;Ai;’g“‘j

= 20, 4; = €A (151)
J

and £A transforms as a vector. Similarly, {¢ transforms as a scalar.

1.10 Scalar Product of Two Vectors

The multiplication of two vectors A and B to form the scalar product is defined
to be

A-B=2A,B, _ (1.52)

where the dot between A and B denotes scalar multiplication; this operation is
sometimes called the dot product.
The vector A has components Aj, Ay, As, and the magnitude (or length) of A

is given by :
Al = + VA + A3+ A=A (1.53)

where the magnitude is indicated by |A| or, if there is no possibility of confu-
sion, simply by A. Dividing both sides of Equation 1.52 by AB, we have

A'B_SAB

— =22 1.54

AB i AB (1.54)

A;/A is the cosine of the angle a between the vector A and the x-axis (see
Figure 1-12). In general, A,/A and B;/B are the direction cosines A# and A% of
the vectors A and B:

A-B

AB = ZA‘?A? (1.55)
The sum 2 A4AZ is just the cosine of the angle between A and B (see Equation
1.11):

cos (A, B) = 2A4AP

or

| A- B = 4B cos(A, B) | (1.56)
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X3
N
N
N
N\
N
N
A A
3 ~
A
1
I
I
I
) A2 %
AN [¢4 : /,
0 Lo
Al AN 'l ’

I
I
1

X

FIGURE 1-12 A vector A is shown in coordinate system x,, x,, x5 with its vector
components A;, A;, and Ajy. The vector A is oriented at an angle o
with the x;-axis.

That the product A B is indeed a scalar may be shown as follows. A and B
transform as vectors:

Aj= 24, Bi= 2B, (1.57)
J

/i

Therefore the product A’ - B’ becomes

A'-B' = 2A!B!

“3(Fua)(3r)

Rearranging the summations, we can write
A B =22\ A4)AB,
AN j
But according to the orthogonality condition, the term in parentheses is just 5.
Thus,

A'-B' = jz(gsjkAjBQ
=§4@
=A-B (1.58)

Because the value of the product is unaltered by the coordinate transformation,
the product must be a scalar.

Notice that the distance from the origin to the point (%, xo, x3) defined by
the vector A, called the position vector, is given by

Al = VAA= Vi + xd + 3=\ 2a?



U L0

X3

(%), %, %3) (%1, %9, x3)

x1
FIGURE 1-13 The vector A is the position vector of point (x}, x,, x3), and vector B is

the position vector of point (¥, ¥,, ¥3), The vector A — B is the
position vector from (X, Xy, X3) to (x;, x4, x3).

Similarly, the distance from the point (x;, x5, ¥3) to another point (%}, x4, X3) de-
fined by the vector B is

V2(x-%)?= V(A -B)-(A—B) = |A-B|

That is, we can define the vector connecting any point with any other point as
the difference of the position vectors that define the individual points, as in
Figure 1-13. The distance between the points is then the magnitude of the dif-
ference vector. And because this magnitude is the square root of a scalar prod-
uct, it is invariant to a coordinate transformation. This is an important fact and
can be summarized by the statement that orthogonal transformations are distance-
preserving transformations. Also, the angle between two vectors is preserved under
an orthogonal transformation. These two results are essential if we are to suc-
cessfully apply transformation theory to physical situations.
The scalar product obeys the commutative and distributive laws:

A-B=2AB =2BA=B-A (1.59)
A-(B+C) =2AB+ C),=2AB+ C)

= 2 (A;B,+ A,C) = (A-B) + (A-C) (1.60)

1.11 Unit Vectors

Sometimes we want to describe a vector in terms of the components along the
three coordinate axes together with a convenient specification of these axes. For
this purpose, we introduce unit vectors, which are vectors having a length equal
to the unit of length used along the particular coordinate axes. For example, the
unit vector along the radial direction described by the vector Ris e = R/( IR| ).
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There are several variants of the symbols for unit vectors; examples of the most
common sets are (i, j, k), (e}, ey, e3), (e,, €, €,), and (r, 0, ¢) The following
ways of expressing the vector A are equivalent:

A= (AI’A2’ A3) or A= € Al + e2A2 + e3A3 = EelAl} (1 61)

or A=Aji+ Ayj+ Ak

Although the unit vectors (i, j, k) and (r, 6, @) are somewhat easier to use, we
tend to use unit vectors such as (e;, ey, €3), because of the ease of summation no-
tation. We obtain the components of the vector A by projection onto the axes:

We have seen (Equation 1.56) that the scalar product of two vectors has a
magnitude equal to the product of the individual magnitudes multiplied by the
cosine of the angle between the vectors:

A-B = AB cos(A, B) (1.63)

If any two unit vectors are orthogonal, we have

e,»'ej = 811 (1-64)

EXAMPLE 1.5

Two position vectors are expressed in Cartesian coordinates as A =i + 2j — 2k
and B = 4i + 2j — 3k. Find the magnitude of the vector from point A to point
B, the angle 6 between A and B, and the component of B in the direction of A.

Solution. The vector from point A to point Bis B — A (see Figure 1-13).
B-A=4i+2j—-3k—({+2j—2k)=3i—-k
B-Al=Vo+1=V10
From Equation 1.56
A-B_ (i+2j—2k)-(4+2j— 3k)

cos 6§ =
AB V9V'29
4+ 4+6
cos § = ———— = (0.867
3(V29)
= 30°

The component of B in the direction of A is B cos § and, from Equation
1.56,
14

A'B
B = —— = — = 4,67
cos 6 1 3
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1.12 Vector Product of Two Vectors

We next consider another method of combining two vectors—the vector prod-
uct (sometimes called the cross product). In most respects, the vector product of
two vectors behaves like a vector, and we shall treat it as such.* The vector prod-
uct of A and B is denoted by a bold cross X,

C=AXB (1.65)

where C is the vector resulting from this operation. The components of C are
defined by the relation

G = % e A; By (1.66)

where the symbol & is the permutation symbol or (Levi-Civita density) and has
the following properties:
0, ifanyindex is equal to any other index
e =t1, if 4, j, k form an even permutation of 1, 2, 3 (1.67)
—1, if4 j, kform an odd permutation of 1, 2, 3
An even permutation has an even number of exchanges of position of two sym-

bols. Cyclic permutations {(for example, 123 — 231 — 312) are always even.
Thus

€199 = &313 = &1 = 0, etc.
£193 = 931 = €312 = t1
£132 = £913 = €391 = —1
Using the preceding notation, the components of C can be explicitly evaluated.

For the first subscript equal to 1, the only nonvanishing €,; are &5 and &;59—
that is, for j, k = 2, 3 in either order. Therefore

G = jzksljkAjBk = 1934983 + €,543By

= AgB3 — A3B, (1.68a)

Similarly,
Cy = A3B) — A B, (1.68b)
C3 = A|B; — AgB, (1.68c)

Consider now the expansion of the quantity [ABsin(A, B) 12 = (ABsin#)2:
A2B?%sin%260 = A2B2 — A2B2cos?6

-(3)(z) - (3an)

= (A2Bs - 1‘13132)2 + (AsBl - 1‘11133)2 + (AlB2 - A2Bl)2 (1-69)

*The product actually produces an axial vector, but the term vector product is used to be consistent
with popular usage.
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FIGURE 1-14 The magnitude of the vector C determined by C = A X B has a
magnitude given by the area of the parallelogram ABsin 0, where 6
is the angle between the vectors A and B.

where the last equality requires some algebra. Identifying the components of C
in the last expression, we can write

(ABsin9)2=C?+ C3+ C3=|C?| = 2 (1.70)
If we take the positive square root of both sides of this equation,
C= ABsin 6 (1.71)

This equation states that if C = A X B, the magnitude of C is equal to the prod-
uct of the magnitudes of A and B multiplied by the sine of the angle between
them. Geometrically, AB sin 8 is the area of the parallelogram defined by the
vectors A and B and the angle between them, as in Figure 1-14.

EXAMPLE 1.6

Show by using Equations 1.52 and 1.66 that

A-(BXxD)=D- (A X B) (1.72)
Solution. Using Equation 1.66, we have

(B x D), = 28,,,3 D,
Using Equation 1.52, we have

A-(BXD)= %szjkA,-BjDk (1.73)
Similarly, for the right-hand side of Equation 1.72, we have

D-(AXB) = %sy—kD,-AjBk

From the definition (Equation 1.67) of &3, we can interchange two adjacent in-
dices of &;3, which changes the sign.

D-(A X B) = 2 - e,Did, B,
= Es,,,A B,D, (1.74)

Because the indices ¢, j, k are dummy and can be renamed, the right-hand sides
of Equations 1.73 and 1.74 are identical, and Equation 1.72 is proved. Equation
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1.72 can also be written as A - (B X D) = (A x B) - D, indicating that the scalar
and vector products can be interchanged as long as the vectors stay in the order
A, B, D. Notice that, if we let B = A, we have

A-AXD)y=D-(AXA)=0
showing that A X D must be perpendicular to A.

A x B (i.e., C) is perpendicular to the plane defined by A and B because
A:-(AXB) =0and B* (A X B) = 0. Because a plane area can be represented
by a vector normal to the plane and of magnitude equal to the area, C is evi-
dently such a vector. The positive direction of C is chosen to be the direction of
advance of a right-hand screw when rotated from A to B.

The definition of the vector product is now complete; components, magni-
tude, and geometrical interpretation have been given. We may therefore reason-
ably expect that C is indeed a vector. The ultimate test, however, is to examine
the transformation properties of C, and C does, in fact, transform as a vector
under a proper rotation.

We should note the following properties of the vector product that result
from the definitions:

(a) AXB=-BXxA (1.75)
but, in general,
(b) AXBXC)#*{(AXB)xC (1.76)
Another important result (see Problem 1-22) is
AXBXC=A-CB—-(A-B)C (1.77)
EXAMPLE 1.7
Find the product of (A X B) + (C X D).
Solution.

(A X B)l = EsykAjBk
ik

(CXD);= LE €unG Dy

The scalar product is then computed according to Equation 1.52:
(AX B)+(C X D) = 2(}%% Aj-Bk>(L2msi,mC,Dm>
Rearranging the summations, we have
(A X B) - (C X D) =L2m (E sj,,,-s,m,) A;BC,D,
where the indices of the &’s have been pé:muted (twice each so that no sign
change occurs) to place in the third position the index over which the sum is
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carried out. We can now use an important property of the g;; (see Problem 1-22):

;‘Eiﬂcslmk = 80m — SimSjl (1.78)

We therefore have

(A X B) " (C X D) =2 (8,84, — 8;u8) 4,B,GD,
Lm
Carrying out the summations over jand %, the Kronecker deltas reduce the ex-
pression to
(A X B)+ (C X D) = 2 (4,B,G.D, — An B GD,)
This equation can be rearranged to obtain

(AX B)-(C X D) = (EIA, c,) (%B,”D,”) - (EIB, c,) (%A,”Dm>

Because each term in parentheses on the right-hand side is just a scalar product,
we have, finally,

(AXB)-(C xD)=(A-C)(B-D) — (B-C)(A-D)

The orthogonality of the unit vectors e; requires the vector product to be
e; X e; =€, 1 j kincyclic order (1.79a)

We can now use the permutation symbol to express this result as

€; X ej = ;ek sijk (1.79b)

The vector product C = A X B, for example, can now be expressed as
C= %sijkeiAjBk (1.80a)

By direct expansion and comparison with Equation 1.80a, we can verify a de-
terminantal expression for the vector product:

€ € €3

C=AXB=|A Ay As (1.80b)
B, B, B
We state the following identities without proof:
A-(BXC)=B-(CxA)=C-(AXB) =ABC (1.81)
AX (BXC)=(A-C)B— (A-B)C (1.82)
(AXB)-(CXD)=A-[B X (CXD)]
=A-[(B-D)C— (B-C)D] (1.83)
= (A-C)(B-D) — (A-D)(B-C)

(AXB) X (CXD)=[(AXB)-D]C — [(A X B)-C]D } (L84

= (ABD)C — (ABC)D = (ACD)B — (BCD)A
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1.13 Differentiation of a Vector
with Respect to a Scalar

If a scalar function ¢ = ¢(s) is differentiated with respect to the scalar variable s,
then, because neither part of the derivative can change under a coordinate
transformation, the derivative itself cannot change and must therefore be a
scalar; that is, in the x; and x] coordinate systems, ¢ = ¢’ and s = s’, so d¢p = d¢’
and ds = ds’. Hence

a6 _dé" _ (d_¢’>'
ds ds' ds
Similarly, we can formally define the differentiation of a vector A with re-
spect to a scalar s. The components of A transform according to
Al= 2 A, (1.85)
Therefore, on differentiation, we obtaln (because the A; are independent of s”)
dA] _d
== E AjA; = E A,] -

Because s and s’ are identical, we have

dA!  (dA)\ dA;
ds ds 7\ ds

Thus the quantities dA;/ds transform as do the components of a vector and
hence arethe components of a vector, which we can write as dA/ds.

We can give a geometrical interpretation to the vector dA/ds as follows. First,
for dA/ds to exist, A must be a continuous function of the variable s: A = A(s).
Suppose this function is represented by the continuous curve I' in Figure 1-15; at
the point P, the variable has the value s, and at Q it has the value s + As. The de-
rivative of A with respect to sis then given in standard fashion by

dA _ lim 2A AA _ lim A(s + As) — A(®5)
ds As—0 As As—0 As

(1.86a)

X

—

FIGURE 1-15 The vector A(s) traces out the function I'(s) as the variable s changes.
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The derivatives of vector sums and products obey the rules of ordinary vec-
tor calculus. For example,

i(A+B)—iA+@ (1.86b)
ds ds ds )
dB dA
—(A B)=A-—+ —-B (1.86¢)
ds ds
d dB dA
—(AXB)=AX—+ —XB 1.86d
ds( ) ds ds (1.86d)
d dA d¢
—(A) = dp— + —A 1.
ds(¢> )=¢ PR (1.86¢)

and similarly for total differentials and for partial derivatives.

1.14 Examples of Derivatives—
Velocity and Acceleration

Of particular importance in the development of the dynamics of point particles
(and of systems of particles) is the representation of the motion of these parti-
cles by vectors. For such an approach, we require vectors to represent the posi-
tion, velocity, and acceleration of a given particle. It is customary to specify the
position of a particle with respect to a certain reference frame by a vector r, which
is in general a function of time: r = r(¢#). The velocity vector v and the acceleration
vector a are defined according to

d
VE—:=1" (1.87)
a=_Lr_, (1.88
@ ar " -88)

where a single dot above a symbol denotes the first time derivative, and two dots
denote the second time derivative. In rectangular coordinates, the expressions
forr, v, and a are

r= xe; + xo€9 + x3€5 = Exiei Position

d
v=r1= Ex e 2 dxt €; Velocity (1.89)

d*x;
a=v=§F= Ex €; 2 Pr Acceleration
Calculating these quantities in rectangular coordinates is straightforward because

the unit vectors e; are constant in time. In nonrectangular coordinate systems,
however, the unit vectors at the position of the particle as it moves in space are
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not necessarily constant in time, and the components of the time derivatives of r
are no longer simple relations, as in Equation 1.89. We do not discuss general
curvilinear coordinate systems here, but plane polar coordinates, spherical coordi-
nates, and cylindrical coordinates are of sufficient importance to warrant a discus-
sion of velocity and acceleration in these coordinate systems.*

To express v and a in plane polar coordinates, consider the situation in
Figure 1-16. A point moves along the curve s(f) and in the time interval
to — t; = dt moves from P®) to P, The unit vectors, e, and e4 which are or-
thogonal, change from e{!) to e and from e{! to e{? . The change in e, is

e? —el) = de, (1.90)

which is a vector normal to e, (and, therefore, in the direction of ey). Similarly,
the change in e, is

ef® —efl) = de, (1.91)
which is a vector normal to ey. We can then write
de, = dfey (1.92)
and
de, = —dOe, (1.93)

where the minus sign enters the second relation because de, is directed opposite
to e, (see Figure 1-16).

s(t)

FIGURE 1-16 An object traces out the curve s(#) over time. The unit vectors €, and €,
and their differentials are shown for two position vectors r; and r,.

* Refer to the figures in Appendix F for the geometry of these coordinate systems.
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Equations 1.92 and 1.93 are perhaps easier to see by referring to Figure 1-16.
In this case, de, subtends an angle d with unit sides, so it has a magnitude of 46.
It also points in the direction of ey, so we have de, = dfe,. Similarly, de, subtends
an angle d@ with unit sides, so it also has a magnitude of d6, but from Figure 1-16
we see that dey points in the direction of —e, so we have de; = —d@e,.

Dividing each side of Equations 1.92 and 1.93 by dt, we have

&, = e, (1.94)
&g = —be, (1.95)
If we express v as
dr d(r )
YV = == —
dt dr "
= fe, + ré, (1.96)

we have immediately, using Equation 1.94,

v=ri=te, + réeo (1.97)

so that the velocity is resolved into a radial component 7 and an angular (or
transverse) component 76,
A second differentiation yields the acceleration:

®
I

d )
Et('re, + rfey)

= Pe, + 7é, + they + 1 e, + rééo

= (¢ — 102e, + (0 + 2ih)e, (1.98)
so that the acceleration is resolved into a radial component (¥ — 76%) and an
angular (or transverse) component (rf + 276).

The expressions for ds, ds?, v?, and v in the three most important coordi-
nate systems (see also Appendix F) are

Rectangular coordinates (x, y, z)

ds = dxye, + dxge, + dxses
ds® = do@ + dx3 + dx3

v? =i+ i3+ &3 (1.99)
vV = kie) T Xep + Xses
Spherical coordinates (r, 0, ¢)
ds = dre, + rdfey, + rsin 6 dde,
ds? = dr? + r2d6% + r?sin?0 d¢? (1.100)

v2 = 72 + r202 + r2sin20 §?

v =rte, + réeo + 7rsin 0¢3e¢
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(The expressions for plane polar coordinates result from Equation 1.100 by set-
ting dgp = 0.)

Cylindrical coordinates (1, ¢, 2)

ds = dre, + rdde, + dze,

ds? = dr? + r’d¢? + d22

-r r.qb : (1.101)
v? =72 + r2? + 32
v =re,+ rqf)e¢+2ez

EXAMPLE 1.8

Find the components of the acceleration vector a in cylindrical coordinates.

Solution. 'The velocity components in cylindrical coordinates were given in
Equation 1.101. The acceleration is determined by taking the time derivative of v.

a—i —i(i +r¢3 + ze)
dtv dt €, ed, ze,

= fe, + 7e, + ide, + rde, + rde, + i, + zé,
We need to find the time derivative of the unit vectors e,, e, and e,. The

cylindrical coordinate system is shown in Figure 1-17, and in terms of the (x, y, z)
components, the unit vectors e,, e,, and e, are

e, = (cos ¢, sin ¢, 0)
ey, = (—sin ¢, cos ¢, 0)
0,0, 1)

€,

\,..._._._.---

FIGURE 1-17 The cylindrical coordinate system (r, ¢, z) are shown with respect to the
Cartesian system (x, y, 2).
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The time derivatives of the unit vectors are found by taking the derivatives of
the components.

e, = (—¢3 sin ¢, ¢ cos ¢, 0) = —¢3e¢
& (—¢'> cos qb,—d; sin ¢, 0) = —¢3e,

e, =0

We substitute the unit vector time derivatives into the above expression for a.
a = fe, + ide, + ide, + rde, — rdle, + Ze,
= (7 — rdDe, + (rd + 2id)e, + Ze,

1.15 Angular Velocity

A point or a particle moving arbitrarily in space may always be considered, at a
given instant, to be moving in a plane, circular path about a certain axis; that is,
the path a particle describes during an infinitesimal time interval 8¢ may be rep-
resented as an infinitesimal arc of a circle. The line passing through the center
of the circle and perpendicular to the instantaneous direction of motion is
called the instantaneous axis of rotation. As the particle moves in the circular
path, the rate of change of the angular position is called the angular velocity:

a6 .
W= 0 (1.102)
Consider a particle that moves instantaneously in a circle of radius R about

an axis perpendicular to the plane of motion, as in Figure 1-18. Let the position
vector r of the particle be drawn from an origin located at an arbitrary point O
on the axis of rotation. The time rate of change of the position vector is the
linear velocity vector of the particle, ¥ = v. For motion in a circle of radius R, the

instantaneous magnitude of the linear velocity is given by
v=R— = Rw (1.103)

The direction of the linear velocity v is perpendicular to r and in the plane of the
circle.

It would be very convenient if we could devise a vector representation of
the angular velocity (say, ) so that all the quantities of interest in the motion
of the particle could be described on a common basis. We can define a direction
for the angular velocity in the following manner. If the particle moves instanta-
neously in a plane, the normal to that plane defines a precise direction in
space—or, rather—two directions. We may choose as positive that direction correspon-
ding to the direction of advance of a right-hand screw when turned in the same
sense as the rotation of the particle (see Figure 1-18). We can also write the mag-
nitude of the linear velocity by noting that R = rsina. Thus

v=rowsina (1.104)
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O

FIGURE 1-18 A particle moving ccw about an axis according to the right-hand rule
has an angular velocity @ = v X r about that axis.

Having defined a direction and a magnitude for the angular velocity, we note
that if we write

v=mXr (1.105)

then both of these definitions are satisfied, and we have the desired vector rep-
resentation of the angular velocity.

We should note at this point an important distinction between finite and in-
finitesimal rotations. An infinitesinal rotation can be represented by a vector
(actually, an axial vector), but a finite rotation cannot. The impossibility of de-
scribing a finite rotation by a vector results from the fact that such rotations do
not commute (see the example of Figure 1-9), and therefore, in general, differ-
ent results will be obtained depending on the order in which the rotations are
made. To illustrate this statement, consider the successive application of two fi-
nite rotations described by the rotation matrices A; and Ag. Let us associate the
vectors A and B in a one-to-one manner with these rotations. The vector sum is C =
A + B, which is equivalent to the matrix A3 = AyA;. But because vector addition
is commutative, we also have C = B + A, with A, = A;A,. But we know that
matrix operations are not commutative, so that in general A3 # A,. Hence, the
vector C is not unique, and therefore we cannot associate a vector with a finite
rotation.

Infinitesimal rotations do not suffer from this defect of noncommutation. We
are therefore led to expect that an infinitesimal rotation can be represented by a
vector. Although this expectation is, in fact, fulfilled, the ultimate test of the vec-
tor nature of a quantity is contained in its transformation properties. We give
only a qualitative argument here.

Refer to Figure 1-19. If the position vector of a point changes from r tor +
Or, the geometrical situation is correctly represented if we write

or =60 Xr (1.106)
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60

FIGURE 1-19 The position vector r changes to r + 8r by an infinitesimal
rotation angle 66.

where 60 is a quantity whose magnitude is equal to the infinitesimal rotation
angle and that has a direction along the instantaneous axis of rotation. The
mere fact that Equation 1.106 correctly describes the situation illustrated in
Figure 1-19 is not sufficient to establish that 0 is a vector. (We reiterate that the
true test must be based on the transformation properties of 60.) But if we show
that two infinitesimal rotation “vectors”—80; and §0,—actually commute, the sole
objection to representing a finite rotation by a vector will have been removed.

Let us consider that a rotation 0, takes r into r + 8r;, where ér; = 80, X r.
If this is followed by a second rotation 60, around a different axis, the initial po-
sition vector for this rotation ig r + ér,. Thus

Ory = 605 X (r + Or))
and the final position vector for §0, followed by 80, is
r+drp=r+[80, Xr+ 80, X (r + 8r))]
Neglecting second-order infinitesimals, then,
Orig =680, Xr+ 80, Xr (1.107)
Similarly, if 60, is followed by 60,, we have
r+0ry =r+ [0, X r+ 80, X (r + 8ry)]
or
Sry = 80, X r + 80, X r (1.108)

Rotation vectors drjg and dry; are equal, so the rotation “vectors” 60, and 60, do
commute. It therefore seems reasonable that 60 in Equation 1.106 is indeed a
vector.
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It is the fact that 0 is a vector that allows angular velocity to be represented
by a vector, because angular velocity is the ratio of an infinitesimal rotation angle

to an infinitesimal time:
50
w=—
ot

Therefore, dividing Equation 1.106 by 8¢, we have
or 30

YR
or, in passing to the limit, 6t — 0,
V=mwXr

as before.

1.16 Gradient Operator

We now turn to the most important member of a class called vector differential
operators—the gradient operator.

Consider a scalar ¢ that is an explicit function of the coordinates x; and,
moreover, is a continuous, single-valued function of these coordinates through-
out a certain region of space. Under a coordinate transformation that carries the
x; into the x;j, ¢'{x], x9, x3) = ¢(x1, Xg, x3), and by the chain rule of differentia-
tion, we can write

¢’ ¢ 0x;
i _ 3% (1.109)
axl 7 axj axl
The case is similar for d¢’/dxg and d¢'/dxs, so in general we have
ad’ a 9x;
d’, s —2 (1.110)
ox; j 0x;0x;
The inverse coordinate transformation is
% = g)‘ij;, (1.111)

Differentiating,

0x; ) ax},
I = — . 4 = . _k
on = il (%Akj xk> g)‘kj(ax) (1.112)

3

But the term in the last parentheses is just &, so

ox;
1 _ —
B_x,f = ;AkjSik = Ay (1.113)
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Substituting Equation 1.113 into Equation 1.110, we obtain

9 _ EM% (1.114)
ox; i Yox
Because it follows the correct transformation equation of a vector (Equation
1.44), the function d¢/dx; is the jth component of a vector termed the gradient
of the function ¢. Note that even though ¢ is a scalar, the gradient of ¢ is a vector.
The gradient of ¢ is written either as grad ¢ or as V¢ (“del” ¢).

Because the function ¢ is an arbitrary scalar function, it is convenient to de-
fine the differential operator described in the preceding in terms of the gradient
operator:

(grad), =V, = % (1.115)

i

We can express the complete vector gradient operator as

9
grad = V = Ze,& Gradient (1.116)

1

The gradient operator can (a) operate directly on a scalar function, as in
V¢; (b) be used in a scalar product with a vector function, as in V « A (the diver-
gence (div) of A); or (c) be used in a vector product with a vector function, as in
V X A (the curl of A). We present the grad, divergence, and curl:

P
grad ¢ = V¢ = Ee,.égi (1.117a)
94,
divA=V-A=Ea—x’ (1.117b)
9A
curlA = V X A = e, —e, (1.117¢)
i,k Y 0X:
7

To see a physical interpretation of the gradient of a scalar function, consider
the three-dimensional and topographical maps of Figure 1-20. The closed loops
of part b represent lines of constant height. Let ¢ denote the height at any point
¢ = ¢(x, x5, x3). Then

@ =3 Lax = SV, ax,

The components of the displacement vector ds are the incremental displace-
ments in the direction of the three orthogonal axes:
ds = (dxl, dXQ, dx3) (1.118)

Therefore

| dp = (Vo) - ds 1 (1.119)
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FIGURE 120 (a) A three-dimensional contour map can be represented by (b) a
topographical map of lines ¢ representing constant height. The
gradient V¢ represents the direction perpendicular to the constant

¢ lines.

Let ds be directed tangentially along one of the isolatitude lines (i.e., along
a line for which ¢ = const.), as indicated in Figure 1-20. Because ¢ = const. for
this case, d¢ = 0. But, because neither V ¢ nor ds is in general zero, they must there-
fore be perpendicular to each other. Thus V¢ is normal to the line (or in three
dimensions, to the surface) for which ¢ = const.
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The maximum value of d¢ results when V¢ and ds are in the same direc-
tion; then,

(d¢)mu = |V¢)|d8, for V¢>||ds
or

V| = (%)m (1.120)

Therefore, V¢ is in the direction of the greatest change in ¢.
We can summarize these results as follows:

1. The vector V¢ is, at any point, normal to the lines or surfaces for which ¢ =
const.

The vector V¢ has the direction of the maximum change in ¢.

Because any direction in space can be specified in terms of the unit vector n
in that direction, the rate of change of ¢ in the direction of n (the directional
derivative of ¢) can be found from n + V¢p = d¢p/on.

N

The successive operation of the gradient operator produces

Jd 0 92
v.v=2>22_>72 1.121
i 9x; Ox; Ezax? (1.121)

This important product operator, called the Laplacian,* is also written

2
- (1.122)

i dx?

When the Laplacian operates on a scalar, we have, for example,

vy =3

i Ox?

(1.123)

1.17 Integration of Vectors

The vector resulting from the volume integration of a vector function A = A(x,)
throughout a volume V is given by!

J Adv= (JAldv, JAgdv, JA3dv> (1.124)
v v v v

*After Pierre Simon Laplace (1749-1827); the notation V2 is ascribed to Sir William Rowan
Hamilton.

The symbol [y actually represents a triple integral over a certain volume V. Similarly, the symbol [
stands for a doubleintegral over a certain surface S.
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FIGURE 1-21 The differential da is an element of area of the surface. Its direction is
normal to the surface.

Thus, we integrate the vector A throughout V simply by performing three sepa-
rate, ordinary integrations.

The integral over a surface S of the projection of a vector function A = A(x,)
onto the normal to that surface is defined to be

JA-da
s

where dais an element of area of the surface (Figure 1-21). We write da as a vec-
tor quantity because we may attribute to it not only a magnitude da but also a di-
rection corresponding to the normal to the surface at the point in question. If
the unit normal vector is n, then

da = nda (1.125)

Thus, the components of da are the projections of the element of area on the
three mutually perpendicular planes defined by the rectangular axes:

da, = dxydx;, etc. (1.126)
Therefore, we have

LA- da = LA- nda (1.127)
or

LA-da = L iEA,-dal- (1.128)

Equation 1.127 states that the integral of A over the surface S is the integral of
the normal component of A over this surface.

The normal to a surface may be taken to lie in either of two possible direc-
tions (“up” or “down”); thus the sign of n is ambiguous. If the surface is closed, we
adopt the convention that the outward normal is positive.

The line integral of a vector function A = A(x,) along a given path extend-
ing from the point B to the point Cis given by the integral of the component of
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FIGURE 1-22 The element ds is an element of length along the given path from B to
C. Its direction is along the path at a given point.

A along the path

J A-ds = J 2 A, dx, (1.129)
BC BC i

The quantity ds is an element of length along the given path (Figure 1-22). The
direction of ds is taken to be positive along the direction the path is traversed. In
Figure 1-22 at point P, the angle between ds and A is less than 7w /2, so A - ds is
positive at this point. At point Q, the angle is greater than 7/2, and the contri-
bution to the integral at this point is negative.

It is often useful to relate certain surface integrals to either volume integrals
(Gauss’s theoremn) or line integrals (Stokes’s theorem). Consider Figure 1-23,
which shows a closed volume Venclosed by the surface S. Let the vector A and its
first derivatives be continuous throughout the volume. Gauss’s theorem states
that the surface integral of A over the closed surface Sis equal to the volume in-
tegral of the divergence of A (V+A) throughout the volume Venclosed by the
surface S. We write this mathematically as

JA-da = JV-A dv (1.130)
S 14

Gauss’s theorem is sometimes also called the divergence theorem. The theorem is
particularly useful in dealing with the mechanics of continuous media.

See Figure 1-24 for the physical description needed for Stokes’s theorem,
which applies to an open surface S and the contour path Cthat defines the sur-
face. The curl of the vector A (V X A) must exist and be integrable over the en-
tire surface S. Stokes’s theorem states that the line integral of the vector A
around the contour path C is equal to the surface integral of the curl of A over
the surface defined by C. We write it mathematically as

JA-ds = J(V X A) - da (1.131)
C S

where the line integral is around the closed contour path C. Stokes’s theorem is
particularly useful in reducing certain surface integrals (two dimensional) to, it
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Surface S

Volume V

FIGURE 1-23 The differential da is an element of area on a surface § that surrounds
a closed volume V.

Surface S

Contour C .~

FIGURE 1-24 A contour path Cdefines an open surface S. A line integral around the
path Cand a surface integral over the surface §is required for Stokes’s
theorem.

is hoped, a simpler line integral (one dimensional). Both Gauss’s and Stokes’s
theorems have wide application in vector calculus. In addition to mechanics,
they are also useful in electromagnetic applications and in potential theory.

PROBLEMS

1-1. Find the transformation matrix that rotates the axis x; of a rectangular coordinate
system 45° toward x, around the x-axis.

1-2. Prove Equations 1.10 and 1.11 from trigonometric considerations.
1-3. Find the transformation matrix that rotates a rectangular coordinate system
through an angle of 120° about an axis making equal angles with the original three

coordinate axes.

14. Show
(a) (AB)! = B'A’ (b) (AB)! = B !A!

1-5. Show by direct expansion that |A|? = 1. For simplicity, take A to be a two-
dimensional orthogonal transformation matrix.
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1-6.

18.

1-12.
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Show that Equation 1.15 can be obtained by using the requirement that the trans-
formation leaves unchanged the length of a line segment.

Consider a unit cube with one corner at the origin and three adjacent sides lying
along the three axes of a rectangular coordinate system. Find the vectors describ-
ing the diagonals of the cube. What is the angle between any pair of diagonals?

Let A be a vector from the origin to a point Pfixed in space. Let r be a vector from
the origin to a variable point Q(x;, x5, x3). Show that
A-r= A%
is the equation of a plane perpendicular to A and passing through the point P.
For the two vectors

A=i+2—k B=-2+3+k

find
(a) A— Band |A — B| (b) componentof BalongA (c) angle between A and B
(dAXB (e¢) (A— B) X (A+ B)

. A particle moves in a plane elliptical orbit described by the position vector

r = 2bsin wti + bcos witj

(a) Find v, a, and the particle speed.
(b) What is the angle between v and a at time ¢ = 7/2w?

. Show that the triple scalar product (A X B) - C can be written as

A A A
(AxB)-C=B, B, B
G G G

Show also that the product is unaffected by an interchange of the scalar and vector
product operations or by a change in the order of A, B, C, as long as they are in
cyclic order; that is,

AXB)-C=A-BXC)=B-(CxXA)=(CXxA)-B, etc.

We may therefore use the notation ABC to denote the triple scalar product. Finally,
give a geometric interpretation of ABC by computing the volume of the paral-
lelepiped defined by the three vectors A, B, C.

Let a, b, ¢ be three constant vectors drawn from the origin to the points A, B, C.
What is the distance from the origin to the plane defined by the points A, B, C?
What is the area of the triangle ABC?

. X is an unknown vector satisfying the following relations involving the known vec-

tors A and B and the scalar ¢,
AXX=B, A-X=¢.

Express X in terms of A, B, ¢, and the magnitude of A.
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1-14.

1-15.

1-16.

1-17.

1-18.

1-19.

1-20.

1-21.

1-22.

Consider the following matrices:

1 2 -1 2 1 0 2 1
A=10 3 11, B=]0 -1 2} €=]4 3
2 0 1 1 3 1 0

Find the following
(a) |AB| (b) AC (c) ABC (d) AB — BA’

Find the values of a needed to make the following transformation orthogonal.

1 0 0
0 a —«
0 « «a

‘What surface is represented by r-a = const. that is described if a is a vector of con-
stant magnitude and direction from the origin and r is the position vector to the
point P(x;, x5, x3) on the surface?

Obtain the cosine law of plane trigonometry by interpreting the product (A — B) -
(A — B) and the expansion of the product.

Obtain the sine law of plane trigonometry by interpreting the product A X B and
the alternate representation (A — B) X B.

Derive the following expressions by using vector algebra:

(a) cos (¢ — B) = cosa cos B + sina sin B

(b) sin (@ — B) = sin« cos B — cos a sin B

Show that

(a) iEjei’-k 5,] =0 (b) jEkeyk Eb'k = 28,‘1 (c) %69} eijk =6

Show (see also Problem 1-11) that

ABC = %eqkAi@ck

Evaluate the sum ;e,ﬁem (which contains 3 terms) by considering the result for

all possible combinations of 4, j, 4, m, that 1s,
@i=j b)yi=1 ©)i=m dj=1 (e)j=m ®il=m
@i#Florm (h)j+lorm

Show that
Ekeijkelmk =80, — 6im6jl

and then use this result to prove

AX(BxC)=(A-C)B— (A-B)C
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1-23.

1-24.

1-25.

1-26.

1-27.

1-28.

1-29.

1-30.

1-31.

1-32.

1-33.
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Use the ¢, notation and derive the identity
(A X B) X (C x D) = (ABD)C ~ (ABC)D

Let A be an arbitrary vector, and let e be a unit vector in some fixed direction. Show
that

A=e(A-e)TeX (AXe)

What is the geometrical significance of each of the two terms of the expansion?
Find the components of the acceleration vector a in spherical coordinates.

A particle moves with v = const. along the curve r = k(1 + cos 0) (a cardioid). Find
f-e, = a-e,lal,and .

If r and + = v are both explicit functions of time, show that

%[r X (vxrl=ra+ (rv)v= (v2+r-a)r

Show that

V(nlr) = %

Find the angle between the surfaces defined by r2 = 9 and x + y + 22 = 1 at the
point (2, —2,1).

Show that V() = ¢V + V.
Show that
df 1
n — n—2 = l—.— =
(a) V" = nrn=?r (b) V£(1) v (c) V2(In 1) 2
Show that

J(?ar-i‘ + 2bt - £)dt = ar? + b7? + const.

where r is the vector from the origin to the point (x,, x5, x3). The quantities rand ¥
are the magnitudes of the vectors r and t, respectively, and aand & are constants.

Show that

where C is a constant vector.
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1-34.

1-35.

1-36.

1-37.

1-38.

1-39.

140.

141.

Evaluate the integral

JA X Adt

Show that the volume common to the intersecting cylinders defined by x* + y? = q?
and x2 + 22 = a%is V= 164%/3.

Find the value of the integral [;A - da, where A = xi — yj + zk and S'is the closed
surface defined by the cylinder ¢2 = x? + y2 The top and bottom of the cylinder
are at z = dand 0, respectively.

Find the value of the integral [;A« da, where A = (x% + y? + 22)(xi + yj + zk) and
the surface S is defined by the sphere R? = x? + y? + z2. Do the integral directly
and also by using Gauss’s theorem.

Find the value of the integral [s(V X A)  da if the vector A = yi + zj + xkand Sis
the surface defined by the paraboloid z = 1 — x? — y2 where z = 0.

A plane passes through the three points (x, y, z) = (1, 0, 0), (0, 2, 0), (0, 0, 3).

(a) Find a unit vector perpendicular to the plane. (b) Find the distance from the
point (1, 1, 1) to the closest point of the plane and the coordinates of the closest
point.

The height of a hill in meters is given by z = 2xy — 32 — 45> — 18x + 28y + 12,
where x is the distance east and y is the distance north of the origin. (a) Where is
the top of the hill and how high is it? (b) How steep is the hill at x = y = 1, that is,
what is the angle between a vector perpendicular to the hill and the z axis? (c) In
which compass direction is the slope at x = y = 1 steepest?

For what values of a are the vectors A = 2qi — 2j + akand B = ai + 24j + 2k
perpendicular?



CHAPTER

Newtonian Mechanics—
Single Particle

2.1 Introduction

The science of mechanics seeks to provide a precise and consistent descrip-
tion of the dynamics of particles and systems of particles, that is, a set of phys-
ical laws mathematically describing the motions of bodies and aggregates of
bodies. For this, we need certain fundamental concepts such as distance and
time. The combination of the concepts of distance and time allows us to
define the velocity and acceleration of a particle. The third fundamental
concept, mass, requires some elaboration, which we give when we discuss
Newton'’s laws.

Physical laws must be based on experimental fact. We cannot expect a pri-
ori that the gravitational attraction between two bodies must vary exactly as
the inverse square of the distance between them. But experiment indicates
that this is so. Once a set of experimental data has been correlated and a pos-
tulate has been formulated regarding the phenomena to which the data refer,
then various implications can be worked out. If these implications are all veri-
fied by experiment, we may believe that the postulate is generally true. The
postulate then assumes the status of a physical law. If some experiments dis-
agree with the predictions of the law, the theory must be modified to be con-
sistent with the facts.

Newton provided us with the fundamental laws of mechanics. We state these
laws here in modern terms, discuss their meaning, and then derive the implications

48
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of the laws in various situations.* But the logical structure of the science of me-
chanics is not straightforward. Our line of reasoning in interpreting Newton’s laws
is not the only one possible." We do not pursue in any detail the philosophy of me-
chanics but rather give only sufficient elaboration of Newton’s laws to allow us to
continue with the discussion of classical dynamics. We devote our attention in this
chapter to the motion of a single particle, leaving systems of particles to be dis-
cussed in Chapters 9 and 11-13.

2.2 Newton’s Laws

We begin by simply stating in conventional form Newton’s laws of mechanics?:

L. A body remains at rest or in uniform motion unless acted upon by a force.

II. A body acted upon by a force moves in such a manner that the time rate of change of
momentum equals the force.

II1. If two bodies exert forces on each other, these forces are equal in magnitude and oppo-
site in direction.

These laws are so familiar that we sometimes tend to lose sight of their true
significance (or lack of it) as physical laws. The First Law, for example, is mean-
ingless without the concept of “force,” a word Newton used in all three laws. In
fact, standing alone, the First Law conveys a precise meaning only for zero force;
that is, a body remaining at rest or in uniform (i.e., unaccelerated, rectilinear)
motion is subject to no force whatsoever. A body moving in this manner is
termed a free body (or free particle). The question of the frame of reference
with respect to which the “uniform motion” is to be measured is discussed in the
following section.

In pointing out the lack of content in Newton’s First Law, Sir Arthur
Eddington® observed, somewhat facetiously, that all the law actually says is that
“every particle continues in its state of rest or uniform motion in a straight line

*Truesdell (Tr68) points out that Leonhard Euler (1707-1783) clarified and developed the
Newtonian concepts. Euler “put most of mechanics into its modern form” and “made mechanics
simple and easy” (p. 106).

tErnst Mach (1838-1916) expressed his view in his famous book first published in 1883; E. Mach, Die
Mechanic in ihrer Entwicklung historisch-kritisch dargestellt [The science of mechanics] (Prague, 1883).
A translation of a later edition is available (Ma60). Interesting discussions are also given by
R. B. Lindsay and H. Margeneau (Li36) and N. Feather (Fe59).

1Enunciated in 1687 by Sir Isaac Newton (1642-1727) in his Philosophiae naturalis principia mathemat-
ica [ Mathematical principles of natural philosophy, normally called Principial (London, 1687). Previously,
Galileo (1564-1642) generalized the results of his own mathematical experiments with statements
equivalent to Newton’s First and Second Laws. But Galileo was unable to complete the description of
dynamics because he did not appreciate the significance of what would become Newton’s Third
Law—and therefore lacked a precise meaning of force.

§Sir Arthur Eddington (Ed30, p. 124).
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except insofar as it doesn’t.” This is hardly fair to Newton, who meant something
very definite by his statement. But it does emphasize that the First Law by itself
provides us with only a qualitative notion regarding “force.”

The Second Law provides an explicit statement: Force is related to the time
rate of change of momentum. Newton appropriately defined momentum (al-
though he used the term quantity of motion) to be the product of mass and veloc-
ity, such that

p=mv (2.1
Therefore, Newton’s Second Law can be expressed as
dp d
F = — = — -
a at™ 22

The definition of force becomes complete and precise only when “mass” is de-
fined. Thus the First and Second Laws are not really “laws” in the usual sense;
rather, they may be considered definitions. Because length, time, and mass are
concepts normally already understood, we use Newton’s First and Second Laws
as the operational definition of force. Newton’s Third Law, however, is indeed a
law. It is a statement concerning the real physical world and contains all of the
physics in Newton’s laws of motion.*

We must hasten to add, however, that the Third Law is not a general law of
nature. The law does apply when the force exerted by one (point) object on an-
other (point) object is directed along the line connecting the objects. Such
forces are called central forces; the Third Law applies whether a central force is
attractive or repulsive. Gravitational and electrostatic forces are central forces,
so Newton’s laws can be used in problems involving these types of forces.
Sometimes, elastic forces (which are actually macroscopic manifestations of mi-
croscopic electrostatic forces) are central. For example, two point objects con-
nected by a straight spring or elastic string are subject to forces that obey the
Third Law. Any force that depends on the velocities of the interacting bodies is
noncentral, and the Third Law may not apply. Velocity-dependent forces are
characteristic of interactions that propagate with finite velocity. Thus the force
between moving electric charges does not obey the Third Law, because the force
propagates with the velocity of light. Even the gravitational force between mov-
ing bodies is velocity dependent, but the effect is small and difficult to detect.
The only observable effect is the precession of the perihelia of the inner planets
(see Section 8.9). We will return to a discussion of Newton’s Third Law in
Chapter 9.

To demonstrate the significance of Newton’s Third Law, let us paraphrase it
in the following way, which incorporates the appropriate definition of mass:

*The reasoning presented here, viz., that the First and Second Laws are actually definitions and that
the Third Law contains the physics, is not the only possible interpretation. Lindsay and Margenau
(Li36), for example, present the first two Laws as physical laws and then derive the Third Law as a
consequence.
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III". If two bodies constitute an ideal, isolated system, then the accelerations of these bodies
are always in opposite divections, and the ratio of the magnitudes of the accelerations
is constant. This constant ratio is the inverse ratio of the masses of the bodies.

With this statement, we can give a practical definition of mass and therefore give
precise meaning to the equations summarizing Newtonian dynamics. For two
isolated bodies, 1 and 2, the Third Law states that

F, = —F (2.3)
Using the definition of force as given by the Second Law, we have
dp dps
— = 4
dt dt (2.4a)

or, with constant masses,

d d
m(%) - m2<— f) (2.4b)

and, because acceleration is the time derivative of velocity,

my(a;) = mo(—ay) (2.4¢)
Hence,
m2 _ _ﬂ
= a )

where the negative sign indicates only that the two acceleration vectors are op-
positely directed. Mass is taken to be a positive quantity.

We can always select, say, m, as the unit mass. Then, by comparing the ratio
of accelerations when m, is allowed to interact with any other body, we can de-
termine the mass of the other body. To measure the accelerations, we must have
appropriate clocks and measuring rods; also, we must choose a suitable coordi-
nate system or reference frame. The question of a “suitable reference frame” is
discussed in the next section.

One of the more common methods of determining the mass of an object is
by weighing—for example, by comparing its weight to that of a standard by
means of a beam balance. This procedure makes use of the fact that in a gravita-
tional field the weight of a body is just the gravitational force acting on the body;
that is, Newton’s equation F = ma becomes W = mg, where g is the acceleration
due to gravity. The validity of using this procedure rests on a fundamental as-
sumption: that the mass m appearing in Newton’s equation and defined accord-
ing to Statement III' is equal to the mass m that appears in the gravitational force
equation. These two masses are called the inertial mass and gravitational mass,
respectively. The definitions may be stated as follows:

Inertial Mass: That mass determining the acceleration of a body under the action of a
given force.

Gravitational Mass: That mass determining the gravitational forces between a body
and other bodies.



52 2 / NEWTONIAN MECHANICS—SINGLE PARTICLE

Galileo was the first to test the equivalence of inertial and gravitational mass
in his (perhaps apocryphal) experiment with falling weights at the Tower of Pisa.
Newton also considered the problem and measured the periods of pendula of
equal lengths but with bobs of different materials. Neither Newton nor Galileo
found any difference, but the methods were quite crude.* In 1890 E6tvost de-
vised an ingenious method to test the equivalence of inertial and gravitational
masses. Using two objects made of different materials, he compared the effect of
the Earth’s gravitational force (i.e., the weight) with the effect of the inertial
force caused by the Earth’s rotation. The experiment involved a null method
using a sensitive torsion balance and was therefore highly accurate. More recent
experiments (notably those of Dicke?), using essentially the same method, have
improved the accuracy, and we know now that inertial and gravitational mass are
identical to within a few parts in 10'2. This result is considerably important in the
general theory of relativity$ The assertion of the exact equality of inertial and
gravitational mass is termed the principle of equivalence.

Newton’s Third Law is stated in terms of two bodies that constitute an iso-
lated system. It is impossible to achieve such an ideal condition; every body in the
universe interacts with every other body, although the force of interaction may be
far too weak to be of any practical importance if great distances are involved.
Newton avoided the question of how to disentangle the desired effects from all
the extraneous effects. But this practical difficulty only emphasizes the enormity
of Newton’s assertion made in the Third Law. It is a tribute to the depth of his
perception and physical insight that the conclusion, based on limited observa-
tions, has successfully borne the test of experiment for 300 years. Only within the
20th century did measurements of sufficient detail reveal certain discrepancies
with the predictions of Newtonian theory. The pursuit of these details led to the
development of relativity theory and quantum mechanics."

Another interpretation of Newton’s Third Law is based on the concept of
momentum. Rearranging Equation 2.4a gives

d
— + =0
dt(Pl pP2)

or
p1 + p2 = constant (2.6)

The statement that momentum is conserved in the isolated interaction of two
particles is a special case of the more general conservation of linear momen-
tum. Physicists cherish general conservation laws, and the conservation of lin-
ear momentum is believed always to be obeyed. Later we shall modify our defi-

*In Newton’s experiment, he could have detected a difference of only one part in 10%.

tRoland von E6tvos (1848-1919), a Hungarian baron; his research in gravitational problems led to
the development of a gravimeter, which was used in geological studies.

1P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. (N.Y.) 26, 442 (1964). See also Braginsky and
Pavov, Sov. Phys.-JETP 34, 463 (1972).

§See, for example, the discussions by P. G. Bergmann (Be46) and J. Weber (We61). Weber’s book
also provides an analysis of the E6tvos experiment.

lISee also Section 2.8.
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nition of momentum from Equation 2.1 for high velocities approaching the
speed of light.

2.3 Frames of Reference

Newton realized that, for the laws of motion to have meaning, the motion of
bodies must be measured relative to some reference frame. A reference frame is
called an inertial frame if Newton’s laws are indeed valid in that frame; that is, if
a body subject to no external force moves in a straight line with constant velocity
(or remains at rest), then the coordinate system establishing this fact is an iner-
tial reference frame. This is a clear-cut operational definition and one that also
follows from the general theory of relativity.

If Newton’s laws are valid in one reference frame, then they are also valid in
any reference frame in uniform motion (i.e., not accelerated) with respect to
the first system.* This is a result of the fact that the equation F = m ¥ involves the
second time derivative of r: A change of coordinates involving a constant velocity
does not influence the equation. This result is called Galilean invariance or the
principle of Newtonian relativity.

Relativity theory has shown us that the concepts of absolute rest and an ab-
solute inertial reference frame are meaningless. Therefore, even though we con-
ventionally adopt a reference frame described with respect to the “fixed” stars—
and, indeed, in such a frame the Newtonian equations are valid to a high degree
of accuracy—such a frame is, in fact, not an absolute inertial frame. We may,
however, consider the “fixed” stars to define a reference frame that approxi-
mates an “absolute” inertial frame to an extent quite sufficient for our present
purposes.

Although the fixed-star reference frame is a conveniently definable system
and one suitable for many purposes, we must emphasize that the fundamental
definition of an inertial frame makes no mention of stars, fixed or otherwise. If a
body subject to no force moves with constant velocity in a certain coordinate sys-
tem, that system is, by definition, an inertial frame. Because precisely describing
the motion of a real physical object in the real physical world is normally diffi-
cult, we usually resort to idealizations and approximations of varying degree;
that is, we ordinarily neglect the lesser forces on a body if these forces do not sig-
nificantly affect the body’s motion.

If we wish to describe the motion of, say, a free particle and if we choose for
this purpose some coordinate system in an inertial frame, then we require that
the (vector) equation of motion of the particle be independent of the position of
the origin of the coordinate system and independent of its orientation in space.
We further require that time be homogeneous; that is, a free particle moving
with a certain constant velocity in the coordinate system during a certain time

*In Chapter 10, we discuss the modification of Newton’s equations that must be made if it is desired
to describe the motion of a body with respect to a noninertial frame of reference, that is, a frame that
is accelerated with respect to an inertial frame.
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1

FIGURE 2-1 We choose to describe the path of a free particle moving along the path
ACin a rectangular coordinate system whose origin moves in a circle.
Such a system is not an inertial reference frame.

interval must not, during a later time interval, be found to move with a different
velocity.

We can illustrate the importance of these properties by the following exam-
ple. Consider, as in Figure 2-1, a free particle moving along a certain path AC. To
describe the particle’s motion, let us choose a rectangular coordinate system
whose origin moves in a circle, as shown. For simplicity, we let the orientation of
the axes be fixed in space. The particle moves with a velocity v, relative to an in-
ertial reference frame. If the coordinate system moves with a linear velocity v,
when at the point B, and if v, = Vo then to an observer in the moving coordinate
system the particle (at A) will appear to be at rest. At some later time, however,
when the particle is at C and the coordinate system is at D, the particle will ap-
pear to accelerate with respect to the observer. We must, therefore, conclude
that the rotating coordinate system does not qualify as an inertial reference
frame.

These observations are not sufficient to decide whether time is homoge-
neous. To reach such a conclusion, repeated measurements must be made in
identical situations at various times; identical results would indicate the homo-
geneity of time.

Newton’s equations do not describe the motion of bodies in noninertial sys-
tems. We can devise a method to describe the motion of a particle by a rotating
coordinate system, but, as we shall see in Chapter 10, the resulting equations con-
tain several terms that do not appear in the simple Newtonian equation F = ma.
For the moment, then, we restrict our attention to inertial reference frames to
describe the dynamics of particles.
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2.4 The Equation of Motion for a Particle

Newton’s equation F = dp/dt can be expressed alternatively as

d dv .

F dt(mv) m & mi (2.7
if we assume that the mass m does not vary with time. This is a second-order dif-
ferential equation that may be integrated to find r = r(¢) if the function F is
known. Specifying the initial values of r and & = v then allows us to evaluate the
two arbitrary constants of integration. We then determine the motion of a parti-
cle by the force function F and the initial values of position r and velocity v.

The force F may be a function of any combination of position, velocity, and
time and is generally denoted as F(r, v, t). For a given dynamic system, we nor-
mally want to know r and v as a function of time. Solving Equation 2.7 will help
us do this by solving for ¥. Applying Equation 2.7 to physical situations is an im-
portant part of mechanics.

In this chapter, we examine several examples in which the force function is
known. We begin by looking at simple force functions (either constant or de-
pendent on only one of r, v, and ?) in only one spatial dimension as a refresher
of earlier physics courses. It is important to form good habits in problem solving.
Here are some useful problem-solving techniques.

1. Make a sketch of the problem, indicating forces, velocities, and so forth.

2. Write down the given quantities. '

3.  Write down useful equations and what is to be determined.

4. Strategy and the principles of physics must be used to manipulate the equa-
tions to find the quantity sought. Algebraic manipulations as well as differ-
entiation or integration is usually required. Sometimes numerical calcula-
tions using a computer are the easiest, if not the only, method of solution.

5. Finally, put in the actual values for the assumed variable names to determine
the quantity sought.

Let us first consider the problem of a block sliding on an inclined plane. Let
the angle of the inclined plane be 6 and the mass of the block be 100 g. The
sketch of the problem is shown in Figure 2-2a.

FIGURE 2-2 Examples 2.1 and 2.2.
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EXAMPLE 2.1

If a block slides without friction down a fixed, inclined plane with 6 = 30°, what
is the block’s acceleration?

Solution. 'Two forces act on the block (see Figure 2-2a): the gravitational force F,
and the plane’s normal force N pushing upward on the block (no friction in this
example). The block is constrained to be on the plane, and the only direction the
block can move is the x-direction, up and down the plane. We take the + x-direc-
tion to be down the plane. The total force F,, is constant; Equation 2.7 becomes

Fo. = F,+ N

and because F_, is the net resultant force acting on the block,
Free = mi
or
F, + N = mf (2.8)

This vector must be applied in two directions: x and y (perpendicular to x).
The component of force in the y-direction is zero, because no acceleration oc-
curs in this direction. The force F, is divided vectorially into its x-and y-compo-
nents (dashed lines in Figure 2-2a). Equation 2.8 becomes

y-direction

—F,cos0 + N=0 (2.9)
x-direction
F,sin 6 = mi (2.10)
with the required result
F mg sin 6
i=Lsing =227 _ rsing
m m
e . oy g _ 2
i = gsin(30°) = 9= 4.9 m/s (2.11)

Therefore the acceleration of the block is a constant.
We can find the velocity of the block after it moves from rest a distance x,
down the plane by multiplying Equation 2.11 by 2% and integrating

2xX = 2%g sin 0
dx

d

Et(a'ﬂ) = 2gsin 0 py

J d(x?) = 2gsin GJ dx
0

0



2.4 THE EQUATION OF MOTION FOR A PARTICLE 57

Att=0,both x = % = 0, and, at t = tg5,,, X = Xy, and the velocity x = v,.

v = 2gsin 0 x,

Uy = V2gsin 0 x,

EXAMPLE 2.2

If the coefficient of static friction between the block and plane in the previous

rest?

Solution. We need a new sketch to indicate the additional frictional force f (see
Figure 2-2b). The static frictional force has the approximate maximum value

Joax = M N (2.12)

and Equation 2.7 becomes, in component form,

y-direction
—F,cos0 + N=0 (2.13)

x-direction

—f; t F;sin6 = mi (2.14)
The static frictional force f; will be some value f, < f ., required to keep ¥ = 0
—that is, to keep the block at rest. However, as the angle ¢ of the plane in-

creases, eventually the static frictional force will be unable to keep the block at
rest. At that angle 8’, f, becomes

S0 =0") = frn = u;N= puF,cos 0
and
mi = F,sin 0 — f,,,
mi = F,sin 0 — uF, cos 6 (2.15)
X = g(sin 6 — u, cos 8)
Just before the block starts to slide, the acceleration ¥ = 0, so
sin@ — u,cos0 =0
tanf = u, = 04
0 = tan"1(0.4) = 22°

EXAMPLE 2.3

After the block in the previous example begins to slide, the coefficient of ki-
netic (sliding) friction becomes w; = 0.3. Find the acceleration for the angle
0 = 30°.
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Solution. Similarly to Example 2.2, the kinetic friction becomes (approxi-
mately)

Je = N = p,F,cos 6 (2.16)

and
mx = F,sin @ — f, = mg (sin 6 — u, cos 6) (2.17)
#=g(sin@ — p,cos0) =024 ¢ (2.18)

Generally, the force of static friction (f,.x = u;N) is greater than that of
kinetic friction (f, = u; N). This can be observed in a simple experiment. If we
lower the angle 8 below 16.7°, we find that ¥ < 0, and the block eventually
stops. If we raise the block back up above § = 16.7°, we find that the block does
not start sliding again until § = 22° (Example 2.2). The static friction deter-
mines when it starts moving again. There is not a discontinuous acceleration as
the block starts moving, because of the difference between u, and w;. For small
speeds, the coefficient of friction changes rather quickly from u,to w,.

The subject of friction is still an interesting and important area of research.
There are still surprises. For example, even though we calculate the absolute
value of the frictional force as f= uN, research has shown that the frictional
force is directly proportional, not to the load, but to the microscopic area of
contact between the two objects (as opposed to the apparent contact area). We
use pV as an approximation because, as Nincreases, so does the actual contact
area on a microscopic level. For hundreds of years before the 1940s, it was ac-
cepted that the load—and not the area—was directly responsible. We also be-
lieve that the static frictional force is larger than that of kinetic friction because
the bonding of atoms between the two objects does not have as much time to
develop in kinetic motion.

Effects of Retarding Forces

We should emphasize that the force F in Equation 2.7 is not necessarily constant,
and indeed, it may consist of several distinct parts, as seen in the previous exam-
ples. For example, if a particle falls in a constant gravitational field, the gravita-
tional force is F, = mg, where g is the acceleration of gravity. If, in addition, a
retarding force F, exists that is some function of the instantaneous speed, then
the total force is

F=F,+F,
(2.19)
= mg + F(v)

It is frequently sufficient to consider that F,(v) is simply proportional to some
power of the speed. In general, real retarding forces are more complicated, but
the powerlaw approximation is useful in many instances in which the speed
does not vary greatly. Even more to the point, if F, oc v*, then the equation of
motion can usually be integrated directly, whereas, if the true velocity depend-
ence were used, numerical integration would probably be necessary. With the



2.4 THE EQUATION OF MOTION FOR A PARTICLE 59

power-law approximation, we can then write
v
= mg — mkv"; (2.20)

where k is a positive constant that specifies the strength of the retarding force
and where v/v is a unit vector in the direction of v. Experimentally, we find
that, for a relatively small object moving in air, » = 1 for velocities less than
about 24 m/s (~ 80 ft/s). For higher velocities but below the velocity of sound
(~ 330 m/s or 1,100 ft/s), the retarding force is approximately proportional to
the square of the velocity.* For simplicity, the v? dependence is usually taken
for speeds up to the speed of sound.

The effect of air resistance is important for a ping-pong ball smashed to an
opponent, a high-flying softball hit deep to the outfield, a golfer’s chip shot, and
a mortar shell lofted against an enemy. Extensive tabulations have been made
for military ballistics of projectiles of various sorts for the velocity as a function of
flight time. There are several forces on an actual projectile in flight. The air re-
sistance force is called the drag W and is opposite to the projectile’s velocity as
shown in Figure 2-3a. The velocity v is normally not along the symmetry axis of
the shell. The component of force acting perpendicular to the drag is called the
lift L,. There may also be various other forces due to the projectile’s spin and os-
cillation, and a calculation of a projectile’s ballistic trajectory is quite complex.
The Prandtl expression for the air resistance? is

1
W= *2~chAv2 (2.21)

where cy, is the dimensionless drag coefficient, p is the air density, v is the veloc-
ity, and A is the cross-sectional area of the object (projectile) measured perpen-
dicularly to the velocity. In Figure 2-3b, we plot some typical values for ¢y, and in
Figures 2-3¢c and d we display the calculated air resistance Wusing Equation 2.21
for a projectile diameter of 10 cm and using the values of ¢y shown. The air re-
sistance increases dramatically near the speed of sound (Mach number M =
speed/speed of sound). Below speeds of about 400 m/s it is evident that an
equation of at least second degree is necessary to describe the resistive force. For
higher speeds, the retarding force varies approximately linearly with speed.
Several examples of the motion of a particle subjected to various forces are
given below. These examples are particularly good to begin computer calcula-
tions using any of the available commercial math programs and spreadsheets or
for the students to write their own programs. The computer results, especially
the plots, can often be compared with the analytical results presented here.
Some of the figures shown in this section were produced using a computer, and

*The motion of a particle in a medium in which there is a resisting force proportional to the speed
or to the square of the speed (or to a linear combination of the two) was examined by Newton in his
Principia (1687). The extension to any power of the speed was made by Johann Bernoulli in 1711.
The term Stokes’ law of resistance is sometimes applied to a resisting force proportional to the speed;
Newton’s law of resistance is a retarding force proportional to the square of the speed.

tSee the article by E. Melchior and M. Reuschel in Handbook on Weaponry (Rh82, p. 137).
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FIGURE 2-3 (a) Aerodynamic forces acting on projectile. W is the drag (air resistive
force) and is opposite the velocity of the projectile v. Notice that v may
be at an angle a from the symmetry axis of projectile. The component
of force acting perpendicular to the drag is called the lift L. The point
D is the center of pressure. Finally, the gravitational force F, acts down.
If the center of pressure is not at the projectile’s center of mass, there is
also a torque about the center of mass. (b) The drag coefficient cy,
from the Rheinmetall resistance law (Rh82), is plotted versus the Mach
number M. Notice the large change near the speed of sound where
M = 1. (c) The air resistive force W (drag) is shown as a function of
velocity for a projectile diameter of 10 cm. Notice the inflection near
the speed of sound. (d) Same as (c) for higher velocities.

several end-of-chapter problems are meant to develop the student’s computer
experience if so desired by the instructor or student.

EXAMPLE 2.4

As the simplest example of the resisted motion of a particle, find the displace-
ment and velocity of horizontal motion in a medium in which the retarding
force is proportional to the velocity.

Solution. A sketch of the problem is shown in Figure 2-4. The Newtonian equa-
tion F= ma provides us with the equation of motion:
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)_x_~

Yo
— 4= Resisting force F = kmv

FIGURE 24 Example 2.4.
x-direction

dv
ma= m i kmv (2.22)

where kmvis the magnitude of the resisting force (k = constant). We are not
implying by this form that the retarding force depends on the mass m; this form
simply makes the math easier. Then

dv
h N _kJ a (2.23)

Inv= -kt + G

The integration constant in Equation 2.23 can be evaluated if we prescribe the
initial condition v(¢t = 0) = v,. The C, = In y,, and

v = yye B g (2.24)

We can integrate this equation to obtain the displacement x as a function of
time:

v= dx _ voe bt
dat
v
X =1 Je_ktdt = _;Oe—kt + C2 (2.253)

The initial condition x(¢ = 0) = 0 implies C, = v,/k. Therefore
v
x= (1= ek (2.25b)

This result shows that x asymptotically approaches the value vy/k as t— co.
We can also obtain the velocity as a function of displacement by writing
dv_dvdi_dv 1
dx didx dt v
so that
vd—v =B —kv
dx dt
or
dv _
dx

—k
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from which we find, by using the same initial conditions,
v= vy — kx (2.26)

Therefore, the velocity decreases linearly with displacement.

EXAMPLE 2.5

Find the displacement and velocity of a particle undergoing vertical motion in a
medium having a retarding force proportional to the velocity.

Solution. Let us consider that the particle is falling downward with an initial
velocity v, from a height 4 in a constant gravitational field (Figure 2-5). The
equation of motion is

z-direction

dv
F= m:i;= —mg — kmy (2.27)
where —kmuv represents a positive upward force since we take z and v = % to be
positive upward, and the motion is downward—that is, v < 0, so that —kmv > 0.
From Equation 2.27, we have
dv

kv+g=

—dt (2.28)

Integrating Equation 2.28 and setting v(¢ = 0) = v,, we have (noting that v, < 0)

1
-];ln(kv+g) =—t+c
kv + g= e—kt+kc
=@= _g+ kuy + g
dt k k

"1

‘Gravitational force = mg

v

ekt (2.29)

1 Resisting force = kmv

FIGURE 2-5 Example 2.5.
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FIGURE 2-6 Results for Example 2.5 indicating the downward speeds for various
initial speeds v, as they approach the terminal velocity.

Integrating once more and evaluating the constant by setting z(t = 0) = h, we
find

kuy + g

z=h—£t+
k k?

(1 — ekt - (2.30)

Equation 2.29 shows that as the time becomes very long, the velocity ap-
proaches the limiting value —g/k; this is called the terminal velocity, v;.
Equation 2.27 yields the same result, because the force will vanish—and hence
no further acceleration will occur—when v = —g/k. If the initial velocity ex-
ceeds the terminal velocity in magnitude, then the body immediately begins to
slow down and v approaches the terminal speed from the opposite direction.
Figure 2-6 illustrates these results for the downward speeds (positive values).

EXAMPLE 2.6

Next, we treat projectile motion in two dimensions, first without considering air
resistance. Let the muzzle velocity of the projectile be v, and the angle of eleva-
tion be # (Figure 2-7). Calculate the projectile’s displacement, velocity, and range.

Solution. Using F = mg, the force components become

x-direction

= mi (2.31a)

y-direction

—mg = mj (2.31b)
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FIGURE 2-7 Example 2.6.
Neglect the height of the gun, and assume x =y = 0 at t = 0. Then
=0
X = yycos @
x = vyt cos 0 (2.32)
and
y=-¢
§= —gt+ ysinf
— o2
y= gt + Yyt sin 6 (2.33)

The speed and total displacement as functions of time are found to be

v= Vi + j2 = (v] + g2 — 2u,gt sin 0)/2 (2.34)
and
g2t2 1/2
r=Vax?+ y2=|v§t2 + ale vogt® sin 6 (2.35)

We can find the range by determining the value of xwhen the projectile falls
back to ground, that is, when y = 0.

_ (8 - -
y=1t —2—+vosm0 =0 (2.36)

One value of y = 0 occurs for ¢t = 0 and the other one for t = T

—— + vysinf =0

2
_ 2vysin 6

2.37
2 (2.37)
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The range R is found from
203
x(t=T) = range = ? sin 6 cos 6 (2.38)
v
R = range = E sin 26 (2.39)

Notice that the maximum range occurs for 8 = 45°.

Let us use some actual numbers in these calculations. The Germans used a
long-range gun named Big Bertha in World War I to bombard Paris. Its muzzle
velocity was 1,450 m/s. Find its predicted range, maximum projectile height,
and projectile time of flight if § = 55°. We have v, = 1450 m/s and 6 = 55° so
the range (from Equation 2.39) becomes

(1450 m/s)?_ .
= W[sm(llo )] = 202 km

Big Bertha’s actual range was 120 km. The difference is a result of the real
effect of air resistance.

To find the maximum predicted height, we need to calculated y for the
time 7/2 where T'is the projectile time of flight:

_ (2)(1450 m/s) (sin55°)
T= 9.8 m/s? = 92425
T _gT2 UoT N
t=— = + —
ymax< 2) 3 9 sin 6

_ —(98m/s)(2425) | (1450 m/s)(2425) sin(55°)
8 2

= 72 km

EXAMPLE 2.7

Next, we add the effect of air resistance to the motion of the projectile in the
previous example. Calculate the decrease in range under the assumption that

the force caused by air resistance is directly proportional to the projectile’s
velocity.

Solution. The initial conditions are the same as in the previous example.

2(t=0)=0=19y(t=0)
2(t=0) = yycos6 =U (2.40)
J(t=0) = yysinfd =V

However, the equations of motion, Equation 2.31, become

mE = —kmi (2.41)
my = —kmy — mg (2.42)
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Equation 2.41 is exactly that used in Example 2.4. The solution is therefore
U
x = ;(1 — ¢ k) (2.43)

Similarly, Equation 2.42 is the same as the equation of the motion in Example
2.5. We can use the solution found in that example by letting 2 = 0. (The fact
that we considered the particle to be projected downward in Example 2.5 is of no
consequence. The sign of the initial velocity automatically takes this into ac-
count.) Therefore

kV +
)= _g;t + 2 £
The trajectory is shown in Figure 2-8 for several values of the retarding force
constant k for a given projectile flight.

The range R’, which is the range including air resistance, can be found as
previously by calculating the time T required for the entire trajectory and then
substituting this value into Equation 2.43 for x. The time 7" is found as previ-
ously by finding ¢t = T'when y = 0. From Equation 2.44, we find

kEV+ g

gk
This is a transcendental equation, and therefore we cannot obtain an analytic
expression for T. Nonetheless, we still have powerful methods to use to solve

(1= ek (2.44)

T= (1 — e #7) (2.45)

y
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FIGURE 2-8 The calculated trajectories of a particle in air resistance (F, = —kmuv)
for various values of % (in units of s7!). The calculations were performed
for values of § = 60° and v, = 600 m/s. The values of y (Equation 2.44)
are plotted versus x (Equation 2.43).
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such problems. We present two of them here: (1) a perturbation method to find an
approximate solution, and (2) a numerical method, which can normally be as ac-
curate as desired. We will compare the results.

Perturbation Method To use the perturbation method, we find an expansion pa-
rameter or coupling constant that is normally small. In the present case, this param-
eter is the retarding force constant k, because we have already solved the present
problem with £ = 0, and now we would like to turn on the retarding force, but
let k be small. We therefore expand the exponential term of Equation 2.45 (see
Equation D.34 of Appendix D) in a power series with the intention of keeping
only the lowest terms of k%, where kis our expansion parameter.

EV+ g 1 1
T = kT — _k2T2 + _kBTB — . (2.46)
gk 2 6

If we keep only terms in the expansion through &2, this equation can be re-
arranged to yield

2V/g

1
=75 4 T2 A7
1+kVg 3 (2.47)

We now have the expansion parameter kin the denominator of the first term on
the right-hand side of this equation. We need to expand this term in a power se-
ries (Taylor series, see Equation D.8 of Appendix D):

1

—_— = — 2 _ ...
1+ kg 1 — (kV/g) + (kV/g) (2.48)

where we have kept only terms through k2, because we only have terms through
k in Equation 2.47. If we insert this expansion of Equation 2.48 into the first
term on the right-hand side of Equation 2.47 and keep only the terms in % to first
order, we have

2 2
o2V, <T 2V

— — —5 |k + O(k? 2.49
g 3 g2> (k%) (2.49)

where we choose to neglect O(k?), the terms of order k? and higher. In the limit
k — 0 (no air resistance), Equation 2.49 gives us the same result as in the previ-
ous example:

_ 2V 2ysin 6

T(k=0) =T
( ) =T 2 2

Therefore, if k is small (but nonvanishing), the flight time will be approximately
equal to Tj. If we then use this approximate value for T'= 7 in the right-hand
side of Equation 2.49, we have

k
T = 2/<1 - J) (2.50)
g 3g

which is the desired approximate expression for the flight time.
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Next, we write the equation for x (Equation 2.43) in expanded form:

U 1 1
x=;<kt_‘2‘k2t2+‘ék5t3— ) (2.51)

Because x(¢ = T) = R’, we have approximately for the range
1
R = U(T 5 kT2> (2.52)

where again we keep terms only through the first order of k. We can now evalu-
ate this expression by using the value of T from Equation 2.50. If we retain only
terms linear in %, we find

4RV
R = M(l - —) (2.53)
g 3¢
The quantity 2UV/g can now be written (using Equations 2.40) as
Uv _ 2v5 5
20V _ 2% g cos 6 = 2 sin 20 = R (2.54)
g g g

which will be recognized as the range R of the projectile when air resistance is
neglected. Therefore

4RV
R = R(l - —) (2.55)

3¢
Over what range of values for £ would we expect our perturbation method to be
correct? If we look at the expansion in Equation 2.48, we see that the expansion
will not converge unless kV/g <1 or k < g/V, and in fact, we would like &<

g/V = g/(v,sin 0).

Numerical Method Equation 2.45 can be solved numerically using a computer
by a variety of methods. We set up a loop to solve the equation for T for many
values of k up to 0.08 s™1: Ti(k). These values of T; and k; are inserted into
Equation 2.43 to find the range R;, which is displayed in Figure 2-9. The range
drops rapidly for increased air resistance, just as one would expect, but it does
not display the linear dependence suggested by the perturbation method solu-
tion of Equation 2.55.

For the projectile motion described in Figures 2-8 and 2-9, the linear ap-
proximation is inaccurate for k values as low as 0.01 s~! and incorrectly shows
the range is zero for all values of k larger than 0.014 s~1. This disagreement with
the perturbation method is not surprising because the linear result for the range
R’ was dependent on k << g/(vg sin 6) = 0.02 s~ !, which is hardly true for even
k = 0.01 s~ L. The agreement should be adequate for k£ = 0.005 s™1. The results
shown in Figure 2-8 indicate that for values of £ > 0.005 s, the drag can hardly
be considered a perturbation. In fact, for k£ > 0.01 s~! the drag becomes the
dominant factor in the projectile motion.
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FIGURE 2-9 The range values calculated approximately and numerically for the
projectile data given in Figure 2-8 are plotted as a function of the
retarding force constant k.

The previous example indicates how complicated the real world can be. In that
example, we still had to make assumptions that were nonphysical—in assuming,
for example, that the retarding force is always linearly proportional to the veloc-
ity. Even our numerical calculation is not accurate, because Figure 2-3 shows us
that a better assumption would be to include a v? retarding term as well.
Adding such a term would not be difficult with the numerical calculation, and
we shall do a similar calculation in the next example. We have included the au-
thor’s Mathcad file that produced Figures 2-8 and 2-9 in Appendix H for those
students who might want to reproduce the calculation. We emphasize that there
are many ways to perform numerical calculations with computers, and the stu-
dent will probably want to become proficient with several.

EXAMPLE 2.8

Use the data shown in Figure 2-3 to calculate the trajectory for an actual pro-
jectile. Assume a muzzle velocity of 600 m/s, gun elevation of 45°, and a pro-
jectile mass of 30 kg. Plot the height y versus the horizontal distance x and
plot y, &, and j versus time both with and without air resistance. Include only
the air resistance and gravity, and ignore other possible forces such as the
lift.

Solution. First, we make a table of retarding force versus velocity by reading
Figure 2-3. Read the force every 50 m/s for Figure 2-3c and every 100 m/s for
Figure 2-3d. We can then use a straight line interpolation between the tabular
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values. We use the coordinate system shown in Figure 2-7. The equations of
motion become

F,

¥=—-— (2.56)
m

.__B

y=-,"8 (2.57)

where F, and F, are the retarding forces. Assume gis constant. F, will always be a
positive number, but F, > 0 for the projectile going up, and ¥, < 0 for the pro-

jectile coming back down. Let 8 be the projectile’s elevation angle from the hor-
izontal at any instant.

v= Vi + §? (2.58)

tan =2 (2.59)
x

F,=Fcos#6 (2.60)

FE, = Fsin 0 (2.61)

We can calculate F, and F, at any instant by knowing x and j. Over a small time
interval, the next & and j can be calculated.

t

x= J % dt + vy cos 8 (2.62)
0
t

3= J ¥ dt + vysin 6 (2.63)
0
t

x= J xdt (2.64)
0
t

y = J 9y dt (2.65)
0

We wrote a short computer program to contain our table for the retarding
forces and to perform the calculations for %, §, x, and yas a function of time. We
must perform the integrals by summations over small time intervals, because
the forces are time dependent. Figure 2-10 shows the results.

Notice the large difference that the air resistance makes. In Figure 2-10a,
the horizontal distance (range) that the projectile travels is about 16 km com-
pared to almost 37 km with no air resistance. Our calculation ignored the fact
that the air density depends on the altitude. If we take account of the decrease
in the air density with altitude, we obtain the third curve with a range of 18 km
shown in Figure 2-10a. If we also included the lift, the range would be still
greater. Notice that the change in velocities in Figures 2-10c and 2-10d mirror
the air resistive force of Figure 2-3. The speeds decrease rapidly until the speed
reaches the speed of sound, and then the rate of change of the speeds levels off
somewhat.
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FIGURE 2-10 The results of Example 2.8. The solid lines are the results if no air resis-
tance is included, whereas the dashed lines include the results of adding
the air resistive force. In (a) we also include the effect of the air density
dependence, which becomes smaller as the projectile rises higher.

This concludes our subsection on the effects of retarding forces. Much more
could be done to include realistic effects, but the method is clear. Normally, one ef-
fectis added at a time, and the results are analyzed before another effect is added.

Other Examples of Dynamics

We conclude this section with two additional standard examples of dynamical
particle-like behavior.

EXAMPLE 2.9

Atwood’s machine consists of a smooth pulley with two masses suspended from
a light string at each end (Figure 2-11). Find the acceleration of the masses and
the tension of the string (a) when the pulley center is at rest and (b) when the
pulley is descending in an elevator with constant acceleration a.
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FIGURE 2-11 Example 2.9; Atwood’s machine.

Solution. We neglect the mass of the string and assume that the pulley is
smooth—that is, no friction on the string. The tension 7'must be the same
throughout the string. The equations of motion become, for each mass, for
case (a),

m1551 = mg — T (2.66)
mok = meg— T (2.67)

Notice again the advantage of the force concept: We need only identify the
forces acting on each mass. The tension T'is the same in both equations. If
the string is inextensible, then %, = — %, and Equations 2.66 and 2.67 may be
combined

m1551 = mg (m2g - m2552)
= mg (m2g+ mgﬁl)
Rearranging,
_ g(m — my) _

X = W — %, (2.68)

If m; > my, then % > 0, and % < 0. The tension can be obtained from

Equations 2.68 and 2.66:
r=mg— m%
Tr=mg- mlg("h )
my; + my
_ 2mymyg

(2.69)

m; + my



2.4 THE EQUATION OF MOTION FOR A PARTICLE 73

For case (b), in which the pulley is in an elevator, the coordinate system
with origins at the pulley center is no longer an inertial system. We need an in-
ertial system with the origin at the top of the elevator shaft (Figure 2-11b). The
equations of motion in the inertial system (x{ = x{ + x;, xj = x5 + x,) are

v _ . oy _
mX] = m(X + %) = mg T

moky = my(Xy + Xp) = mog — T

SO
mlf'f'l =mg—T-— mlxé =m(g— a) — T} (2.70)
MoXy — Mo — T — MoXy = mg(g— a) - T
where X% = X = a. We have %, = — ¥, so we solve for ¥, as before by eliminat-
ing T
o e (my — my)
H=—%=(g-a . (2.71)
and
2mymo(g — )
i e - B (2.72)

m1+m2

Notice that the results for the acceleration and tension are just as if the acceler-
ation of gravity were reduced by the amount of the elevator acceleration a.
The change for an ascending elevator should be obvious.

EXAMPLE 2.10

In our last example in this lengthy review of the equations of motion for a parti-
cle, let us examine particle motion in an electromagnetic field. Consider a
charged particle entering a region of uniform magnetic field B—for example,
the earth’s field—as shown in Figure 2-12. Determine its subsequent motion.

Solution. Choose a Cartesian coordinate system with its y-axis parallel to the
magnetic field. If ¢gis the charge on the particle, v its velocity, a its acceleration,
and B the earth’s magnetic field, then

= i+ 3j + 2k
a =i+ Jj+ ik
B = B,j

The magnetic force F = gv X B = ma, so

m(# + §j + 1K) = q(&i + §j + 1K) X Boj = qBo(ik — i)
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FIGURE 2-12 Example 2.10; a moving particle enters a region of magnetic field.

Equating like vector components gives

mi = —gByz
m§ =0 (2.73)
mz = qByx

Integrating the second of these equations, mj = 0, yields
J=Jo
where j, is a constant and is the initial value of §. Integrating a second time gives
Y = Jot + Yo

where y, is also a constant.
To integrate the first and last equations of Equation 2.73, let & = ¢By/m, so

that

¥=—az

. , } (2.79)
I =ax

These coupled, simultaneous differential equations can be easily uncoupled by

differentiating one and substituting it into the other, giving

¥ =ak=—ak

¥=—ai=—a’

so that

. e
i az.} (2.75)
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Both of these differential equations have the same form of solution. Using the
technique of Example C.2 of Appendix C, we have

x= Acosat+ Bsinat + x,

z= A'cos at + B'sin at + z,
where A, A', B, B', x,, and z, are constants of integration that are determined by

the particle’s initial position and velocity and by the equations of motion,
Equation 2.74. These solutions can be rewritten

(x — x¢9) = Acos at + Bsin at

(y = y0) = Yot (2.76)

(z — z9) = A' cos at + B’ sin at

The x- and z-coordinates are connected by Equation 2.74, so substituting
Equations 2.76 into the first equation of Equation 2.74 gives

—a?A cos at — o®B sin at = —a(—aA’ sin at + aB’ cos af) (2.77)

Because Equation 2.77 is valid for all ¢, in particular ¢t = 0 and ¢ = 7/2a,
Equation 2.77 yields

—a?A = —a?B
so that
A=PHB
and
—a?B = a2A’
gives
B=-A

We now have

(x — x9) = Acos at + Bsin at

(y = %) = ot (2.78)

(z— z¢9) = —Bcosat + Asin at

Ifatt=0, z = Zyand % = 0, then from Equation 2.78, differentiating and set-
ting ¢ = 0 gives

aB=0
and

aA=i0
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SO
Zg
(x — x0) = > o8 at
(y = y0) = Jot
zy .
(z—2z¢) = P at
Finally,

(o))
x— xo = | — Jcos| —
9B, m

(y = 30) = Yol (2.79)

o () (B
(z—2¢) = Y sin{ —

These are the parametric equations of a circular helix of radius zym/¢By. Thus,
the faster the particle enters the field or the greater its mass, the larger the
radius of the helix. And the greater the charge on the particle or the stronger
the magnetic field, the tighter the helix. Notice also how the charged particle is
captured by the magnetic field—just drifting along the field direction. In this
example, the particle had no initial component of its velocity along the x-axis,
but even if it had it would not drift along this axis (see Problem 2-31). Finally,
notice that the magnetic force on the particle always acts perpendicular to its
velocity and hence cannot speed it up. Equation 2.79 verifies this fact.

The earth’s magnetic field is not as simple as the uniform field of this exam-
ple. Nevertheless, this example gives some insight into one of the mechanisms by
which the earth’s magnetic field traps low-energy cosmic rays and the solar wind to
create the Van Allen belts.

2.5 Conservation Theorems

We now turn to a detailed discussion of the Newtonian mechanics of a single
particle and derive the important theorems regarding conserved quantities. We
must emphasize that we are not proving the conservation of the various quanti-
ties. We are merely deriving the consequences of Newton’s laws of dynamics.
These implications must be put to the test of experiment, and their verification
then supplies a measure of confirmation of the original dynamical laws. The fact
that these conservation theorems have indeed been found to be valid in many
instances furnishes an important part of the proof for the correctness of
Newton’s laws, at least in classical physics.

The first of the conservation theorems concerns the linear momentum of a
particle. If the particle is fiee, that is, if the particle encounters no force, then
Equation 2.2 becomes simply p = 0. Therefore, p is a vector constant in time,
and the first conservation theorem becomes
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1. The total linear momentum p of a particle is conserved when the total force on it is
zero.

Note that this result is derived from a vector equation, p = 0, and therefore
applies for each component of the linear momentum. To state the result in
other terms, we let s be some constant vector such that F - s = 0, independent of
time. Then

p's=F-s=0
or, integrating with respect to time,
p * s = constant (2.80)

which states that the component of linear momentum in a direction in which the force
vanishes is constant in time.

The angular momentum L of a particle with respect to an origin from which
the position vector r is measured is defined to be

L=rxp (2.81)

The torque or moment of force N with respect to the same origin is defined
to be

N=rxF . (282

where r is the position vector from the origin to the point where the force F is
applied. Because F = m¥ for the particle, the torque becomes

N=rXxmv=rXxp

Now

L=2@xp) = (Xp) +Exp)
but

EXp=tXmv=mExXi)=0
SO

L=rxp=N (2.83)

If no torques act on a particle (i.e., if N = 0), then L = 0 and L is a vector con-
stant in time. The second important conservation theorem is

II.  The angular momentum of a particle subject to no torque is conserved.
We remind the student that a judicious choice of the origin of a coordinate

system will often allow a problem to be solved much more easily than a poor
choice. For example, the torque will be zero in coordinate systems centered
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along the resultant line of force. The angular momentum will be conserved in
this case.

If work is done on a particle by a force F in transforming the particle from
Condition 1 to Condition 2, then this work is defined to be

2
Wi = f F-dr (2.84)
1

If F is the net resultant force acting on the particle,

dv dr dv
Fedr=m—- —dt=m—-
dr = m Py at=m py vdt
md md 1
= (v = — (v dt = -~ 2 .8
9 dt(v v)dt 9 dt(v )d d<2 mu ) (2.85)

The integrand in Equation 2.84 is thus an exact differential, and the work done
by the total force F acting on a particle is equal to its change in kinetic energy:

L
W = Emv

where T = %va is the kinetic energy of the particle. If 7} > T, then W, < 0,
and the particle has done work with a resulting decrease in kinetic energy. It is
important to realize that the force F leading to Equation 2.85 is the total (i.e.,
net resultant) force on the particle.

Let us now examine the integral appearing in Equation 2.84 from a differ-
ent standpoint. In many physical problems, the force F has the property that the
work required to move a particle from one position to another without any
change in kinetic energy depends only on the original and final positions and
not on the exact path taken by the particle. For example, assume the work done
to move the particle from point 1 in Figure 2-13 to point 2 is independent of the
actual paths a, b, or ¢ taken. This property is exhibited, for example, by a con-
stant gravitational force field. Thus, if a particle of mass m is raised through a
height & (by any path), then an amount of work mgh has been done on the parti-
cle, and the particle can do an equal amount of work in returning to its original
position. This capacity to do work is called the potential energy of the particle.

We may define the potential energy of a particle in terms of the work (done
by the force F) required to transport the particle from a point 1 to a point 2
(with no net change in kinetic energy):

2

1
= 5"’(“2 WAN=5—-1 (2.86)
1

2
fF-drEUI—UQ (2.87)
1
The work done in moving the particle is thus simply the difference in the poten-
tial energy U at the two points. For example, if we lift a suitcase from position 1
on the ground to position 2 in a car trunk, we as the external agent are doing
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Origin

FIGURE 2-13 For some forces (identified later as conservative), the work done by the
force to move a particle from one position 1 to another position 2 is
independent of the path (g, 4, or ¢).

work against the force of gravity. Let the force F in Equation 2.87 be the gravita-
tional force, and in raising the suitcase, F - dr becomes negative. The result of
the integration in Equation 2.87 is that U; — U} is negative, so that the potential
energy at position 2 in the car’s trunk is greater than that at position 1 on the
ground. The change in potential energy U, — U is the negative of the work
done by the gravitational force, as can be seen by multiplying both sides of
Equation 2.87 by —1. As the external agent, we do positive work (agamst gravity)
to raise the potential energy of the suitcase.

Equation 2.87 can be reproduced* if we write F as the gradient of the scalar
function U:

= —grad U= —VU (2.88)

Then

2 2 2
JF-dr=—J(VU)-dr=—JdU=UI—UQ (2.89)
1 1 1

In most systems of interest, the potential energy is a function of position
and, possibly, time: U = U(r) or U= Ulr, t). We do not consider cases in which
the potential energy is a function of the velocity.t

It is important to realize that the potential energy is defined only to within an
additive constant; that is, the force defined by —VUis no different from that de-
fined by —V (U + constant). Potential energy therefore has no absolute meaning;
only differences of potential energy are physically meaningful (as in Equation 2.87).

*The necessary and sufficient condition that permits a vector function to be represented by the gra-
dient of a scalar function is that the curlof the vector function vanishes identically.
tVelocity-dependent potentials are neccessary in certain situations, e.g., in electromagnetism (the
so-called Liénard-Wiechert potentials).
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If we choose a certain inertial frame of reference to describe a mechanical
process, the laws of motion are the same as in any other reference frame in uni-
form motion relative to the original frame. The velocity of a particle is in general
different depending on which inertial reference frame we chose as the basis for
describing the motion. We therefore find that it is impossible to ascribe an ab-
solute kinetic energy to a particle in much the same way that it is impossible to
assign any absolute meaning to potential energy. Both of these limitations are
the result of the fact that selecting an origin of the coordinate system used to
describe physical processes is always arbitrary. The nineteenth-century
Scottish physicist James Clerk Maxwell (1831-1879) summarized the situation
as follows.*

We must, therefore, regard the energy of a material system as a quantity of
which we may ascertain the increase or diminution as the system passes from
one definite condition to another. The absolute value of the energy in the stan-
dard condition is unknown to us, and it would be of no value to us if we did
know it, as all phenomena depend on the variations of energy and not on its ab-
solute value.

Next, we define the total energy of a particle to be the sum of the kinetic
and potential energies:

E=T+ U (2.90)
The total time derivative of Eis
dE  dT dU
—=—+ — (2.91)
dt dt dt

To evaluate the time derivatives appearing on the right-hand side of this equa-
tion, we first note that Equation 2.85 can be written as

1
F:dr = d<§mv2> =dT (2.92)
Dividing through by dt,
ar dr
T =F.=—=F-.i .
2 F o r (2.93)

We have also
U_oUds , oU

+
dt 7 ox; dt ot

-+ Y (2.94)

*]. C. Maxwell, Matter and Motion (Cambridge, 1877), p. 91.
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Substituting Equations 2.93 and 2.94 into 2.91, we find

dE oU
2 F.s: VU 4 + —
7 Fr+(U)r+at
]
=(F+VU)-1'-+—U
ot
aUu
= — .9
r=5 (2.95)

because the term F + VU vanishes in view of the definition of the potential en-
ergy (Equation 2.88) if the total force is the conservative force F = —VU,

If Uis not an explicit function of the time (i.e., if 31/d¢ = 0; recall that we do
not consider velocity-dependent potentials), the force field represented by F is
conservative. Under these conditions, we have the third important conservation
theorem:

IIL. The total energy E of a particle in a conservative force field is a constant in time.

It must be reiterated that we have not groved the conservation laws of linear
momentum, angular momentum, and energy. We have only derived various con-
sequences of Newton’s laws; that is, if these laws are valid in a certain situation,
then momentum and energy will be conserved. But we have become so enam-
ored with these conservation theorems that we have elevated them to the status
of laws and we have come to insist that they be valid in any physical theory, even
those that apply to situations in which Newtonian mechanics is not valid, as, for
example, in the interaction of moving charges or in quantum-mechanical sys-
tems. We do not actually have conservation laws in such situations, but rather
conservation postulates that we force on the theory. For example, if we have two
isolated moving electric charges, the electromagnetic forces between them are
not conservative. We therefore endow the electromagnetic field with a certain
amount of energy so that energy conservation will be valid. This procedure is sat-
isfactory only if the consequences do not contradict any experimental fact, and
this is indeed the case for moving charges. We therefore extend the usual con-
cept of energy to include “electromagnetic energy” to satisfy our preconceived
notion that energy must be conserved. This may seem an arbitrary and drastic
step to take, but nothing, it is said, succeeds as does success, and these conserva-
tion “laws” have been the most successful set of principles in physics. The refusal
to relinquish energy and momentum conservation led Wolfgang Pauli
(1900-1958) to postulate in 1930 the existence of the neutrino to account for
the “missing” energy and momentum in radioactive 8 decay. This postulate al-
lowed Enrico Fermi (1901-1954) to construct a successful theory of 8 decay in
1934, but direct observation of the neutrino was not made until 1953 when
Reines and Cowan performed their famous experiment.* By adhering to the
conviction that energy and momentum must be conserved, a new elementary

*C. L. Cowan, F. Reines, F. B. Harrison, H. W. Kruse, and A. D. McGuire, Science 124, 103 (1956).



82 2 / NEWTONIAN MECHANICS—SINGLE PARTICLE

particle was discovered, one that is of great importance in modern theories of
nuclear and particle physics. This discovery is only one of the many advances in
the understanding of the properties of matter that have resulted directly from
the application of the conservation laws.

We shall apply these conservation theorems to several physical situations in
the remainder of this book, among them Rutherford scattering and planetary
motion. A simple example here indicates the usefulness of the conservation
theorems.

EXAMPLE 2.11

A mouse of mass mjumps on the outside edge of a freely turning ceiling fan of
rotational inertia / and radius R. By what ratio does the angular velocity
change?

Solution. Angular momentum must be conserved during the process. We are
using the concept of rotational inertia learned in elementary physics to relate
angular momentum L to angular velocity w: L = Iw. The initial angular momen-
tum Ly = lw, must be equal to the angular momentum L (fan plus mouse)
after the mouse jumps on. The velocity of the outside edge is v = wR.

L=1Io+ mR= 1—’[’{(1+ mR?)

L= Ly= Iv,
v Yy
—(I + R? = J—
g mE) = Ig
v_ I
Y I+ mR2
and
o _ I
Wy I+ mR?
2.6 Energy

The concept of energy was not nearly as popular in Newton’s time as it is today.
Later we shall study two new formulations of dynamics, different from Newton’s,
based on energy—the Lagrangian and Hamiltonian methods.

Early in the nineteenth century, it became clear that heat was another form
of energy and not a form of fluid (called “caloric”) that flowed between hot and
cold bodies. Count Rumford* is generally given credit for realizing that the

*Benjamin Thompson (1753-1814) was born in Massachusetts and emigrated to Europe in 1776 as a
loyalist refugee. Among the activities of his distinguished military and, later, scientific career, he su-
pervised the boring of cannons as head of the Bavarian war department.
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great amount of heat generated during the boring of a cannon was caused by
friction and not the caloric. If frictional energy is just heat energy, interchange-
able with mechanical energy, then a total conservation of energy can occur.

Throughout the nineteenth century, scientists performed experiments on
the conservation of energy, resulting in the prominence given energy today.
Hermann von Helmholtz (1821-1894) formulated the general law of conserva-
tion of energy in 1847. He based his conclusion largely on the calorimetric ex-
periments of James Prescott Joule (1818-1889) begun in 1840.

Consider a point particle under the influence of a conservative force with
potential U. The conservation of energy (actually, mechanical energy, to be pre-
cise in this case) is reflected in Equation 2.90.

1
E=T+ U= m?+ U) (2.96)

where we consider only the one-dimensional case. We can rewrite Equation 2.96

as
v(t) = %’: = =*, /%[E — U(x)] (2.97)

t— ity = J S (2.98)
2[E - U(%)]

and by integrating

where x = x4 at t = t5. We have formally solved the one-dimensional case in
Equation 2.98; that is, we have found x(#). All that remains is to insert the po-
tential U(x) into Equation 2.98 and integrate, using computer technlques if
necessary. We shall study later in some detail the potentials U = §kx2 for har-
monic oscillations and U= —k/x for the gravitational force.

We can learn a good deal about the motion of a particle simply by examin-
ing a plot of an example of U(x) as shown in Figure 2-14. First, notice that, be-
cause 2mv2 T= 0, E= U(x) for any real physical motion. We see in Figure 2-14
that the motion is bounded for energies E; and E,. For Ej, the motion is periodic
between the turning points x, and x,. Similarly, for £, the motion is periodic, but
there are two possible regions: x, = x < x, and x, = x =< x,. The particle cannot
“jump” from one “pocket” to the other; once in a pocket, it must remain there
forever if its energy remains at Ey. The motion for a particle with energy E, has
only one value, x = xy. The particle is at rest with T'= 0 [Ey = U(xy)].

The motion for a particle with energy Ej; is simple: The particle comes in
from infinity, stops and turns at x = x,, and returns to infinity—much like a ten-
nis ball bouncing against a practice wall. For the energy E,, the motion is un-
bounded and the particle may be at any position. Its speed will change because it
depends on the difference between E, and U(x). If it is moving to the right, it
will speed up and slow down but continue to infinity.
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U(x)

E,

WR
SR
) R

FIGURE 2-14 Potential energy U(x) curve with various energies E indicated. For
certain energies, for example E; and E,, the motion is bounded.

The motion of a particle of energy E, is similar to that of a mass at the end
of a sprlng The potential in the region x, < x < x, can be approximated by
Ulx) = k(x — xy)%. A particle with energy barely above E, will oscillate about the
point xE xo. We refer to such a point as an equilibrium point, because if the par-
ticle is placed at x = x, it remains there. Equilibrium may be stable, unstable, or
neutral. The equilibrium just discussed is stable because if the particle were
placed on either side of x = x; it would eventually return there. We can use a
hemispherical mixing bowl with a steel ball as an example. With the bowl right
side up, the ball can roll around inside the bowl; but it will eventually settle to
the bottom—in other words, there is a stable equilibrium. If we turn the bowl
upside down and place the ball precisely outside at x = x, the ball remains there
in equilibrium. If we place the ball on either side of x = x4 on the rounded sur-
face, it rolls off; we call this unstable equilibrium. Neutral equilibrium would apply
when the ball rolls on a flat, smooth, horizontal surface.

In general, we can express the potential U(x) in a Taylor series about a
certain equilibrium point. For mathematical simplicity, let us assume that the
equilibrium point is at x = 0 rather than x = x, (if not, we can always redefine
the coordinate system to make it so). Then we have

dUu a:u x3(d®U
+ _ — e .
Ux)y = [ + x< ) o < )o + Py <dx5 )o + (2.99)

The zero subscript indicates that the quantity is to be evaluated at x = 0. The po-
tential energy Uj, at x = 0 is simply a constant that we can define to be zero without
any loss of generality. If x = 0 is an equilibrium point, then
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<£]> = 0 Equilibrium point (2.100)
dx /,

and Equation 2.99 becomes

x2 (d2U x3(d*U
U(x) = E(ﬁ)o + :‘:’;(ﬁ)o + .- (2.101)

Near the equilibrium point x = 0, the value of x is small, and each term in
Equation 2.101 is considerably smaller than the previous one. Therefore, we
keep only the first term in Equation 2.101:

2 2
Ux) = -’é—(%)o (2.102)

We can determine whether the equilibrium at x = 0 is stable or unstable by
examining (d?U/dx?),. If x = 0 is a stable equilibrium, U(x) must be greater
(more positive) on either side of x = 0. Because x? is always positive, the con-
ditions for the equilibrium are

U T
—— | > 0 Stable equilibrium .
dx* Jo (2.103)

d*U e
—— | <0 Unstable equilibrium
dx 0

If (d?U/dx?), is zero, higher-order terms must be examined (see Problems 2-45
and 2-46).

EXAMPLE 2.12

Consider the system of pulleys, masses, and string shown in Figure 2-15. A light
string of length bis attached at point A, passes over a pulley at point Blocated a
distance 24 away, and finally attaches to mass ;. Another pulley with mass m,
attached passes over the string, pulling it down between A and B. Calculate the
distance x; when the system is in equilibrium, and determine whether the equi-
librium is stable or unstable. The pulleys are massless.

Solution. 'We can solve this example by either using forces (i.e., when ¥, = 0 =
%) or energy. We choose the energy method, because in equilibrium the ki-
netic energy is zero and we need to deal only with the potential energy when
Equation 2.100 applies.

We let U= 0 along the line AB.

U= —mgx; — myg(xy + ¢) (2.104)
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X1

FIGURE 2-15 Example 2.12.

We assume that the pulley holding mass 7, is small, so we can neglect the
pulley radius. The distance ¢ in Figure 2-15 is constant.

x? = \/[Tb — x)%/4] — d?
U= —mgx, — m2g\/[?b — x)%/4] — d? — myge

By setting dU/dx; = 0, we can determine the equilibrium position (x;), = x,:
() = g )
dxy ) 4V[(b — xp)Y/4] — a2
4m1\/[(b — %)%/4] — d? = mgy(b — x,)
(b — x0)2(4m? — md) = 16mid?
4m,d
Viami — m}

Notice that a real solution exists only when 4m? > m3.

Under what circumstances will the mass m, pull the mass m; up to the pul-
ley B(i.e., x; = 0)? We can use Equation 2.103 to determine whether the equi-
librium is stable or unstable:

x():b_

(2.105)

a@2U _ _Mmef + mog(h — x,)*
2 1/2 3/2
dx1  4{[ (b — x)%/4] — d?} 16{[ (b — x))%/4] — d2}

Now insert x; = ;.
d2U\  g(4m} — m3p?
Py 4m3d

The condition for the equilibrium (real motion) previously was for 4m? > m3,
so the equilibrium, when it exists, will be stable, because (d2/dx?), > 0.
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EXAMPLE 2.13

Consider the one-dimensional potential

— Wd2(x2 + d?)

U = — 1 g

(2.106)

Sketch the potential and discuss the motion at various values of x. Is the motion
bounded or unbounded? Where are the equilibrium values? Are they stable or
unstable? Find the turning points for £ = — W/8. The value of Wis a positive
constant.

Solution. Rewrite the potential as

Ux  —G2+1)
w B y4+8

Zy) = where y =§ (2.107)

First, find the equilibrium points, which will help guide us in sketching the
potential.
iz ~2 42+ 1)

dy y+8 (f +8)?

This is reduced to
y(y4 + 2y2 —8) =0
y(y2 + 4)(y2 —2)=0
¥5=2,0
SO

X1 — 0
% = V2d (2.108)

Xos — _\/§d

There are three equilibrium points. We sketch U(x)/ Wversus x/d in Figure 2-16.
The equilibrium is stable at x, and xy3 but unstable at xy,. The motion is
bounded for all energies E < 0. We can determine turning points for any en-
ergy Eby setting E = U(x).

w —W(y? + 1)

E=——=1Uy) =—2 .109
5~ U0 = — g (2.109)
J#+8=82+8

¥ =8y
y= +2V2,0 (2.110)

The turning points for E= —W/8 are x = —2\/§dand + 2\/§d, aswellas x = 0—
which is the unstable equilibrium point.
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Ux)/W
-10I u 0 ; I10 x/d
~0.10—
020\ | |-
-0.25|

FIGURE 2-16 Example 2.13. Sketch of U(x)/W.

2.7 Limitations of Newtonian Mechanics

In this chapter, we have introduced such concepts as position, time, momentum,
and energy. We have implied that these are all measurable quantities and that
they can be specified with any desired accuracy, depending only on the degree
of sophistication of our measuring instruments. Indeed, this implication appears
to be verified by our experience with all macroscopic objects. At any given in-
stant of time, for example, we can measure with great precision the position of,
say, a planet in its orbit about the sun. A series of such measurements allows us to
determine (also with great precision) the planet’s velocity at any given position.
When we attempt to make precise measurements on microscopic objects,
however, we find a fundamental limitation in the accuracy of the results. For
example, we can conceivably measure the position of an electron by scattering a
light photon from the electron. The wave character of the photon precludes an
exact measurement, and we can determine the position of the electron only
within some uncertainty Ax related to the extent (i.e., the wavelength) of the
photon. By the very act of measurement, however, we have induced a change in
the state of the electron, because the scattering of the photon imparts momen-
tum to the electron. This momentum is uncertain by an amount Ap. The product
Ax Apis a measure of the precision with which we can simultaneously determine
the electron’s position and momentum; Ax — 0, Ap— 0 implies a measurement
with all imaginable precision. It was shown by the German physicist Werner
Heisenberg (1901-1976) in 1927 that this product must always be larger than a
certain minimum value.* We cannot, then, simultaneously specify both the position

*This result also applies to the measurement of energy at a particular time, in which case the prod-
uct of the uncertainties is AE At (which has the same dimensions as Ax Ap).
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and momentum of the electron with infinite precision, for if Ax— 0, then we
must have Ap— co for Heisenberg’s uncertainty principle to be satisfied.

The minimum value of Ax Ap is of the order of 1073] - s. This is extremely
small by macroscopic standards, so for laboratory-scale objects there is no practi-
cal difficulty in performing simultaneous measurements of position and momen-
tum. Newton’s laws can therefore be applied as if position and momentum were
precisely definable. But because of the uncertainty principle, Newtonian mechan-
ics cannot be applied to microscopic systems. To overcome these fundamental
difficulties in the Newtonian system, a new method of dealing with microscopic
phenomena was developed, beginning in 1926. The work of Erwin Schrédinger
(1887-1961), Heisenberg, Max Born (1872-1970), Paul Dirac (1902-1984), and
others subsequently placed this new discipline on a firm foundation. Newtonian
mechanics, then, is perfectly adequate for describing large-scale phenomena. But
we need the new mechanics (quantum mechanics) to analyze processes in the
atomic domain. As the size of the system increases, quantum mechanics goes over
into the limiting form of Newtonian mechanics.

In addition to the fundamental limitations of Newtonian mechanics as ap-
plied to microscopic objects, there is another inherent difficulty in the
Newtonian scheme—one that rests on the concept of time. In the Newtonian
view, time is absolute, that is, it is supposed that it is always possible to determine
unambiguously whether two events have occurred simultaneously or whether
one has preceded the other. To decide on the time sequence of events, the two
observers of the events must be in instantaneous communication, either
through some system of signals or by establishing two exactly synchronous clocks
at the points of observation. But the setting of two clocks into exact synchronism
requires the knowledge of the time of transit of a signal in one direction from one
observer to the other. (We could accomplish this if we already had two synchro-
nous clocks, but this is a circular argument.) When we actually measure signal
velocities, however, we always obtain an average velocity for propagation in oppo-
site directions. And to devise an experiment to measure the velocity in only one
direction inevitably leads to the introduction of some new assumption that we
cannot verify before the experiment.

We know that instantaneous communication by signaling is impossible:
Interactions between material bodies propagate with finite velocity, and an inter-
action of some sort must occur for a signal to be transmitted. The maximum ve-
locity with which any signal can be propagated is that of light in free space:
c = 3 x 108 m/s.*

The difficulties in establishing a time scale between separate points lead us
to believe that time is, after all, not absolute and that space and time are some-
how intimately related. The solution to the dilemma was found during the pe-
riod 1904-1905 by Hendrik Lorenz (1853-1928), Henri Poincaré (1854-1912),
and Albert Einstein (1879-1955) and is embodied in the special theory of rela-
tivity (see Chapter 14).

*The speed of light has now been defined to be 299,792,458.0 m/s to make comparisons of other
measurements more standard. The meter is now defined as the distance traveled by light in a vac-
uum during a time interval of 1/299,792,458 of a second.
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Newtonian mechanics is therefore subject to fundamental limitations when
small distances or high velocities are encountered. Difficulties with Newtonian me-
chanics may also occur when massive objects or enormous distances are involved.
A practical limitation also occurs when the number of bodies constituting the sys-
tem is large. In Chapter 8, we see that we cannot obtain a general solution in
closed form for the motion of a system of more than two interacting bodies even
for the relatively simple case of gravitational interaction. To calculate the motion in
a three-body system, we must resort to a numerical approximation procedure.
Although such a method is in principle capable of any desired accuracy, the labor
involved is considerable. The motion in even more complex systems (for exam-
ple, the system composed of all the major objects in the solar system) can like-
wise be computed, but the procedure rapidly becomes too unwieldy to be of
much use for any larger system. To calculate the motion of the individual mole-
cules in, say, a cubic centimeter of gas containing = 10'® molecules is clearly out
of the question. A successful method of calculating the average properties of such
systems was developed in the latter part of the nineteenth century by Boltzmann,
Maxwell, Gibbs, Liouville, and others. These procedures allowed the dynamics
of systems to be calculated from probability theory, and a statistical mechanics was
evolved. Some comments regarding the formulation of statistical concepts in
mechanics are found in Section 7.13.

PROBLEMS

2-1. Suppose that the force acting on a particle is factorable into one of the following
forms:
(@) Fx;, 1) = f(x)g()  (b) Fx;, 1) = f(k)g(t)  (c) Ky, &) = flx;)g(x)

For which cases are the equations of motion integrable?

2-2. A particle of mass m is constrained to move on the surface of a sphere of radius R
by an applied force F(8, ¢). Write the equation of motion.

2-3. If a projectile is fired from the origin of the coordinate system with an initial veloc-
ity 15 and in a direction making an angle o with the horizontal, calculate the time
required for the projectile to cross a line passing through the origin and making an
angle 8 < a with the horizontal.

24. A clown is juggling four balls simultaneously. Students use a video tape to deter-
mine that it takes the clown 0.9 s to cycle each ball through his hands (including
catching, transferring, and throwing) and to be ready to catch the next ball. What
is the minimum vertical speed the clown must throw up each ball?

2-5. A jet fighter pilot knows he is able to withstand an acceleration of 9g before black-
ing out. The pilot points his plane vertically down while traveling at Mach 3 speed
and intends to pull up in a circular maneuver before crashing into the ground.
(@) Where does the maximum acceleration occur in the maneuver? (b) What is the
minimum radius the pilot can take?
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2-6.

2-8.

2-9.

2-10.

2-11.

2-12.

2-13.

In the blizzard of ’88, a rancher was forced to drop hay bales from an airplane to
feed her cattle. The plane flew horizontally at 160 km/hr and dropped the bales
from a height of 80 m above the flat range. (a) She wanted the bales of hay to land
30 m behind the cattle so as to not hit them. Where should she push the bales out
of the airplane? (b) To not hit the cattle, what is the largest time error she could
make while pushing the bales out of the airplane? Ignore air resistance.

Include air resistance for the bales of hay in the previous problem. A bale of hay
has a mass of about 30 kg and an average area of about 0.2 m? Let the resistance be
proportional to the square of the speed and let ¢y = 0.8. Plot the trajectories with a
computer if the hay bales land 30 m behind the cattle for both including air resis-
tance and not. If the bales of hay were released at the same time in the two cases,
what is the distance between landing positions of the bales?

A projectile is fired with a velocity v, such that it passes through two points both a
distance h above the horizontal. Show that if the gun is adjusted for maximum
range, the separation of the pointsis

d=3;;r9\/v8—-4gh

Consider a projectile fired vertically in a constant gravitational field. For the same
initial velocities, compare the times required for the projectile to reach its maxi-
mum height (a) for zero resisting force, (b) for a resisting force proportional to the
instantaneous velocity of the projectile.

Repeat Example 2.4 by performing a calculation using a computer to solve
Equation 2.22. Use the following values: m = 1 kg, v, = 10 m/s, x, = 0, and k =
0.1 s 1. Make plots of v versus ¢, x versus ¢, and v versus x. Compare with the results
of Example 2.4 to see if your results are reasonable.

Consider a particle of mass m whose motion starts from rest in a constant gravita-
tional field. If a resisting force proportional to the square of the velocity (i.e., kmv?)
is encountered, show that the distance s the particle falls in accelerating from v, to

) is given by
1 g— kv
s(vg—=> 1) = 2_kln s
i

A particle is projected vertically upward in a constant gravitational field with an
initial speed v,. Show that if there is a retarding force proportional to the square
of the instantaneous speed, the speed of the particle when it returns to the initial
position is

VoUy
Vi + v?

where v, is the terminal speed.

A particle moves in a medium under the influence of a retarding force equal to
mk(v® + a%v), where k and a are constants. Show that for any value of the initial
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2-14.

2-15.

2-16.

2-17.

2-18.

2-19.

2-20.

2-21.

2-22.
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speed the particle will never move a distance greater than 7/2ka and that the parti-
cle comes to rest only for — co.

A projectile is fired with initial speed v, at an elevation angle of @ up a hill of slope
B(a > B).

(a) How far up the hill will the projectile land?

(b) At what angle a will the range be a maximum?

(c) What is the maximum range?

A particle of mass m slides down an inclined plane under the influence of gravity. If
the motion is resisted by a force f= kmv?, show that the time required to move a
distance d after starting from rest is

= cosh™1(e*)
V kg sin 6

where 6 is the angle of inclination of the plane.

A particle is projected with an initial velocity v, up a slope that makes an angle a
with the horizontal. Assume frictionless motion and find the time required for the
particle to return to its starting position. Find the time for v, = 2.4 m/s and a = 26°.

A strong softball player smacks the ball at a height of 0.7 m above home plate. The
ball leaves the player’s bat at an elevation angle of 35° and travels toward a fence 2
m high and 60 m away in center field. What must the initial speed of the softball be
to clear the center field fence? Ignore air resistance.

Include air resistance proportional to the square of the ball’s speed in the previous
problem. Let the drag coefficient be ¢y = 0.5, the softball radius be 5 cm and the
mass be 200 g. (a) Find the initial speed of the softball needed now to clear the
fence. (b) For this speed, find the initial elevation angle that allows the ball to most
easily clear the fence. By how much does the ball now vertically clear the fence?

If a projectile moves such that its distance from the point of projection is always in-
creasing, find the maximum angle above the horizontal with which the particle
could have been projected. (Assume no air resistance.)

A gun fires a projectile of mass 10 kg of the type to which the curves of Figure 2-3
apply. The muzzle velocity is 140 m/s. Through what angle must the barrel be ele-
vated to hit a target on the same horizontal plane as the gun and 1000 m away?
Compare the results with those for the case of no retardation.

Show directly that the time rate of change of the angular momentum about the ori-
gin for a projectile fired from the origin (constant g) is equal to the moment of
force (or torque) about the origin.

The motion of a charged particle in an electromagnetic field can be obtained from
the Lorentz equation* for the force on a particle in such a field. If the electric field
vector is E and the magnetic field vector is B, the force on a particle of mass m that

*See, for example, Heald and Marion, Classical Electromagnetic Radiation (95, Section 1.7).
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carries a charge gand has a velocity v is given by

F=gE+gvXB

where we assume that v << c¢(speed of light).

(a) If there is no electric field and if the particle enters the magnetic field in a di-
rection perpendicular to the lines of magnetic flux, show that the trajectoryis a
circle with radius

my v

r=;‘§——w[

where w, = gB/m is the cyclotron frequency.
(b) Choose the z-axis to lie in the direction of B and let the plane containing E and
B be the yz—plane. Thus

B=Bk E=Ej+Ek

Show that the z component of the motion is given by
., 9
2(@) = zo + 2ot + —12
2m

where
2(0) =z, and %(0) = %,

(c) Continue the calculation and obtain expressions for x(f) and y(¢). Show that the
time averages of these velocity components are

(Show that the motion is periodic and then average over one complete period.)
(d) Integrate the velocity equations found in (c) and show (with the initial condi-
tions x(0) = —A/w,, £(0) = E,/B, y(0) = 0, 3(0) = A) that

~A y .
x(t) = — cosw, t+ =1t i) =—sinw.
< B wC

These are the parametric equations of a trochoid. Sketch the projection of the
trajectory on the xy— plane for the cases (i) A > |E/B|, (ii) A < |E,/B|, and
(iii) A = |E,/Bl. (The last case yields a cycloid.)

2-23. A particle of mass m = 1 kg is subjected to a one-dimensional force F(f) = kte™*,
where k= 1N/sand & = 0.5 s 71 If the particle is initially at rest, calculate and plot
with the aid of a computer the position, speed, and acceleration of the particle as a
function of time.

2-24. A skier weighing 90 kg starts from rest down a hill inclined at 17°. He skis 100 m
down the hill and then coasts for 70 m along level snow until he stops. Find the coef
ficient of kinetic friction between the skis and the snow. What velocity does the skier
have at the bottom of the hill?
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2-25. A block of mass m = 1.62 kg slides down a frictionless incline (Figure 2-A). The

2-26.

2-27.

2-28.

2-29.

2-30.

block is released a height £ = 3.91 m above the bottom of the loop.

(a) What is the force of the inclined track on the block at the bottom (point A)?

(b) What is the force of the track on the block at point B?

(c) At what speed does the block leave the track?

(d) How far away from point A does the block land on level ground?

(e) Sketch the potential energy U(x) of the block. Indicate the total energy on the
sketch.

FIGURE 2-A Problem 2-25.

A child slides a block of mass 2 kg along a slick kitchen floor. If the initial speed is 4
m/s and the block hits a spring with spring constant 6 N/m, what is the maximum
compression of the spring? What is the result if the block slides across 2 m of a
rough floor that has u, = 0.2?

A rope having a total mass of 0.4 kg and total length 4 m has 0.6 m of the rope
hanging vertically down off a work bench. How much work must be done to place
all the rope on the bench?

A superball of mass M and a marble of mass m are dropped from a height ~ with the
marble just on top of the superball. A superball has a coefficient of restitution of
nearly 1 (i.e., its collision is essentially elastic). Ignore the sizes of the superball and
marble. The superball collides with the floor, rebounds, and smacks the marble,
which moves back up. How high does the marble go if all the motion is vertical?
How high does the superball go?

An automobile driver traveling down an 8% grade slams on his brakes and skids 30
m before hitting a parked car. A lawyer hires an expert who measures the coeffi-
cient of kinetic friction between the tires and road to be u, = 0.45. Is the lawyer
correct to accuse the driver of exceeding the 25-MPH speed limit? Explain.

A student drops a waterfilled balloon from the roof of the tallest building in town
trying to hit her roommate on the ground (who is too quick). The first student
ducks back but hears the water splash 4.021 s after dropping the balloon. If the
speed of sound is 331 m/s, find the height of the building, neglecting air resistance.
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2-31.

2-32.

2-33.

2-34.

2-35.

2-36.

In Example 2.10, the initial velocity of the incoming charged particle had no com-
ponent along the x-axis. Show that, even if it had an x component, the subsequent
motion of the particle would be the same—that only the radius of the helix would
be altered.

Two blocks of unequal mass are connected by a string over a smooth pulley (Figure
2-B). If the coefficient of kinetic friction is u;, what angle 0 of the incline allows the
masses to move at a constant speed?

6

FIGURE 2-B Problem 2-32.

Perform a computer calculation for an object moving vertically in air under gravity

and experiencing a retarding force proportional to the square of the object’s speed

(see Equation 2.21). Use variables m for mass and r for the object’s radius: All the

objects are dropped from rest from the top of a 100-m-tall building. Use a value of

cw = 0.5 and make computer plots of height y, speed v, and acceleration a versus ¢

for the following conditions and answer the questions:

(a) A baseball of m = 0.145 kg and r = 0.0366 m.

(b) A ping-pong ball of m = 0.0024 kg and r = 0.019 m.

(c) A raindrop of r = 0.003 m.

(d) Do all the objects reach their terminal speeds? Discuss the values of the termi-
nal velocities and explain their differences.

(e) Why can a baseball be thrown farther than a ping-pong ball even though the
baseball is so much more massive?

(f) Discuss the terminal speeds of big and small raindrops. What are the terminal
speeds of raindrops having radii 0.002 m and 0.004 m?

A particle is released from rest (y = 0) and falls under the influence of gravity and
air resistance. Find the relationship between v and the distance of falling y when
the air resistance is equal to (a) avand (b) Bv2

Perform the numerical calculations of Example 2.7 for the values given in Figure
2-8. Plot both Figures 2-8 and 2-9. Do not duplicate the solution in Appendix H;
compose your own solution.

A gun is located on a bluff of height & overlooking a river valley. If the muzzle ve-
locity is vy, find the expression for the range as a function of the elevation angle of
the gun. Solve numerically for the maximum range out into the valley for a given &
and vy.
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2-37.

2-38.

2-39.

2-40.

241.

242,

2-43.

2-44.
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A particle of mass m has speed v = a/x, where xis its displacement. Find the force
F(x) responsible.

The speed of a particle of mass m varies with the distance xas v(x) = ax™" Assume
v(x = 0) = 0 at t = 0. (a) Find the force F(x) responsible. (b) Determine x(#) and
(c) F(1).

A boat with initial speed v, is launched on a lake. The boat is slowed by the water by
a force F= —aeP". (a) Find an expression for the speed v(f). (b) Find the time and
(c) distance for the boat to stop.

A particle moves in a two-dimensional orbit defined by

x(1) = AQat ~ sin at)
y(@) = A1l — cos ai)

(a) Find the tangential acceleration a; and normal acceleration «, as a function of
time where the tangential and normal components are taken with respect to the
velocity.

(b) Determine at what times in the orbit ¢, has a maximum.

A train moves along the tracks at a constant speed u. A woman on the train throws
a ball of mass m straight ahead with a speed v with respect to herself. (a) What is the
kinetic energy gain of the ball as measured by a person on the train? (b) by a per-
son standing by the railroad track? (c) How much work is done by the woman
throwing he ball and (d) by the train?

A solid cube of uniform density and sides of 4is in equilibrium on top of a cylinder
of radius R (Figure 2-C). The planes of four sides of the cube are parallel to the axis
of the cylinder. The contact between cube and sphere is perfectly rough. Under
what conditions is the equilibrium stable or not stable?

FIGURE 2-C Problem 2-42.

A particle is under the influence of a force F = —kx + kx%/a 2, where k and «a are
constants and k is positive. Determine U(x) and discuss the motion. What happens
when E = (1/4)ka?®

Solve Example 2.12 by using forces rather than energy. How can you determine
whether the system equilibrium is stable or unstable?
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245,

2-46.

247,

248,

2-49.

2-50.

2-51.

2-52.

2-53.

2-54.

Describe how to determine whether an equilibrium is stable or unstable when
(d?U/dx?)y, = 0.

Write the criteria for determining whether an equilibrium is stable or unstable
when all derivatives up through order », (d*U/dx™), = 0.

Consider a particle moving in the region x > 0 under the influence of the potential

Ux) = Uo<§ + g)

where Uy = 1 J and a = 2 m. Plot the potential, find the equilibrium points, and
determine whether they are maxima or minima.

Two gravitationally bound stars with equal masses m, separated by a distance d, re-
volve about their center of mass in circular orbits. Show that the period 7 is propor-
tional to @32 (Kepler’s Third Law) and find the proportionality constant.

Two gravitationally bound stars with unequal masses m, and m,, separated by a dis-
tance d, revolve about their center of mass in circular orbits. Show that the period t
is proportional to 4%? (Kepler’s Third Law) and find the proportionality constant.

According to special relativity, a particle of rest mass m, accelerated in one dimen-
sion by a force F obeys the equation of motion dp/dt = E Here p = myv/(1 —
v%/¢?) /% is the relativistic momentum, which reduces to mgv for v?/c? << 1. (a) For
the case of constant F and initial conditions x(0) = 0 = v(0), find x(#) and (7).
(b) Sketch your result for v(#). (c) Suppose that F/my, = 10 m/s? ( = g on Earth).
How much time is required for the particle to reach half the speed of light and of
99% the speed of light?

Let us make the (unrealistic) assumption that a boat of mass m gliding with initial
velocity v, in water is slowed by a viscous retarding force of magnitude 5v2, where &
is a constant. (a) Find and sketch v(?). How long does it take the boat to reach a
speed of 1,/1000? (b) Find x(¢). How far does the boat travel in this time? Let m =
200 kg, v, = 2m/s,and b = 0.2 Nm™2%?2

A particle of mass m moving in one dimension has potential energy U(x) =
Up[2(x/a)? ~ (x/a)*], where U, and @ are positive constants. (a) Find the force
F(x), which acts on the particle. (b) Sketch U(x). Find the positions of stable and
unstable equilibrium. (c) What is the angular frequency  of oscillations about the
point of stable equilibrium? (d) What is the minimum speed the particle must have
at the origin to escape to infinity? (e) At ¢ = 0 the particle is at the origin and its ve-
locity is positive and equal in magnitude to the escape speed of part (d). Find x(z)
and sketch the result.

Which of the following forces are conservative? If conservative, find the potential
energy Ur). (@) F, = ayz + bx + ¢ F, = axzx + bz, F, = axy + by. (b) F, =
~ze % Fy = Inz, F, = ¢ * + y/z. () F = e,a/r(a, b, care constants).

A potato of mass 0.5 kg moves under Earth’s gravity with an air resistive force of
—kmv. (a) Find the terminal velocity if the potato is released from rest and &k =
0.01 s~ (b) Find the maximum height of the potato if it has the same value of &,
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but it is initially shot directly upward with a student-made potato gun with an initial
velocity of 120 m/s.

2-55. A pumpkin of mass 5 kg shot out of a student-made cannon under air pressure at
an elevation angle of 45° fell at a distance of 142 m from the cannon. The students
used light beams and photocells to measure the initial velocity of 54 m/s. If the air
resistive force was F = — kmv, what was the value of k?



CHAPTER

Oscillations

3.1 Introduction

We begin by considering the oscillatory motion of a particle constrained to
move in one dimension. We assume that a position of stable equilibrium exists
for the particle, and we designate this point as the origin (see Section 2.6). If the
particle is displaced from the origin (in either direction), a certain force tends
to restore the particle to its original position. An example is an atom in a long
molecular chain. The restoring force is, in general, some complicated function
of the displacement and perhaps of the particle’s velocity or even of some
higher time derivative of the position coordinate. We consider here only cases
in which the restoring force F is a function only of the displacement: F = F(x).

We assume that the function F(x) that describes the restoring force possesses
continuous derivatives of all orders so that the function can be expanded in a
Taylor series:

dF\ 1 _/dF\ 1 _/dF
=FRtxl— ) +=x—5 )|+« ] + .
) =F x(dx>0 91 ¥ (dx2>0 31" <dx3>0 (3.1)

where F is the value of F(x) at the origin (x = 0), and (d"F/dx"), is the value of
the nth derivative at the origin. Because the origin is defined to be the equilib-
rium point, F, must vanish, because otherwise the particle would move away from
the equilibrium point and not return. If, then, we confine our attention to dis-
placements of the particle that are sufficiently small, we can normally neglect all
terms involving x? and higher powers of x. We have, therefore, the approximate
relation

Flx) = —kx (3.2)

99
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where we have substituted k = —(dl7dx),. Because the restoring force is always
directed toward the equilibrium position (the origin), the derivative (dF/dx), is
negative, and therefore kis a positive constant. Only the first power of the displace-
ment occurs in F(x), so the restoring force in this approximation is a linearforce.

Physical systems described in terms of Equation 3.2 obey Hooke’s Law.* One
of the classes of physical processes that can be treated by applying Hooke’s Law is
that involving elastic deformations. As long as the displacements are small and the
elastic limits are not exceeded, a linear restoring force can be used for problems
of stretched springs, elastic springs, bending beams, and the like. But we must em-
phasize that such calculations are only approximate, because essentially every real
restoring force in nature is more complicated than the simple Hooke’s Law force.
Linear forces are only useful approximations, and their validity is limited to cases in
which the amplitudes of the oscillations are small (but see Problem 3-8).

Damped oscillations, usually resulting from friction, are almost always the
type of oscillations that occur in nature. We learn in this chapter how to design an
efficiently damped system. This damping of the oscillations may be counteracted
if some mechanism supplies the system with energy from an external source at a
rate equal to that absorbed by the damping medium. Motions of this type are
called driven (or forced) oscillations. Normally sinusoidal, they have important
applications in mechanical vibrations as well as in electrical systems,

The extensive discussion of linear oscillatory systems is warranted by the
great importance of oscillatory phenomena in many areas of physics and engi-
neering. It is frequently permissible to use the linear approximation in the analy-
sis of such systems. The usefulness of these analyses is due in large measure to
the fact that we can usually use analytical methods.

When we look more carefully at physical systems, we find that a large number
of them are nonlinearin general. We will discuss nonlinear systems in Chapter 4.

3.2 Simple Harmonic Oscillator

The equation of motion for the simple harmonic oscillator may be obtained by
substituting the Hooke’s Law force into the Newtonian equation F= ma. Thus

—kx = m¥ (3.3)
If we define
wd = k/m (3.4)
Equation 3.3 becomes
P+ wix=0 (3.5)

*Robert Hooke (1635-1703). The equivalent of this force law was originally announced by Hooke in
1676 in the form of a Latin cryptogram: CEIIINOSSSTTUV. Hooke later provided a translation: uf
tensio sic vis [the stretch is proportional to the force].
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According to the results of Appendix C, the solution of this equation can be
expressed in either of the forms

x() = A sin(wyt — ) (3.6a)
x() = A cos(wgt — P) (3.6b)

where the phases* § and ¢ differ by /2. (An alteration of the phase angle corre-
sponds to a change of the instant that we designate ¢ = 0, the origin of the time
scale.) Equations 3.6a and b exhibit the well-known sinusoidal behavior of the
displacement of the simple harmonic oscillator.

We can obtain the relationship between the total energy of the oscillator
and the amplitude of its motion as follows. Using Equation 3.6a for x(t), we find
for the kinetic energy,

1

mi? = = mwjA? cos?(wyt — )

2

T:

N | —

1
=3 kA? cos?(wyt — ) 3.7

The potential energy may be obtained by calculating the work required to
displace the particle a distance x. The incremental amount of work dWnecessary
to move the particle by an amount dx against the restoring force Fis

dAW= —Fdx = kxdx .(3.8)

Integrating from 0 to x and setting the work done on the particle equal to the
potential energy, we have

1
U= = kx? 3.9
2
Then
1
U= 2 kAZ sin?(wyt — §) (3.10)
Combining the expressions for T'and U'to find the total energy E, we have

1
E=T+ U= -2-kA2[c052(w0t — 8) + sin?(wyt — 8)]

1
E=T+ U= ka? (3.11)

so that the total energy is proportional to the square of the amplitude, this is a gen-
eral result for linear systems. Notice also that Eis independent of the time; that is,

*The symbol & is often used to represent phase angle, and its value is either assigned or determined
within the context of an application. Be careful when using equations within this chapter because &
in one application may not be the same as the § in another. It might be prudent to assign subscripts,
for example, 8, and 8y, when using different equations.
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energy is conserved. (Energy conservation is guaranteed, because we have been
considering a system without frictional losses or other external forces.)

The period 7y of the motion is defined to be the time interval between succes-
sive repetitions of the particle’s position and direction of motion. Such an inter-
val occurs when the argument of the sine in Equation 3.6a increases by 27r:

WoT, = 27 (3.12)

or

To = 277\/% (3.13)

From this expression, as well as from Equation 3.6, it should be clear that w, rep-
resents the angular frequency of the motion, which is related to the frequency v,

by*
k
wy = 2Ty = . (3.14)

=—=— /= 3.15
Vo 7o 9w\ m ( )

Note that the period of the simple harmonic oscillator is independent of the
amplitude (or total energy); a system exhibiting this property is said to be
isochronous.

For many problems, of which the simple pendulum is the best example,
the equation of motion results in § + w3 sin § = 0, where 8 is the displacement
angle from equilibrium, and wy, = V g/€, where £ is the length of the pendu-
lum arm. We can make this differential equation describe simple harmonic
motion by invoking the small oscillation assumption. If the oscillations about
the equilibrium are small, we expand sin § and cos 6 in power series (see
Appendix A) and keep only the lowest terms of importance. This often means
sin #=60 and cos 6 = 1 — 0%/2, where 6 is measured in radians. If we use the
small oscillation approximation for the simple pendulum, the equation of mo-
tion above becomes § + w§f = 0, an equation that does represent simple har-
monic motion. We shall often invoke this assumption throughout this text and
in its problems.

*Henceforth we shall denote angular frequencies by @ (units: radians per unit time) and frequencies
by v (units: vibrations per unit time or Hertz, Hz). Sometimes w will be referred to as a “frequency”
for brevity, although “angular frequency” is to be understood.
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EXAMPLE 3.1

Find the angular velocity and period of oscillation of a solid sphere of mass m
and radius R about a point on its surface. See Figure 3-1.

Solution. Let the rotational inertia of the sphere be I about the pivot point. In ele-
mentary physics we learn that the value of the rotational inertia about an axis
through the sphere’s center is 2/5 mR2. If we use the parallel-axis theorem, the rota-
tional inertia about the pivot point on the surface is 2/5 mR? + mR? = 7/5 mR2.
The equilibrium position of the sphere occurs when the center of mass (center of
sphere) is hanging directly below the pivot point. The gravitational force F'= mg
pulls the sphere back towards the equilibrium position as the sphere swings back
and forth with angle 6. The torque on the sphere is N = Io, where a = § is the an-
gular acceleration. The torque is also N = R X F, with N= RF'sin § = Rmgsin 6.
For small oscillations, we have N = Rmg6. We must have I§ = — Rmg 6 for the
equation of motion in this case, because as 6 increases, § is negative. We need to
solve the equation of motion for 6.

. BRm
0+—7§0:0

This equation is similar to Equation 3.5 and has solutions for the angular fre-
quency and period from Equations 3.14 and 3.15,

_ ng_ ng_ bg
YTNT T 7 . TN7R

ng2
and

- R?
or [, 5" om [1B
= —_— _ = T Rl
T T Rmg T Rmg bg

Pivot
:—_/\‘

! 6
FIGURE 3-1 Example 3.1. The physical pendulum (sphere).
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Note that the mass m does not enter. Only the distance R to the center of
mass determines the oscillation frequency.

3.3 Harmonic Oscillations in Two Dimensions

We next consider the motion of a particle that is allowed two degrees of freedom.
We take the restoring force to be proportional to the distance of the particle from
a force center located at the origin and to be directed toward the origin:

F= —kr (3.16)

which can be resolved in polar coordinates into the components

F,= —krcos§ = —kx}
_ . (3.17)
F,= —krsin0 = —ky
The equations of motion are
#+ wfy=0 (3.18)
y+wly=0 )
where, as before, w3 = k/m. The solutions are
x() = A cos(wyt — a) (3.19)
() = Bcos(wgt — B) )

Thus, the motion is one of simple harmonic oscillation in each of the two direc-
tions, both oscillations having the same frequency but possibly differing in am-
plitude and in phase. We can obtain the equation for the path of the particle by
eliminating the time ¢between the two equations (Equation 3.19). First we write

y(#) = Bcoslwgt — a + (a — B)]
B cos(wyt — a)cos(a — B) — Bsin(wyt — a)sin(a — B)  (3.20)

Defining 6 = a — B and noting that cos(wyt — a) = x/A, we have
B 2
y=zxcos5— B,/1 —<~E—2—)sin5

Ay — Bx cos 8 = ~BV A2 — x?sin § (3.21)
On squaring, this becomes

A%y? — 2ABxy cos 8 + B?x? cos?8 = A?B? sin?8 — B%x? sin?8

or

so that
B2x? — 2ABxy cos 8 + A%y? = A?B?sin28 (3.22)
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If 6 is set equal to *4r/2, this equation reduces to the easily recognized equation
for an ellipse:
2 2
L
A2 B2
If the amplitudes are equal, A = B, and if § = =7/2, we have the special case of
circular motion:
x2+y2=A?, forA= B and § = =7/2 (3.24)
Another special case results if the phase 6 vanishes; then we have

B2x? — 2ABxy + A?y?2 =0, &6=0

1, &= =*u/2 (3.23)

Factoring,
(Bx — Ayp)2 =0
which is the equation of a straight line:
B
y = Zx, 6=0 (3.25)

Similarly, the phase &=+ yields the Straight line of OppOSite slope:
= —— 6= *ar (3.26)
y X, + .
! 'y

The curves of Figure 3-2 illustrate Equation 3.22 for the case A = B; § = 90°
or 270° yields a circle, and 8 = 180° or 360°(0°) yields a straight line. All other
values of § yield ellipses.

In the general case of two-dimensional oscillations, the angular frequencies
for the motions in the x- and y-directions need not be equal, so that Equation
3.19 becomes

x(t) = A cos(w,t — a)}
y(&) = B cos(w,t — B)

RIGNINN N
NBIR N
2N 1) /7
NN T

FIGURE 3-2 Two-dimensional harmonic oscillation motion for various phase angles
§=a—f.

(3.27)

D
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]
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SR

FIGURE 3-3 Closed two-dimensional oscillatory motion (called Lissajous curves)
occurs under certain conditions for the xand y coordinates.

The path of the motion is no longer an ellipse but a Lissajous curve.* Such a
curve will be closed if the motion repeats itself at regular intervals of time. This
will be possible only if the angular frequencies w, and w, are commensurable, that
is, if w, /a)y is a rational fraction. Such a case is shown in Figure 3-3, in which o, = %
(also a = B). If the ratio of the angular frequencies is not a rational fraction, the
curve will be open; that is, the moving particle will never pass twice through the
same point with the same velocity. In such a case, after a sufficiently long time
has elapsed, the curve will pass arbitrarily close to any given point lying within
the rectangle 24 X 2B and will therefore “fill” the rectangle.

The two-dimensional oscillator is an example of a system in which an infini-
tesimal change can result in a qualitatively different type of motion. The motion
will be along a closed path if the two angular frequencies are commensurable.
But if the angular frequency ratio deviates from a rational fraction by even an in-
finitesimal amount, then the path will no longer be closed and it will “fill” the
rectangle. For the path to be closed, the angular frequency ratio must be known to
be a rational fraction with infinite precision.

If the angular frequencies for the motions in the x- and y-directions are dif-
ferent, the shape of the resulting Lissajous curve strongly depends on the phase
difference 6 = a — B. Figure 3-4 shows the results for the case w, = 2w, for
phase differences of 0, 7r/3, and /2.

Wy

y

3.4 Phase Diagrams

The state of motion of a one-dimensional oscillator, such as that discussed in
Section 3.2, will be completely specified as a function of time if two quantities

*The French physicist Jules Lissajous (1822~1880) demonstrated this in 1857 and is generally given
credit, although Nathaniel Bowditch seems to have reported in 1815 two mutually orthogonal oscil-
lations displaying the same motion (Cr81).

tA proof is given, for example, by Haag (Ha62, p. 36).
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y
) /
0,=20,;6=0 0,=20,;6=m/3 0,=20,;6=1/2

FIGURE 34 Lissajous curves depend strongly on the phase differences of the angle 6.

are given at one instant of time, that is, the initial conditions x(¢;) and x(¢,).
(Two quantities are needed because the differential equation for the motion is of
second order.) We may consider the quantities x(f) and x(¢) to be the coordinates of
a point in a two-dimensional space, called phase space. (In two dimensions, the
phase space is a phase plane. But for a general oscillator with n degrees of freedom,
the phase space is a 2n-dimensional space.) As the time varies, the point P(x, %)
describing the state of the oscillating particle will move along a certain phase path in
the phase plane. For different initial conditions of the oscillator, the motion will be
described by different phase paths. Any given path represents the complete time his-
tory of the oscillator for a certain set of initial conditions. The totality of all possible
phase paths constitutes the phase portrait or the phase diagram of the oscillator.*

According to the results of the preceding section, we have, for the simple har-
monic oscillator,

x(t) = A sin(wyt — 8) (3.28a)
x(t) = Awg cos(wgt — 8) (3.28b)

If we eliminate ¢ from these equations, we find for the equation of the path

x2 %2

=+
A2 A20}

=1 (3.29)

This equation represents a family of ellipses,’ several of which are shown in Figure 3-5.
We know that the total energy E of the oscillator is kA2 (Equation 3.11), and be-
cause w§ = k/m, Equation 3.29 can be written as

x2 %2

+ =
2E/k  2E/m

(3.30)

Each phase path, then, corresponds to a definite total energy of the oscillator. This
result is expected because the system is conservative (i.e., E = const.).

No two phase paths of the oscillator can cross. If they could cross, this would
imply that for a given set of initial conditions x(¢,), x(¢,) (i.e., the coordinates of the

*These considerations are not restricted to oscillating particles or oscillating systems. The concept of
phase space is applied extensively in various fields of physics, particularly in statistical mechanics.
1The ordinate of the phase plane is sometimes chosen to be %/w, instead of %; the phase paths are
then circles.
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FIGURE 3-5 Phase diagram for a simple harmonic oscillator for a variety of total
energies E.

crossing point), the motion could proceed along different phase paths. But this is
impossible because the solution of the differential equation is unique.

If the coordinate axes of the phase plane are chosen as in Figure 3-5, the
motion of the representative point P(x, x) will always be in a clockwise direction,
because for x > 0 the velocity % is always decreasing and for x < 0 the velocity is
always increasing.

To obtain Equations 3.28 for x(¢) and x(f), we must integrate Equation 3.5, a

second-order differential equation:
d?x

i + wix=10 (3.31)

We can obtain the equation for the phase path, however, by a simpler procedure,
because Equation 3.31 can be replaced by the pair of equations

dx dx
o ~wix (3.32)
If we divide the second of these equations by the first, we obtain
& _
dx

X
—of
X

(3.33)
This is a firscorder differential equation for x = %(x), the solution to which is just
Equation 3.29. For the simple harmonic oscillator, there is no difficulty in obtaining
the general solution for the motion by solving the second-order equation. But in more
complicated situations, it is sometimes considerably easier to directly find the equation
of the phase path x = x(x) without proceeding through the calculation of x(f).

3.5 Damped Oscillations

The motion represented by the simple harmonic oscillator is termed a free oscilla-
tion; once set into oscillation, the motion would never cease. This oversimplifies
the actual physical case, in which dissipative or frictional forces would eventually
damp the motion to the point that the oscillations would no longer occur. We can
analyze the motion in such a case by incorporating into the differential equation a
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term representing the damping force. It does not seem reasonable that the damping
force should, in general, depend on the displacement, but it could be a function
of the velocity or perhaps of some higher time derivative of the displacement. It is
frequently assumed that the damping force is a linear function of the velocity,*
F, = av. We consider here only one-dimensional damped oscillations so that we
can represent the damping term by —4x. The parameter b must be positive in order
that the force indeed be resisting. (A force —bx with & <0 would act to increase the
speed instead of decreasing it as any resisting force must.) Thus, if a particle of
mass m moves under the combined influence of a linear restoring force —kx and a
resisting force — bk, the differential equation describing the motion is

mxX + bx + kx=0 (3.34)

which we can write as

¥+ 2Bx+ wix =0 (3.35)

Here B = b/2m is the damping parameter and w, = V k/m is the characteristic
angular frequency in the absence of damping. The roots of the auxiliary equation
are (cf. Equation C.8, Appendix C)

n=-B+ V- wj
e 3.36
r,= =B~ VB? ~ wf 339

The general solution of Equation 3.35 is therefore

x(t) = e P[A exp(V B2 — wdt) + Ajexp(— VB2 — wii)] (3.37)

There are three general cases of interest:
Underdamping: w? > B2
Critical damping: w3} = B2
Overdamping: wi < p?
The motion of the three cases is shown schematically in Figure 3-6 for specific initial

conditions. We shall see that only the case of underdamping results in oscillatory
motion. These three cases are discussed separately.

Underdamped Motion

For the case of underdamped motion, it is convenient to define

w3 — B2 (3.38)

o}

*See Section 2.4 for a discussion of the dependence of resisting forces on velocity.
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Underdamping, 2 < a)g

Critical damping, 32 = cog

Overdamping, 32 > ]

L
..
Sean

.

FIGURE 3-6 Damped oscillator motion for three cases of damping.

where w? > 0; then the exponents in the brackets of Equation 3.37 are imaginary,
and the solution becomes

x(f) = e PHA e + Agem ] (3.39)
Equation 3.39 can be rewritten as*
x(t) = Ae P! cos(w t — &) (3.40)

We call the quantity w, the angular frequency of the damped oscillator. Strictly
speaking, we cannot define a frequency when damping is present, because the
motion is not periodic—that is, the oscillator never passes twice through a given
point with the same velocity. However, because w; = 27/(27T}), where T is the
time between adjacent zero x-axis crossings, the angular frequency w; has meaning
for a given time period. Note that 27, would be the “period” in this case, not T}.
For simplicity, we refer to w; as the “angular frequency” of the damped oscillator,
and we note that this quantity is less than the frequency of the oscillator in the ab-
sence of damping (i.e., w; < wy). If the damping is small, then

w1 = Voi - B*=w,

so the term angular frequency may be used. But the meaning is not precise unless
B=0.

The maximum amplitude of the motion of the damped oscillator decreases
with time because of the factor exp(—f¢), where 8 > 0, and the envelope of the
displacement versus time curve is given by

Xep = FTAe™ P (3.41)

This envelope and the displacement curve are shown in Figure 3-7 for the case 6 = 0.
The sinusoidal curve for undamped motion (8 = 0) is also shown in this figure. A
close comparison of the two curves indicates that the frequency for the damped
case is less (i.e., that the period is longer) than that for the undamped case.

*See Exercise D-6, Appendix D.
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Amplitude

FIGURE 3-7 The underdamped motion (solid line) is an oscillatory motion (short
dashes) that decreases within the exponential envelope (long dashes).

The ratio of the amplitudes of the oscillation at two successive maxima is

Ae BT p
Ap—BTimy — ¢ (3.42)

where the first of any pair of maxima occurs at ¢ = T and where 7, = 27/w;. The
quantity exp(87,) is called the decrement of the motion; the logarithm of exp(B87,)—
that is, B7,—is known as the logarithmic decrement of the motion.

Unlike the simple harmonic oscillator discussed previously, the energy of the
damped oscillator is not constant in time; rather, energy is continually given up to
the damping medium and dissipated as heat (or, perhaps, as radiation in the form
of fluid waves). The rate of energy loss is proportional to the square of the velocity
(see Problem 3-11), so the decrease of energy does not take place uniformly. The
loss rate will be a maximum when the particle attains its maximum velocity near
(but not exactly at) the equilibrium position, and it will instantaneously vanish
when the particle is at maximum amplitude and has zero velocity. Figure 3-8 shows
the total energy and the rate of energy loss for the damped oscillator.

EXAMPLE 3.2

Construct a general phase diagram analycically for the damped oscillator. Then,
using a computer, make a plot for xand x versus ¢ and a phase diagram for the
following values: A = 1 cm, wy = 1rad/s, 8 = 0.2s57 !, and 6 = 7/2 rad.

Solution. First, we write the expressions for the displacement and the velocity:
x(f) = Ae Pl cos(w t — 8)
%(f) = —Ae BB cos(w t — 8) + w, sin(w,t — §)]

These equations can be coverted into a more easily recognized form by introducing
a change of variables according to the following linear transformations:

Uu=wx w=PBx+ x
Then
u = wAe P cos(wt — &)

w= —wAe Bl sin(w t — 8)
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FIGURE 3-8 The total energy and rate of energy loss for the damped oscillator.

w

FIGURE 3-9 Example 3.2.

If we represent « and w in polar coordinates (Figure 3-9), then
p=Vui+w: =0t
Thus
p = wlAe*(B/wl)d’

which is the equation of a logarithmic spiral. Because the transformation from x,
% to u, wis linear, the phase path has basically the same shape in the u-w plane
(Figure 3-10a) and x-x plane (Figure 3-10b). They both show a spiral phase path
of the underdamped oscillator. The continually decreasing magnitude of the radius
vector for a representative point in the phase plane always indicates damped
motion of the oscillator.
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FIGURE 3-10 Results for Example 3.2. The phase path (a) of the w, u coordinates
and (b) of the %, x coordinates, and (c¢) a numerical calculation of
position and speed versus time. The spiral path is characteristic of the
underdamped oscillator.

The actual calculation using numbers can be done by various means with a
computer. We chose to use one of the commercially available numerical pro-
grams that has good graphics output. We chose the values A =1, 8 =02, k=1,
m=1,and 6 = w/2 in the appropriate units to produce Figure 3-10. For the
particular value of & chosen, the amplitude has x = 0 at ¢t = 0, but % has a large
positive value, which causes x to rise to a maximum value of about 0.7 m at 2 s
(Figure 3-10c). The weak damping parameter 8 allows the system to oscillate
about zero several times (Figure 3-10c) before the system finally spirals down to
zero. The system crosses the x = 0 line eleven times before x decreases finally to
less than 1072 of its maximum amplitude. The phase diagram of Figure 3-10b

displays the actual path.
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Critically Damped Motion

If the damping force is sufficiently large (i.e., if 32 > w3), the system is prevented
from undergoing oscillatory motion. If zero initial velocity occurs, the displace-
ment decreases monotonically from its initial value to the equilibrium position (x = 0).
The case of critical damping occurs when B2 is just equal to w§. The roots of the
auxiliary equation are then equal, and the function x must be written as (cf,,
Equation C.11, Appendix C)

x(t) = (A + Bf)e P! (3.43)

This displacement curve for critical damping is shown in Figure 3-6 for the case in
which the initial velocity is zero. For a given set of initial conditions, a critically
damped oscillator will approach equilibrium at a rate more rapid than that for either
an overdamped or an underdamped oscillator. This is important in designing certain
practical oscillatory systems (e.g., galvanometers) when the system must return to
equilibrium as rapidly as possible. A pneumatic-tube screen-door closure system is a
good example of a device that should be critically damped. If the closure were under-
damped, the door would slam shut as other doors with springs always seem to do. If
it were overdamped, it might take an unreasonably long time to close.

Overdamped Motion

If the damping parameter 3 is even larger than w,, then overdamping results.
Because 3% > w}, the exponents in the brackets of Equation 3.37 become real
quantities:

x(f) = e PAe%! + Age™ 2] 3.44)

where
wy, = VB2~ w} (3.45)

Note that wy does not represent an angular frequency, because the motion is not
periodic. The displacement asymptotically approaches the equilibrium position
(Figure 3-6).

Overdamping results in a decrease of the amplitude to zero that may have
some strange behavior as shown in the phase space diagram of Figure 3-11. Notice
that for all the phase paths of the initial positions shown, the asymptotic paths at
longer times are along the dashed curve x = — (B — w,)x. Only a special case (see
Problem 3-22) has a phase path along the other dashed curve. Depending on the
initial values of the position and the velocity, a change in sign of both x and % may
occur; for example, see the phase path labeled III in Figure 3-11. Figure 3-12 dis-
plays x and % as a function of time for the three phase paths labeled I, II, and III in
Figure 3-11. All three cases have initial positive displacements, x(0) = x, > 0. Each
of the three phase paths has interesting behavior depending on the initial value,
%(0) = x,, of the velocity:

I. %, > 0, so that x(¢f) reaches a maximum at some > 0 before approaching
zero. The velocity x decreases, becomes negative, and then approaches zero.
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F=—(frag)r ‘
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FIGURE 3-11 The phase paths for overdamped motion are shown for several initial
values of (x, X). We examine more closely the paths labeled I, II, and IIL

Dots represent
mmal values

W

Z=—(B-wo)x

II. %, < 0, with x(¢) and %(f) monotonically approaching zero.

III. x, < 0, but below the curve x = — (8 + wy)x, so that x(f) goes negative before
approaching zero, and x(¢) goes positive before approaching zero. The motion
in this case could be considered oscillatory.

The initial points lying between the two dashed curves in Figure 3-11 seem to
have phase paths decreasing monotonically to zero, whereas those lying outside
those two lines do not. Critical damping has phase paths similar to the overdamp-
ing curves shown in Figure 3-11 (see Problem 3-21), rather than the spiral paths of
Figure 3-10b,

EXAMPLE 3.3

Consider a pendulum of length £ and a bob of mass m at its end (Figure 3-13)
moving through oil with § decreasing. The massive bob undergoes small oscilla-
tions, but the oil retards the bob’s motion with a resistive force proportional to
the speed with F Qm\/g7 ¢ (£0). The bob is initially pulled back at ¢ = 0 with 8 =
aand § = 0. Find the angular displacement 6 and velocity f as a function of time.

Sketch the phase diagram if V g/¢ = 10s™' and « = 10 ~2rad.

Solution. Gravity produces the restoring force, and the component pulling the
bob back to equilibrium is mgsin 6. Newton’s Second Law becomes

Force = m(£0) = Restoring force + Resistive force

mlh = —mg sind — 2m\ g/€(£0) (3.46)



116 3 / OSCILLATIONS
x Position

Velocity

Case I

— \ 5Co>0
1 L 0 | |

Case II
.*’0 <0

| 1L

P——

Case III
L .*’0 <0
[
\ Lo,
Time Time

FIGURE 3-12 The position and velocity as functions of time for the three phase
paths labeled I, II, and III shown in Figure 3-11.

Check that the force direction is correct, depending on the signs of 8 and §. For
small oscillations sin § = 6, and Equation 3.46 becomes

b+ 2Vg/06 + %a =0 (3.47)

Comparing this equation with Equation 3.35 reveals that w3 = g/, and B? = g/¢.
Therefore, w§ = B2 and the pendulum is critically damped. After being initially
pulled back and released, the pendulum accelerates and then decelerates as 6
goes to zero. The pendulum moves only in one direction as it returns to its
equilibrium position.
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FIGURE 3-13 Example 3.3. The  FIGURE 3-14 Phase diagram for Example 3.3.

bob is moving with decreasing 6.

The solution of Equation 3.47 is Equation 3.43. We can determine the val-
ues of A and B by substituting Equation 3.43 into Equation 3.47 using the initial
conditions.

6(t) = (A + Bt)e Pt
6t=0)=a=A (3.43)
6(t) = Be™P* — B(A + Btye B!

6(t=0)=0=B— BA

B= BA = Ba (3.48)
00 = a(l + Vg/€ e Vertt (3.49)
6 = _?gte‘\/w’ (3.50)

If we calculate 8(t) and 6(¢) for several values of time up to about 0.5 s, we can
sketch the phase diagram of Figure 3-14. Notice that Figure 3-14 is consistent with
the typical paths shown in Figure 3-11. The angular velocity is always negative after
the bob starts until it returns to equilibrium. The bob speeds up quickly and then
slows down.

3.6 Sinusoidal Driving Forces

The simplest case of driven oscillation is that in which an external driving force
varying harmonically with time is applied to the oscillator. The total force on the
particle is then

F= —kx — bx+ F, cos wt (3.51)
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where we consider a linear restoring force and a viscous damping force in addition
to the driving force. The equation of motion becomes

mx + bx + kx = F, cos wt (3.52)

or, using our previous notation,

X+ 2Bx+ wix = Acos wt (3.53)

where A = F,/m and where w is the angular frequency of the driving force. The
solution of Equation 3.53 consists of two parts, a complementary function x (),
which is the solution of Equation 3.53 with the right-hand side set equal to zero,
and a particular solution x,(f), which reproduces the right-hand side. The comple-
mentary solution is the same as that given in Equation 3.37 (see Appendix C):

x, () = e P[A1exp(V B2 — wd f) + Aexp(— VB2 — w} 1) (3.54)
For the particular solution, we try
x,(¢) = D cos(wt — 8) (3.55)

Substituting x,(¢) in Equation 3.53 and expanding cos(w? — 8) and sin(w? — §), we
obtain
{A — D[ (w3 — w?)cos & + 2w sin §]} cos wt
—{D[ (0% — ©?)sin & — 2wp cos 6]} sin wt =0 (3.56)

Because sin wtand cos wtare linearly independent functions, this equation can be
satisfied in general only if the coefficient of each term vanishes identically. From
the sin wtterm, we have

2w
tand = _,Ei? 3.57)
wy; T W
SO we can write
. 20p
siné =
\/(w% - 0?)? + 402B?
(3.58)
w} — w?
cosd =
\/(w% - 0?)? + 40?p?
And from the coefficient of the cos wt term, we have
A
D = -
(0§ — w2)cos & + 2wB sin &
A
= (3.59)

\/(w% - 0?)? + 402B2
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Thus, the particular integral is

A
x,(8) = \/(w% o 1 405 cos(wt — 8) (3.60)
with
2wp3
= Y i il
é = tan <w% — w2> (3.61)

The quantity 6 represents the phase difference between the driving force and
the resultant motion; a real delay occurs between the action of the driving force
and the response of the system. For a fixed w, as w increases from 0, the phase
increases fromé = 0atw = 0t0 6 = /2 at w = wyand to 7 as w — co. The varia-
tion of § with w is shown later in Figure 3-16.

The general solution is

x(t) = x(8) + x,() (3.62)

But x.(f) here represents transient effects (i.e., effects that die out), and the terms
contained in this solution damp out with time because of the factor exp(—p¢). The
term x,(f) represents the steady-state effects and contains all the information for ¢
large compared with 1/8. Thus,

x(t>>1/B) = x,(¢)

The steady-state solution is important in many applications and problems (see
Section 3.7).

The details of the motion during the period before the transient effects have
disappeared (i.e., t = 1/B) strongly depend on the oscillator’s conditions at the
time that the driving force is first applied and also on the relative magnitudes of
the driving frequency w and the damping frequency V w§ — B%in the case of un-
derdamped, undriven oscillations. This can be shown by numerically calculating
x,(#), x,(t), and the sum x(¢) (see Equation 3.62) for different values of 8 and w as
we have done for Figure 3-15. The student may profit from solving Problems 3-24
(underdamped) and 3-25 (critically damped) where such a procedure is suggested.
Figure 3-15 illustrates the transient motion of an underdamped oscillator when

driving frequencies less than and greater than w; = Vw} — B2 are applied. If
o < w; (Figure 3-15a), the transient response of the oscillator greatly distorts the
sinusoidal shape of the forcing function during the time interval immediately after
the application of the driving force, whereas if @ > w;(Figure 3-15b), the effect
is a modulation of the forcing function with little distortion of the high-
frequency sinusoidal oscillations.

The steady-state solution (x,) is widely studied in many applications and prob-
lems (see Section 3.7). The transient effects (x,), although perhaps not as impor-
tant overall, must be understood and accounted for in many cases, especially in
certain types of electrical circuits.
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FIGURE 3-15 Examples of sinusoidal driven oscillatory motion with damping. The
steady-state solution x,, transient solution x,, and sum x are shown in
(a) for driving frequency w greater than the damping frequency
w1(w > w,;) and in (b) for w < w;.

Resonance Phenomena
To find the angular frequency wg at which the amplitude D (Equation 3.59) is a
maximum (i.e., the amplitude resonance frequency), we set

(2Y

dw w=wpg

=0

Performing the differentiation, we find
wp = Vi — 2B* (3.63)

Thus, the resonance frequency wy is lowered as the damping coefficient 8 is in-
creased. No resonance occurs if 8 > w,/2, for then wy is imaginary and D de-
creases monotonically with increasing w.

‘We may now compare the oscillation frequencies for the various cases we have
considered:

1. Free oscillations, no damping (Equation 3.4):

k
w}=—
m

2. Free oscillations, damping (Equation 3.38):

o} = wf — B
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3. Driven oscillations, damping (Equation 3.63):

w} = 0} — 282
and we note that wy > w; > wpg.

We customarily describe the degree of damping in an oscillating system in
terms of the “quality factor” Q of the system:

= %R
=25

If little damping occurs, then Q is very large and the shape of the resonance curve
approaches that for an undamped oscillator. But the resonance can be completely
destroyed if the damping is large and @ is very small. Figure 3-16 shows the reso-
nance and phase curves for several different values of Q. These curves indicate the
lowering of the resonance frequency with a decrease in Q (i.e., with an increase of
the damping coefficient B). The effect is not large, however; the frequency shift is
less than 3% even for @ as small as 3 and is about 18% for Q = 1.
For a lightly damped oscillator, we can show (see Problem 3-19) that

(3.64)

=20 3.65
Q=2 (3.65)

where Aw represents the frequency interval between the points on the amplitude
resonance curve that are 1/ \/5 = 0.707 of the maximum amplitude.

IR

(b)

FIGURE 3-16 (a) The amplitude D is displayed as a function of the driving frequency
o for various values of the quality factor Q. Also shown is (b) the phase
angle 8, which is the phase angle between the driving force and the
resultant motion.
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The values of Q found in real physical situations vary greatly. In rather ordi-
nary mechanical systems (e.g., loudspeakers), the values may be in the range from
a few to 100 or so. Quartz crystal oscillators or tuning forks may have Qs of 10%
Highly tuned electrical circuits, including resonant cavities, may have values of 10*
to 10°%. We may also define Qs for some atomic systems. According to the classical
picture, the oscillation of electrons within atoms leads to optical radiation. The
sharpness of spectral lines is limited by the damping due to the loss of energy
by radiation (radiation damping). The minimum width of a line can be calculated
classically and is* Aw =2 X 10 ®w. The Q of such an oscillator is therefore ap-
proximately 5 X 107. Resonances with the largest known Qs occur in the radia-
tion from gas lasers. Measurements with such devices have yielded Qs of approxi-
mately 104,

Equation 3.63 gives the frequency for amplitude resonance. We now calculate
the frequency for kinetic energy resonance—that is, the value of w for which Tis a
maximum. The kinetic energy is given by T = %ma'cQ, and computing % from
Equation 3.60, we have

. —Aw . _
x= \/(w% "o 1 t0ip sin(wt — 8) (3.66)

so that the kinetic energy becomes

mA? w?
T= . in2(wt — & 3.67
2 (0w} — 0?P + 4022 sin*( ) ( )

To obtain a value of Tindependent of the time, we compute the average of T over
one complete period of oscillation:
mA? w?

9 (03 — w2)? + 402B2

(T) = (sin?(wt — 8)) (3.68)

The average value of the square of the sine function taken over one period is’

P 2m/w 1
(sin*(wt — §)) = —J sin2(wt — 8)dt = = (3.69)
27 Jo 2

Therefore,
mA? w?

(T) = 4 (03 — 02)? + 402B2

(3.70)

The value of @ for (T) a maximum is labeled wy and is obtained from

“ary
= 3.71)

*See Marion and Heald (Ma80).
1The reader should prove the important result that the average over a complete period of sin®wt or
cos?wt is equal to %; {sin%wt) = (cos?wi) = %
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Differentiating Equation 3.70 and equating the result to zero, we find
wg = Wy (3-72)

so the kinetic energy resonance occurs at the natural frequency of the system for
undamped oscillations.

We see therefore that the amplitude resonance occurs at a frequency Vw3 — 282,
whereas the kinetic energy resonance occurs at w,. Because the potential energy is
proportional to the square of the amplitude, the potential energy resonance must
also occur at Vw3 — 2B2 That the kinetic and potential energies resonate at dif-
ferent frequencies is a result of the fact that the damped oscillator is not a conser-
vative system. Energy is continually exchanged with the driving mechanism, and
energy is being transferred to the damping medium.

3.7 Physical Systems

We stated in the introduction to this chapter that linear oscillations apply to more
systems than just the small oscillations of the mass—spring and the simple pendulum.
The same mathematical formulation applies to a whole host of physical systems.
Mechanical systems include the torsion pendulum, vibrating string or membrane,
and elastic vibrations of bars or plates. These systems may have overtones, and
each overtone can be treated much the same as we did in the previous discussion.

We can apply our mechanical system analog to acoustic systems. In this case,
the air molecules vibrate. We can have resonances that depend on the properties
and dimensions of the medium. Several factors cause the damping, including fric-
tion and sound-wave radiation. The driving force can be a tuning fork or vibrating
string, among many sources of sound.

Atomic systems can also be represented classically as linear oscillators. When
light (consisting of electromagnetic radiation of high frequency) falls on matter, it
causes the atoms and molecules to vibrate. When light having one of the resonant
frequencies of the atomic or molecular system falls on the material, electromag-
netic energy is absorbed, causing the atoms or molecules to oscillate with large
amplitude. Large electromagnetic fields of the same frequency are produced by
the oscillating electric charges. Wave mechanics (or quantum mechanics) uses lin-
ear oscillator theory to explain many of the phenomena associated with light ab-
sorption, dispersion, and radiation.

Even to describe nuclei, linear oscillator theory is used. One of the modes of
excitation of nuclei is collective excitation. Neutrons and protons vibrate in vari-
ous collective motions. Resonances occur, and damping exists. The classical me-
chanical analog is very useful in describing the motion.

Electrical circuits are, however, the most noted examples of nonmechanical
oscillations. Indeed, because of its great practical importance, the electrical example
has been so thoroughly investigated that the situation is frequently reversed, and
mechanical vibrations are analyzed in terms of the “equivalent electrical circuit.”
We devote two examples to electrical circuits.
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EXAMPLE 3.4

Find the equivalent electrical circuit for the hanging mass—spring shown in Figure
3-17a and determine the time dependence of the charge ¢ in the system.

Solution. Let us first consider the analogous quantities in mechanical and electri-
cal systems. The force F (= mgin the mechanical case) is analogous to the emf £.
The damping parameter b has the electrical analog resistance R, which is not
present in this case. The displacement x has the electrical analog charge g We
show other quantities in Table 3-1. If we examine Figure 3-17a, we have

1/k— C,m —> L, F— &, x = ¢, and x— I. Without the weight of the mass, the
equilibrium position would be at x = 0; the addition of the gravitational force
extends the spring by an amount k = mg/kand displaces the equilibrium position
to x = h. The equation of motion becomes

mi+ k(x— h) =0 (3.73)
or
mxX + kx = kh
with solution
x(f) = h+ Acos wyt 3.74)

where we have chosen the initial conditions x(t = 0) = A+ A and x(¢{ = 0) = 0.
We draw the equivalent electrical circuit in Figure 3-17b. Kirchoff’s equation
around the circuit becomes

dl 1 vh
—_ 4+ — I 3 - .
Ldt CJ dt= €& C (3.75)

. et [

l F=mg
(a) (b)

FIGURE 3-17 Example 3.4 (a) hanging mass-spring system;
(b) equivalent electrical circuit.
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TABLE 3-1 Analogous Mechanical and Electrical Quantities

Mechanical Electrical
x Displacement q Charge
% Velocity Gg=1 Current
m Mass L Inductance
b Damping resistance R Resistance
1/k Mechanical compliance C Capacitance
F Amplitude of impressed force £ Amplitude of impressed emf

where ¢, represents the charge that must be applied to C to produce a voltage £.
If we use I = ¢, we have

., 9 _ N
+=== )
Li+-=7¢ (3.76)
If g= goand I = O at ¢t = 0, the solution is
q(¢) = g1 + (g0 — q1) cos wyt (3.77)

which is the exact electrical analog of Equation 3.74.

EXAMPLE 3.5

Consider the series RLC circuit shown in Figure 3-18 driven by an alternating
emf of value E, sin wt. Find the current, the voltage V; across the inductor, and
the angular frequency w at which V; is a maximum.

Solution. The voltage across each of the circuit elements in Figure 3-18 are

dl
V= I—=Lj
L dt q

Vv LI—-qu—-L'
R™ “tuT q

Ve=—
¢ c

so the voltage drops around the circuit become

L§+ Rq+—g=‘—Eosinwt

Ey sin ot

L
1F

c
FIGURE 3-18 Example 3.5. RLC circuit with an alternating emf.



126 3 / OSCILLATIONS

We identify this equation as similar to Equation 3.53, which we have already
solved. In addition to the relationships in Table 3-1, we also have 8 = 52m — R/2L,
wy= Vk/m— 1/\/L_é, and A = Fy/m— Ey/L. The solution for the charge gis
given by transcribing Equation 3.60, and the equation for the current /is given by
transcribing Equation 3.66, which allows us to write

I= sin(wt — &)

1
R +|—_ oL)
\/7 <w C wL)
where 8 can be found by transcribing Equation 3.61.
The voltage across the inductor is found from the time derivative of the current.

ar ~wLE,

::L—_.
dt \/2 1 2
R +(— — oL
(ee==2)

= V(w) cos (vt — 8)

Vi cos(wt — 6)

To find the driving frequency  ,,,,, which makes V; a maximum, we must take the
derivative of V; with respect to w and set the result equal to zero. We only need to
consider the amplitude V(w) and not the time dependence.

2L 2
LE)(R? — — +
AViw) °< c wW)

dw 1 2 |3/2
R? + <—~ - wL)
wC

We have skipped a few intermediate steps to arrive at this result. We determine
the value w,,, sought by setting the term in parentheses in the numerator equal
to zero. By doing so and solving for @, gives

1
w =

ILC__RC
2

which is the result we need. Note the difference between this frequency and those

given by the natural frequency, w, = 1/V LC, and the charge resonance frequency
(given by transcribing Equation 3.63), wgz = V1/LC — 2R¥/L%

3.8 Principle of Superposition—Fourier Series

The oscillations we have been discussing obey a differential equation of the form

—(ﬁ+ —(£+b () = A cos wt (3.78
Py adt x 0s W .78)
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The quantity in parentheses on the left-hand side is a linear operator, which we
may represent by L. If we generalize the time-dependent forcing function on the
right-hand side, we can write the equation of motion as

Lx() = () (3.79)

An important property of linear operators is that they obey the principle of super-
position. This property results from the fact that linear operators are distributive,
that is,

L(x + x9) = L(x) + L(x,) (3.80)

Therefore, if we have two solutions, x,(f) and x;(¢), for two different forcing func-
tions, I, (f) and Fy(t),

Lx; = Fi(t), Lxy= Fy(t) (3.81)
we can add these equations (multiplied by arbitrary constants «; and «a y) and obtain
L(aix; + agng) = ayF1()) + agFy(t) (3.82)

We can extend this argument to a set of solutions x,(f), each of which is appropri-
ate for a given F, (¢):

N N .
L <§1 a,,xn(t)) = ; a, F,(f) (3.83)

This equation is just Equation 3.79 if we identify the linear combinations as

N

x() = 2 a,x,(0
N (3.84)

RO = 2 a,F,0

If each of the individual functions F, () has a simple harmonic dependence on

time, such as cos w,t, we know that the corresponding solution x,(f) is given by
Equation 3.60. Thus, if F(¢) has the form

Ft) = 2a, cos(w,i — &,) (3.85)
the steady-state solution is
1 a,
x(t) = — 2 cos(w,t — ¢, — 8,) (3.86)
mo V(0 ~ 0l + 40l
where
2w,
8, = tan~! (—2—“’%) (3.87)
wh — Wy

We can write down similar solutions where F{¢) is represented by a series of
terms, sin(w,t — ¢,). We therefore arrive at the important conclusion that if some
arbitrary forcing function F¢) can be expressed as a series (finite or infinite) of
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harmonic terms, the complete solution can also be written as a similar series of
harmonic terms. This is an extremely useful result, because, according to Fourier’s
theorem, any arbitrary periodic function (subject to certain conditions that are
not very restrictive) can be represented by a series of harmonic terms. Thus, in the
usual physical case in which F(t) is periodic with period 7 = 27/,

Fi+ 1) = F3) (3.88)
we then have
1 N .
Kt = 5(10 + gl(an cosnwt + b, sin nwt) (3.89)

where
2 T ’ ’ ’
an = - F(t'ycos nwt' dt
0 0 (3.90)
b, = —J F(t')sin nwt' dt’
TJo

or, because F(¢) has a period 7, we can replace the integral limits 0 and 7 by the

limits —% T = —m/wand +% T= +7/w:
+7/w
w ’ ’ 1
a, = —J F(t')ycos nwt' dt
™ -n/w

it (3.91)
b, = —J F(¢)sin nwt' dt’
™ —a/w
Before we discuss the response of damped systems to arbitrary forcing func-
tions (in the following section), we give an example of the Fourier representation
of periodic functions.

A sawtooth driving force function is shown in Figure 3-19. Find the coefficients
a,and b,, and express F(t) as a Fourier series.

Solution. In this case, F(¢) is an odd function, F(—t) = —F(t), and is expressed by

t A
Ry =A~ =224 —7p<i<7p (3.92)
T 2
0
A/2
t
-A/2
f— 17—

FIGURE 3-19 Example 3.6. A sawtooth driving force function.
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Because F(t) is odd, the coefficients a, all vanish identically. The &, are given by
QAJ+1r/w

,, t'sin nwt’ dt’
277' -n/w

_w?A t'cos not’  sinnot' | [T
T on?|  ne * nlw?
—-7/w
2A 2m
= ()= -( 1)n+! (3.93)

where the term (—1)**! takes account of the fact that

+1, mnodd
—Cos nmw = (3.94)
—1, mneven

Therefore we have
A 1 1
Ft) = sinwt — 5 sin2wt + 3 sin3wt — --- (3.95)

Figure 3-20 shows the results for two terms, five terms, and eight terms of
this expansion. The convergence toward the sawtooth function is none too
rapid.

We should note two features of the expansion. At the points of discontinu-
ity (¢t = *7/2) the series yields the mean value (zero), and in the region imme-
diately adjacent to the points of discontinuity, the expansion “overshoots” the
original function. This latter effect, known as the Gibbs phenomenon,* occurs
in all orders of approximation. The Gibbs overshoot amounts to about 9% on
each side of any discontinuity, even in the limit of an infinite series.

3.9 The Response of Linear Oscillators to Impulsive
Forcing Functions (Optional)

In the previous discussions, we have mainly considered steady-state oscillations.
For many types of physical problems (particularly those involving oscillating
electrical circuits), the transient effects are quite important. Indeed, the tran-
sient solution may be of dominating interest in such cases. In this section, we in-
vestigate the transient behavior of a linear oscillator subjected to a driving force
that acts discontinuously. Of course, a “discontinuous” force is an idealization,
because it always takes a finite time to apply a force. But if the application time is
small compared with the natural period of the oscillator, the result of the ideal
case is a close approximation to the actual physical situation.

*Josiah Willard Gibbs (1839-1903) discovered this effect empirically in 1898. A detailed discussion is
given, for example, by Davis (Da63, pp. 113-118). The amount of overshoot is actually 8.9490 -+ %.
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FIGURE 3-20 Results of Example 3.6. Fourier series representation of sawtooth
driving force function.

The differential equation describing the motion of a damped oscillator is
o)

X+ 2Bx+ wix = 7 (3.96)

The general solution is composed of the complementary and particular solutions:

x(f) = x,(&) + x,(0) 3.97)
We can write the complementary solution as
x, () = e P A | cos wt + A,y sin w,f) (3.98)
where
0, = Vi — B2 (3.99)

The particular solution x,(f) depends on the nature of the forcing function F{).
Two types of idealized discontinuous forcing functions are of considerable in-

terest. These are the step function (or Heaviside function) and the impulse func-

tion, shown in Figures 3-21a and b, respectively. The step function H is given by

0, t<t,

H(ty) = {a >0 (3.100)
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£ Fao
m m

H(ip) " I(p,11)

(a) (b)
FIGURE 3-21 (a) Step function; (b) impulse function.

where a is a constant with the dimensions of acceleration and where the argu-
ment £, indicates that the time of application of the force is ¢ = ¢,.

The impulse function Iis a positive step function applied at ¢t = ¢,, followed
by a negative step function applied at some later time ¢,. Thus

I(ty, t1) = H(ty) — H(ty)

0, <yt
I(ty, 1)) =346, L <i<f (3.101)
O, t> tl

Although we write the Heaviside and impulse functions as H(¢,) and I(Z, ¢;) for
simplicity, these functions depend on the time ¢ and are more properly written
as H(t; ty) and I(¢; ¢, t;) .

Response to a Step Function

For step functions, the differential equation that describes the motion for ¢ > ¢, is
¥ +28x +twix=a, >4 (3.102)

We consider the initial conditions to be x(¢)) = 0 and %(¢y,) = 0. The particular
solution is just a constant, and examination of Equation 3.102 shows that it must
be a/wi. Thus, the general solution for ¢ > ¢, is

x(t) = eBUW[A, cos 0 (£~ ) + Agsinwi(t— £)] + 5 (3.103)
Wy
Applying the initial conditions yields
a
Aj=——, Ay=~— 32 (3.104)
Wy w1 Wj
Therefore, for ¢t > t,, we have
Be Bt

x(f) = £|:l — e Bt cos w (t — ty) — sin w{ (¢ — to)jl (3.105)
0

and x(¢) = 0 for t < ¢,.



132 3 / OSCILLATIONS

20/0f

a/a)o2

0
FIGURE 3-22 Response function solution to the step force function.

If, for simplicity, we take ¢, = 0, the solution can be expressed as

(0)

Bt
x(f) = |:1 — e Blcos wit — * ~ sin wltjl (3.106)

wq

This response function is shown in Figure 3-22 for the case 8 = 0.2w,. It should be
clear that the ultimate condition of the oscillator (i.e., the steady-state condi-
tion) is simply a displacement by an amount a/w?.

If no damping occurs, 8 = 0 and w; = w,. Then, for ¢, = 0, we have

H(0)

0

x()) = —5-[1 — coswyt], B=0 (3.107)
The oscillation is thus sinusoidal with amplitude extremes x = 0 and x = 2a/w}
(see Figure 3-22).

Response to an Impulse Function

If we consider the impulse function as the difference between two step functions
separated by a time ¢, — ¢, = 7, then, because the system is linear, the general so-
lution for ¢ > ¢, is given by the superposition of the solutions (Equation 3.105)
for the two step functions taken individually:

BeBu= 1t
x(t) = 1— e Bt cos w (t— ty) — sin w, (¢t — &)
o}
a BeBU=t=7)
——| 1 — BT h D cos w (¢t =ty — T) — sinw, (¢ — &) — T)
wj wq
ae— B 1)
=———F—| 6 cosw(t — tp— T) = cosw(t— )
wp
BeP”

+

, B .
o, sinw(t — ¢, — 1) — ‘U_1 sin w (¢t — ¢o) |, t> (3.108)
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The totalresponse (i.e., Equations 3.105 and 3.108) to an impulse function of
duration 7 = 5 X 27/w, applied at ¢t = ¢, is shown in Figure 3-23 for 8 = 0.2w,.

If we allow the duration 7 of the impulse function to approach zero, the re-
sponse function will become vanishingly small. But if we allow a— oo as 7 — 0 so
that the product a7 is constant, then the response will be finite. This particular
limiting case is considerably important, because it approximates the application
of a driving force that is a “spike” at ¢t = ¢, (i.e., 7 <K 27/w,).* We want to ex-
pand Equation 3.108 by letting 7 — 0, but with b = a7 = constant. Let A = ¢ — ¢,
and B = ¢, then use Equations D.11 and D.12 (from Appendix D) to obtain

ae~BU— 1)

x(t) = —Q—{e‘g’[cos @ (t— ty) cos w T + sin w(t — ;) sin w ;7]
wy

P

—cos w(t— t) + [sin w (¢t — ty) cos w T — cos w(t — ¢)sin w,7]

—-wﬁsinwl(t —~ to)}, t> t (3.109)
1

x(t)

N :

f iy \//\\/ T

T =5 (2m/w,)

FIGURE 3-23 Response function solution to the impulse force function.

*A “spike” of this type is usually termed a delta function and is written 8(¢ — ¢;). The delta function
has the property that 8() = 0 for ¢ # 0 and 8§(0) = o, but

+00
j 8(t— ty)dt=1

This is therefore not a proper function in the mathematical sense, but it can be defined as the limit
of a well-behaved and highly local function (such as a Gaussian function) as the width parameter
approaches zero. See also Marion and Heald (Ma80, Section 1.11).
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Because 7 is small, we can expand ¢, cos w7, and sin w7 using Equations D.34,
D.29, and D.28, keeping only the first two terms in each. After multiplying out
all the terms containing 7, we keep only the lowest-order term of 7.

ae—B(t_ to)

2
-
x(t) = ————sin wi(t— to)|:w]'r + —} t>t,
wj w

Using Equation 3.99 for w3 and 7 = b/a gives us, finally,

b
x(f) = w—e’B(”t“)sin wi(t—t,), 1>t (3.110)
1

This response function is shown in Figure 3-24 for the case 8 = 0.2w,.
Notice that, as ¢ becomes large, the oscillator returns to its original position of
equilibrium.

The fact that the response of a linear oscillator to an impulsive driving force
can be represented in the simple manner of Equation 3.110 leads to a powerful
technique for dealing with general forcing functions, which was developed by
Green.* Green’s method is based on representing an arbitrary forcing function
as a series of impulses, shown schematically in Figure 3-25. If the driven systein is
linear, the principle of superposition is valid, and we can express the inhomoge-
neous part of the differential equation as the suin of individual forcing functions
F,(6)/m, which in Green’s method are impulse functions:

[o.8) ]"nt [s.¥)
i+ opit o= oD 3 (3.111)

n=-ro M n= =

x(1)

FIGURE 3-24 Response function solution to a spike (or delta function)
force function,

*CGeorge Green (1793-1841), a self-educated English mathematician.
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- F
oy L : - (5)/m

L, Lisl

FIGURE 3-25 An arbitrary force function can be represented as a series of impulses,
a method known as Green’s methods.

where
In(t) = I(tn’ tn+1)

_ {an(tn), ty <t <ty (3.112)

0, Otherwise

The interval of time over which I, acts is ¢,+, =~ ¢, = 7, and 1 < 27/w,. The so-
lution for the nth impulse is, according to Equation 3.110,

e_B(t_tn) sin wl(t — tn)’ t > tn + 7 (3.113)

xa(0) = 7’1"3:)7

and the solution for all the impulses up to and including the Nth impulse is

N
an tn T .
> Le‘B(t't")sm wi(t—t), th<t<ty, (3.114)

If we allow the interval T to approach zero and write ¢, as ¢, then the sum be-
comes an integral:

t t’ ,
x(t) = f fl(i_le'ﬂu't)sinwl(t~ £y dr (3.115)

-0 1
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We define
| PP
e B Dginw (t— ), t=¢
Gty = (3.116)
’ 0, 1<t )
Then, because
ma(t') = F(t') 3.117)
we have
¢
x() = J K1) G(¢, t)yar (3.118)

The function G(¢, t') is known as the Green’s function for the linear oscillator
equation (Equation 3.96). The solution expressed by Equation 3.118 is valid
only for an oscillator initially at rest in its equilibrium position, because the solu-
tion we used for a single impulse (Equation 3.110) was obtained for just such an
initial condition. For other initial conditions, the general solution may be ob-
tained in an analogous manner.

Green’s method is generally useful for solving linear, inhomogeneous differ-
ential equations. The main advantage of the method lies in the fact that the
Green’s function G(¢, '), which is the solution of the equation for an infinitesi-
mal element of the inhomogeneous part, already contains the initial conditions—so
the general solution, expressed by the integral of F(¢') G(¢, ¢'), automatically also
contains the initial conditions.

EXAMPLE 3.7

Find x(¢) for an exponentially decaying forcing function beginning at ¢ = 0 and
having the following form for ¢ > 0:

Fiy = Fee™, t>0 (3.119)
Solution. The solution for x(f) according to Green’s method is

F o[t "o
x(f) = ——| e e BUDsin w(t — ¢)dt (3.120)
0

mw

Making a change of variable to z = w,(¢ — ¢), we find

F, [°

Mmwi Jot

F, -
= ——_(y — ;§T+ e |:e_“"— e Bt <cos wt— Y o 4 sin w1t>j| (3.121)
i
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Fb/m x(t)
(r-B)? + of

Fy/m
(r-B)%+ of

Fy/m x(t)
(r-p2+ of

— ¢

FIGURE 3-26 Response function for Example 3.7.

This response function is illustrated in Figure 3-26 for three different combi-
nations of the damping parameters 8 and y. When v is large compared with
B, and if both are small compared with w,, then the response approaches that
for a “spike”; compare Figure 3-24 with the upper curve in Figure 3-26. When
v is small compared with 83, the response approaches the shape of the forcing
function itself—that is, an initial increase followed by an exponential decay.
The lower curve in Figure 3-26 shows a decaying amplitude on which is su-
perimposed a residual oscillation. When g8 and y are equal, Equation 3.121
becomes

Fy
mew?

x(f) = e BY(1 — cos wyt), B=vy 3.122)

Thus, the response is oscillatory with a “period” equal to 27/w; but with an
exponentially decaying amplitude, as shown in the middle curve of Figure
3-26.

A response of the type given by Equation 3.121 could result, for example, if
a quiescent but intrinsically oscillatory electronic circuit were suddenly driven
by the decaying voltage on a capacitor.



138 3 / OSCILLATIONS

PROBLEMS

3-1. A simple harmonic oscillator consists of a 100-g mass attached to a spring whose
force constant is 10* dyne/cm. The mass is displaced 3 cm and released from rest.
Calculate (a) the natural frequency v and the period 7, (b) the total energy, and
(c) the maximum speed.

3-2. Allow the motion in the preceding problem to take place in a resisting medium.
After oscillating for 10 s, the maximum amplitude decreases to half the initial
value. Calculate (a) the damping parameter 3, (b) the frequency v; (compare with
the undamped frequency v,), and (c) the decrement of the motion.

3-3. The oscillator of Problem 3-1 is set into motion by giving it an initial velocity of
1 cm/s at its equilibrium position. Calculate (a) the maximum displacement and
(b) the maximum potential energy.

34. Consider a simple harmonic oscillator. Calculate the time averages of the kinetic
and potential energies over one cycle, and show that these quantities are equal.
Why is this a reasonable result? Next calculate the space averages of the kinetic and
potential energies. Discuss the results.

3-5. Obtain an expression for the fraction of a complete period that a simple harmonic
oscillator spends within a small interval Ax at a position x. Sketch curves of this
function versus x for several different amplitudes. Discuss the physical significance
of the results. Comment on the areas under the various curves.

3-6. Two masses m; = 100 g and m, = 200 g slide freely in a horizontal frictionless track
and are connected by a spring whose force constant is £ = 0.5 N/m. Find the fre-
quency of oscillatory motion for this system.

3-7. A body of uniform cross-sectional area A = 1 cm? and of mass density p = 0.8
g/cm?® floats in a liquid of density py = 1 g/cm® and at equilibrium displaces a vol-
ume V= 0.8 cm3. Show that the period of small oscillations about the equilibrium
position is given by

T=2rVV/gA

where gis the gravitational field strength. Determine the value of 7.

3-8. A pendulum is suspended from the cusp of a cycloid* cut in a rigid support (Figure
3-A). The path described by the pendulum bob is cycloidal and is given by

x=a(¢p —singd), y=a(cosd — 1)

where the length of the pendulum is / = 44, and where ¢ is the angle of rotation
of the circle generating the cycloid. Show that the oscillations are exactly isochro-
nous with a frequency wy = V g/l, independent of the amplitude.

*The reader unfamiliar with the properties of cycloids should consult a text on analytic geometry.
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3-9.

3-10.

3-11.

3-12.

3-13.

3-14.

3-15.

3-16.

-\

i
i
i
1
®

FIGURE 3-A Problem 3-8.

A particle of mass m is at rest at the end of a spring (force constant = k) hanging
from a fixed support. At ¢ = 0, a constant downward force Fis applied to the mass
and acts for a time ¢,. Show that, after the force is removed, the displacement of the
mass from its equilibrium position (x = x,, where xis down) is

F
X — X = P [coswy(t — ty) — coswyt]
where w¢ = k/m.

If the amplitude of a damped oscillator decreases to 1/¢ of its initial value after
n periods, show that the frequency of the oscillator must be approximately
[1 — (872n2)71] times the frequency of the corresponding undamped oscillator.

Derive the expressions for the energy and energy-loss curves shown in Figure 3-8
for the damped oscillator. For a lightly damped oscillator, calculate the average rate
at which the damped oscillator loses energy (i.e., compute a time average over one
cycle).

A simple pendulum consists of a mass m suspended from a fixed point by a weight-
less, extensionless rod of length {. Obtain the equation of motion and, in the
approximation that sin # = 6, show that the natural frequency is w, = \/:gﬁ, where g
is the gravitational field strength. Discuss the motion in the event that the motion
takes place in a viscous medium with retarding force 2m\/{§ 0.

Show that Equation 3.43 is indeed the solution for critical damping by assuming a
solution of the form x(f) = y(t)exp(—pf¢) and determining the function y(¢).

Express the displacement x(f) and the velocity x(f) for the overdamped oscillator in
terms of hyperbolic functions.

Reproduce Figures 3-10b and c¢ for the same values given in Example 3.2, but
instead let 8 = 0.1 s~! and & = 7 rad. How many times does the system cross the x =
0 line before the amplitude finally falls below 1072 of its maximum value? Which
plot, b or ¢, is more useful for determining this number? Explain.

Discuss the motion of a particle described by Equation 3.34 in the event that < 0
(i.e., the damping resistance is negative).
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3-17.

3-18.

3-19

3-20.

3-21.

3-22.

3-23.

3-24.

3-25.

3 / OSCILLATIONS

For a damped, driven oscillator, show that the average kinetic energy is the same at
a frequency of a given number of octaves* above the kinetic energy resonance as at
a frequency of the same number of octaves below resonance.

Show that, if a driven oscillator is only lightly damped and driven near resonance,
the Q of the system is approximately

=9 X Yol energy
Q= (Energy loss duning one period)

For a lightly damped oscillator, show that Q = wy/Aw (Equation 3.65).

Plot a velocity resonance curve for a driven, damped oscillator with Q = 6, and show
that the full width of the curve between the points corresponding to %,/ V2 is ap-
proximately equal to w, /6.

Use a computer to produce a phase space diagram similar to Figure 3-11 for the
case of critical damping. Show analytically that the equation of the line that the
phase paths approach asymptotically is X = —Bx. Show the phase paths for at least
three initial positions above and below the line.

Let the initial position and speed of an overdamped, nondriven oscillator be x,and
vy, respectively.
(a) Show that the values of the amplitudes A; and A, in Equation 3.44 have the values
A =E-2MandA = —B—Mwhereﬁ =fB-woandBy =B+ w
L BB B~ B ‘ P }
(b) Show that when A; = 0, the phase paths of Figure 3-11 must be along the
dashed curve given by £ = —B,x, otherwise the asymptotic paths are along the
other dashed curve given by # = —f,x. Hint: Note that 8, > B, and find the
asymptotic paths when {— co.

To better understand underdamped motion, use a computer to plot x(?) of Equation
3.40 (with A = 1 m) and its two components [¢~# and cos(w;¢ — 8)] and compar-
isons (with 8 = 0) on the same plot as in Figure 3-6. Let w, = 1 rad/s and make sep-
arate plots for B%w§ = 0.1, 0.5, and 0.9 and for & (in radians) = 0, 77/2, and 7. Have
only one value of 8 and 8 on each plot (i.e., nine plots). Discuss the results.

For 8 = 0.2 5”1, produce computer plots like those shown in Figure 3-15 for a sinu-
soidal driven, damped oscillator where x,(%), x.(#), and the sum x(t) are shown. Let
k= 1kg/s?and m = 1kg. Do this for values of w/w, of 1/9,1/3, 1.1, 3, and 6. For
the x,(¢) solution (Equation 3.40), let the phase angle 8 = 0 and the amplitude
A = —1 m. For the x,(?) solution (Equation 3.60), let A = 1 m/s? but calculate 8.
What do you observe about the relative amplitudes of the two solutions as @ in-
creases? Why does this occur? For w/w, = 6, let A = 20 m/s? for x,(?) and produce
the plot again.

For values of 8 = 15”1, k= 1kg/s? and m = 1 kg, produce computer plots like those
shown in Figure 3-15 for a sinusoidal driven, damped oscillator where x,(#), x.(f),

*An octave is a frequency interval in which the highest frequency is just twice the lowest frequency.
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3-26.

3-27.

3-28.

3-29.

3-30.

3-31.

and the sum x(¢) are shown. Do this for values of w/w, 0of 1/9,1/3, 1.1, 3, and 6. For
the critically damped x(#) solution of Equation 3.43,let A= —1 mand B= 1m/s.
For the x,(?) solution of Equation 3.60, let A = 1 m/s? and calculate 8. What do you
observe about the relative amplitudes of the two solutions as w increases? Why does
this occur? For w/wy = 6,let A = 20 m/s? for x,(#) and produce the plot again.

Figure 3-B illustrates a mass m; driven by a sinusoidal force whose frequency is w.
The mass m, is attached to a rigid support by a spring of force constant k and slides
on a second mass my. The frictional force between m; and m, is represented by the
damping parameter b, and the frictional force between my and the support is rep-
resented by b,. Construct the electrical analog of this system and calculate the
impedance.

FIGURE 3-B Problem 3-26.

Show that the Fourier series of Equation 3.89 can be expressed as
1 o0
Fi) = §a0 + gl c,cos(nwt — @)
Relate the coefficients ¢, to the a, and &, of Equation 3.90.

Obtain the Fourier expansion of the function

-1, —ww<it<O0
t =
) {+1, 0<t< ww

in the interval —7/w < t < /. Take @ = 1 rad/s. In the periodical interval, cal-
culate and plot the sums of the first two terms, the first three terms, and the first
four terms to demonstrate the convergence of the series.

Obtain the Fourier series representing the function
0, 2w < t<0
K =4.
sinwt 0<¢t<27w/w

Obtain the Fourier representation of the output of a full-wave rectifier. Plot the first
three terms of the expansion and compare with the exact function.

A damped linear oscillator, originally at rest in its equilibrium position, is subjected
to a forcing function given by

0, t<0
Ry _
—=dax (t/1), 0<t<T
m

a, t>T

Find the response function. Allow 7 — 0 and show that the solution becomes that
for a step function.
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3-32.

3-33.

3-34.

3-35.

3-36.

3-37.

3-38.

3-39.

3-40.

341.
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Obtain the response of a linear oscillator to a step function and to an impulse func-
tion (in the limit 7 — 0) for overdamping. Sketch the response functions.

Calculate the maximum values of the amplitudes of the response functions shown
in Figures 3-22 and 3-24. Obtain numerical values for 8 = 0.2w, when a = 2 m/s2,
w, = 1rad/s,and ¢, = 0.

Consider an undamped linear oscillator with a natural frequency w, = 0.5 rad/s
and the step function a = 1 m/s2. Calculate and sketch the response function for
an impulse forcing function acting for a time 7 = 27/w,. Give a physical interpre-
tation of the results.

Obtain the response of a linear oscillator to the forcing function

0, t<0

Hy) .

7: asin wf, 0<:< 7/w
0, t> w/w

Derive an expression for the displacement of a linear oscillator analogous to
Equation 3.110 but for the initial conditions x(zy) = x, and %(¢,) = %,.

Derive the Green’s method solution for the response caused by an arbitrary forcing
function. Consider the function to consist of a series of step functions-—that is, start
from Equation 3.105 rather than from Equation 3.110.

Use Green’s method to obtain the response of a damped oscillator to a forcing
function of the form

R = t<0
) FoeV'sinwt t> 0

Consider the periodic function

Ry = sinwt, 0<t< 7/w
0, /o < t< 2m/w

which represents the positive portions of a sine function. (Such a function repre-
sents, for example, the output of a half-wave rectifying circuit.) Find the Fourier
representation and plot the sum of the first four terms.

An automobile with a mass of 1000 kg, including passengers, settles 1.0 cm closer to
the road for every additional 100 kg of passengers. It is driven with a constant hori-
zontal component of speed 20 km/h over a washboard road with sinusoidal bumps.
The amplitude and wavelength of the sine curve are 5.0 cm and 20 cm, respectively.
The distance between the front and back wheels is 2.4 m. Find the amplitude of
oscillation of the automobile, assuming it moves vertically as an undamped driven
harmonic oscillator. Neglect the mass of the wheels and springs and assume that
the wheels are always in contact with the road.

(a) Use the general solutions x(¢) to the differential equation d?x/dt? + 2Bdx/dt +
w§x = 0 for underdamped, critically damped, and overdamped motion and choose
the constants of integration to satisfy the initial conditions x = xy and v = v, = 0 at

= 0. (b) Use a computer to plot the results for x(f)/x, as a function of w,¢ in the
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three cases B8 = (1/2)wy, B = wy, and B = 2w,. Show all three curves on a single
plot.

3-42. Anundamped driven harmonic oscillator satisfies the equation of motion m( d?x/de2+
w,2x) = F(?). The driving force F{z) = F, sin(wt) is switched on at ¢ = 0. (a) Find x(?)
for ¢ > 0 for the initial conditions x = 0 and v = 0 at ¢ = 0. (b) Find x(¢) for v = w,
by taking the limit @ — w in your result for part (a). Sketch your result for x(z).
Hint: In part (a) look for a particular solution of the differential equation of the
form x = Asin(w?) and determine A. Add the solution of the homogeneous equa-
tion to this to obtain the general solution of the inhomogeneous equation.

3-43. A point mass m slides without friction on a horizontal table at one end of a massless
spring of natural length a and spring constant k as shown in Figure 3-C. The spring
is attached to the table so it can rotate freely without friction. The net force on the
mass is the central force F(r) = —k(r — a). (a) Find and sketch both the potential
energy U(7) and the effective potential U(7). (b) What angular velocity @, is re-
quired for a circular orbit with radius 7? (c) Derive the frequency of small oscillations
® about the circular orbit with radius r,. Express your answers for (b) and (c) in terms

of k, m, 7y, and a.

FIGURE 3-C Problem 343.

3-44. Consider a damped harmonic oscillator. After four cycles the amplitude of the os-
cillator has dropped to 1/¢ of its initial value. Find the ratio of the frequency of the
damped oscillator to its natural frequency.

3-45. A grandfather clock has a pendulum length of 0.7 m and mass bob of 0.4 kg. A
mass of 2 kg falls 0.8 m in seven days to keep the amplitude (from equilibrium) of
the pendulum oscillation steady at 0.03 rad. What is the Q of the system?



CHAPTER

Nonlinear Oscillations
and Chaos

4.1 Introduction

The discussion of oscillators in Chapter 3 was limited to linear systems. When
pressed to divulge greater detail, however, nature insists of being nonlinear; ex-
amples are the flapping of a flag in the wind, the dripping of a leaky water
faucet, and the oscillations of a double pendulum. The techniques learned thus
far for linear systems may not be useful for nonlinear systems, but a large num-
ber of techniques have been developed for nonlinear systems, some of which we
address in this chapter. We use numerical techniques to solve some of the non-
linear equations in this chapter.

The equation of motion for the damped and driven oscillator of Chapter 3
moving in only one dimension can be written as

m&k + f(x) + g(x) = h(®) “4.1)

If f(x) or g(x) contains powers of % or x, respectively, higher than linear, then the
physical system is nonlinear. Complete solutions are not always available for
Equation 4.1, and sometimes special treatment is needed to solve such equa-
tions. For example, we can learn much about a physical system by considering
the deviation of the forces from linearity and by examining phase diagrams.
Such a system is the simple plane pendulum, a system that is linear only when
small oscillations are assumed.

In the beginning of the nineteenth century, the famous French mathemat-
cian Pierre Simon de Laplace espoused the view that if we knew the position and
velocities of all the particles in the universe, then we would know the future for
all time. This is the deterministic view of nature. In recent years, researchers in

144
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many disciplines have come to realize that knowing the laws of nature is not
enough. Much of nature seems to be chaotic. In this case, we refer to determin-
istic chaos, as opposed to randomness, to be the motion of a system whose time evo-
lution has a sensitive dependence on initial conditions. The deterministic develop-
ment refers to the way a system develops from one moment to the next, where
the present system depends on the one just past in a well-determined way
through physical laws. We are not referring to a random process in which the
present system has no causal connection to the previous one (e.g., the flipping
of a coin).

Measurements made on the state of a system at a given time may not allow us
to predict the future situation even moderately far ahead, despite the fact that the
governing equations are known exactly. Deterministic chaos is always associated
with a nonlinear system; nonlinearity is a necessary condition for chaos but not a
sufficient one. Chaos occurs when a system depends in a sensitive way on its pre-
vious state. Even a tiny effect, such as a butterfly flying nearby, may be enough to
vary the conditions such that the future is entirely different than what it might
have been, notjust a tiny bit different. The advent of computers has allowed chaos
to be studied because we now have the capability of performing calculations of
the time evolution of the properties of a system that includes these tiny variations
in the initial conditions. Chaotic systems can only be solved numerically, and
there are no simple, general ways to predict when a system will exhibit chaos.

Chaotic phenomena have been uncovered in practically all areas of science
and engineering—in irregular heartbeats; the motion of planets in our solar sys-
tem; water dripping from a tap; electrical circuits; weather patterns; epidemics;
changing populations of insects, birds, and animals; and the motion of electrons
in atoms. The list goes on and on. Henrn Poincaré* is generally given credit for
first recognizing the existence of chaos during his investigation of celestial me-
chanics at the end of the nineteenth century. He came to the realization that the
motion of apparently simple systems, such as the planets in our solar system, can
be extremely complicated. Although various investigators also eventually came
to understand the existence of chaos, tremendous breakthroughs did not hap-
pen until the 1970s, when computers were readily available to calculate the long-
time histories required to document the behavior.

The study of chaos has become widespread, and we will only be able to look
at the rudimentary aspects of the phenomena. Specialized textbooks' on the
subject have become abundant for those desiring further study. For example,
space does not permit us to discuss the fascinating area of fractals, the compli-
cated patterns that arise from chaotic processes.

*Henri Poincaré (1854-1912) was a mathematician who could also be considered a physicist and
philosopher. His career spanned the era when classical mechanics was at its height, soon to be over-
taken by relativity and quantum mechanics. He searched for precise mathematical formulas that
would allow him to understand the dynamic stability of systems.

tParticularly useful books are by Baker and Gollub (Ba96), Moon (Mo092), Hilborn (Hi00), and
Strogatz (8t94).
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4.2 Nonlinear Oscillations

Consider a potential energy of the parabolic form
1
Ulx) = Eka (4.2)

Then the corresponding force is
F(x) = —kx (4.3)

This is just the case of simple harmonic motion discussed in Section 3.2, Now,
suppose a particle moves in a potential well, which is some arbitrary function of
distance (as in Figure 4-1). Then, in the vicinity of the minimum of the well, we
usually approximate the potential with a parabola. Therefore, if the energy of
the particle is only slightly greater than Uy, only small amplitudes are possible
and the motion is approximately simple harmonic. If the energy is appreciably
greater than U,, so that the amplitude of the motion cannot be considered
small, then it may no longer be sufficiently accurate to make the approximation
Ulx) = %kx2 and we must deal with a nonlinear force.

In many physical situations, the deviation of the force from linearity is sym-
metric about the equilibrium position (which we take to be at x = 0). In such
cases, the magnitude of the force exerted on a particle is the same at —x as at x;
the direction of the force is opposite in the two cases. Therefore, in a symmetric
situation, the first correction to a linear force must be a term proportional to x3;
hence,

F(x) = —kx + ex® (4.4)

where ¢ is usually a small quantity. The potential corresponding to such a force
is

1 1
Ux) = Eka =3 ex? (4.5)

Ux)

Parabolic

min

X

FIGURE 41 Arbitrary potential U(x) indicating a parabolic region where simple
harmonic motion is applicable.
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FIGURE 42 Force F(x) and potential U(x) for a soft and hard system when an x*
term is added to the force.

Depending on the sign of the quantity &, the force may either be greater or less
than the linear approximation. If £ > 0, then the force is less than the linear
term alone and the system is said to be soft; if £ < 0, then the force is greater and
the system is hard. Figure 4-2 shows the form of the force and the potential for a
soft and a hard system.

Consider a particle of mass m suspended between two identical springs (Figure 4-3).
Show that the system is nonlinear. Find the steady-state solution for a driving
force K, coswt.

Solution. If both springs are in their unextended conditions (i.e., there is no
tension, and therefore no potential energy, in either spring) when the particle
is in its equilibrium position—and if we neglect gravitational forces—then when
the particle is displaced from equilibrium (Figure 4-3b), each spring exerts a
force —k(s — ) on the particle (% is the force constant of each spring). The net
(horizontal) force on the particle is

F= —2k(s— 1l)sin@ (4.6)

Now,

s = \/l?+x2
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(a) Equilibrium position (b) Extended position

FIGURE 43 Example 4.1. A double spring system in (a) equilibrium and
(b) extended positions.

so
. X X
sinfl = - = —————
N \/ 12 + x?
Hence,

2kx 1
F=———.(VE+ 2~ 1) =2k (1——————) 4.7
VI2+ x? ( ¥ ) ¥ V1 + (x/1)2 @

If we consider x/{ to be a small quantity and expand the radical, we find

)]

If we neglect all terms except the leading term, we have, approximately,
F(x) = —(k/1®) x5 4.8)

Therefore, even if the amplitude of the motion is sufficiently restricted so that
%/ is a small quantity, the force is still proportional to x3. The system is there-
fore intrinsically nonlinear. However, if it had been necessary to stretch each
spring a distance d to attach it to the mass when at the equilibrium position,
then we would find for the force (see Problem 4-1):

F(x) = —2(kd/l)x — [k(l — d)/I*]x* (4.9)

and a linear term is introduced. For oscillations with small amplitude, the mo-
tion is approximately simple harmonic.
From Equation 4.9 we identify

e'=—k(l— d)/B <0
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Thus the system is hard.
If we have a driving force Ij cos wt, the equation of motion for the
stretched spring (force of Equation 4.9) becomes

2kd__ k(l— d)

mi = B —lg—xg + F, cos wt (4.10)
Let
! 2kd F
s=8~, a=— and G=- (4.11)
m ml m
then
¥= —ax + ex® + Gcos wt (4.12)

Equation 4.12 is a difficult differential equation to solve. We can find the impor-
tant characteristics of the solution by a method of successive approximations
(perturbation technique). First, try a solution x; = A cos ¢, and insert x, into
the right-hand side of Equation 4.12, which becomes

¥y = —aA cos wt + eA® cos® wt + G cos wt (4.13)
where the solution of Equation 4.13 is x = x,. This equation can be solved for
x9 using the identity

St = £+ = cos St
wt =~ cos = cos 3w
cos 1 wt + 7 co
Using this equation in Equation 4.13 gives

3 1
Ry = “<l1A T eA® — G)cos wt + ZSAS cos 3wt 4.14)

Integrating twice (with integration constants set equal to zero) gives

1 3

3 A
Xo = E(aA - ZsAg' - G)cos wt — 386(4)2

cos 3wt (4.15)

This is already a complicated solution. Under what conditions for &, 4, and x is
xy a suitable solution? Numerical techniques with a computer can quickly yield
a perturbative solution quite accurately. We have found that the amplitude
depends on the driving frequency, but no resonance occurs at the natural
frequency of the system.

Further discussion of solution methods for Equation 4.12 would take us too
far afield of our present discussion. The result is that for some values of the
driving frequency o, three different amplitudes may occur with “jumps” be-
tween the amplitudes. The amplitude may have a different value for a given
depending on whether w is increasing or decreasing (hysteresis). We present a
simple case of this effect in Section 4.5.



150 4 / NONLINEAR OSCILLATIONS AND CHAOS

F(x)
Linear
\\\\/
\\\
N Ux)
A ! .
x | ;/Parabohc
\\ ,/
\ 1
> \ !
\\ \ !
~ 4
\\
\\
\\\ X
(Soft) (Hard) N 0

FIGURE 44 Example of asymmetric forces and potentials.

In real physical situations, we are often concerned with symmetric forces
and potentials. But some cases have asymmetric forms. For example,

F(x) = —kx + Ax? (4.16)

Tlle pOtentlal fOr WhiCh is

This case is illustrated in Figure 4-4 for A < 0; the system is hard for x > 0 and
soft for x < 0.

4.3 Phase Diagrams for Nonlinear Systems

The construction of a phase diagram for a nonlinear system may be accom-
plished by using Equation 2.97:

#(x) o« VE — Ulx) (4.18)

When U(x) is known, it is relatively easy to make a phase diagram for x(x).
Computers, with their ever-improving graphics capability, make this a particu-
larly easy task. However, in many cases it is difficult to obtain U(x), and we must
resort to approximation procedures to eventually produce the phase diagram.
On the other hand, it is relatively easy to obtain a qualitative picture of the phase
diagram for the motion of a particle in an arbitrary potential. For example, con-
sider the asymmetric potential shown in Figure 4-5a, which represents a system
that is soft for x < 0 and hard for x > 0. If no damping occurs, then because xis
proportional to VE — U(x), the phase diagram must be of the form shown in
Figure 4-5b. Three of the oval phase paths are drawn, corresponding to the
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FIGURE 45 (a) Asymmetric potential and (b) phase diagram for bounded motion.

three values of the total energy indicated by the dotted lines in the potential di-
agram. For a total energy only slightly greater than that of the minimum of the
potential, the oval phase paths approach ellipses. If the system is damped, then
the oscillating particle will “spiral down the potential well” and eventually come
to rest at the equilibrium position, x = 0. The equilibrium point at x = 0 in this
case is called an attractor. An attractor is a set of points (or one point) in phase
space toward which a system is “attracted” when damping is present.

For the case shown in Figure 4-5, if the total energy E of the particle is less
than the height to which the potential rises on either side of x = 0, then the par-
ticle is “trapped” in the potential well (cf., the region x, < x < x,in Figure 2-14).
The point x = 0 is a position of stable equilibrium, because (d2U(x)/dx?), > 0
(see Equation 2.103), and a small disturbance results in locally bounded motion.

In the vicinity of the maximum of a potential, a qualitatively different type of
motion occurs (Figure 46). Here the point x = 0 is one of unstable equilibrium,
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FIGURE 46 (a) Inverted asymmetric potential and (b) phase diagram for
unbounded motion.

because if a particle is at rest at this point, then a slight disturbance will result in lo-
cally unbounded motion.* Similarly, (d2U(x)/dx?), < 0 gives unstable equilibrium.

If the potential in Figure 4-6a were parabolic—if U(x) = —-% kx?—then the
phase paths corresponding to the energy E; would be straight lines and those
corresponding to the energies E; and E; would be hyperbolas. This is there-
fore the limit to which the phase paths of Figure 4-6 would approach if
the nonlinear term in the expression for the force were made to decrease in
magnitude.

By referring to the phase paths for the potentials shown in Figures 4-5 and
4-6, we can rapidly construct a phase diagram for any arbitrary potential (such as
that in Figure 2-14).

*The definition of instability must be stated in terms of locally unbounded motion, for if there are
other maxima of the potential greater than the one shown at x = 0, the motion will be bounded by
these other potential barriers.
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FIGURE 47 Phase diagram for the solution of the van der Pol Equation 4.20. The
damping term is 4 = 0.05, and the solution very slowly approaches the
limit cycle at 2. Positive and negative damping occur, respectively, for
Ixl values outside and inside the limit cycle at 2. The solid and dashed
lines have initial (x, %) values of (1.0, 0) and (3.0, 0), respectively.

An important type of nonlinear equation was extensively studied by van der
Pol in his investigation of nonlinear oscillations in vacuum tube circuits of early
radios.* This equation has the form

¥t ou(x?—a)x+ wix=0 (4.19)

where p is a small, positive parameter. A system described by van der Pol’s equa-
tion has the following interesting property. If the amplitude |x| exceeds the crit-
ical value |a|, then the coefficient of x is positive and the system is damped. But
if |x| < |al, then negative damping occurs; that is, the amplitude of the motion
increases. It follows that there must be some amplitude for which the motion nei-
ther increases nor decreases with time. Such a curve in the phase plane is called
the limit cyclet (Figure 4-7) and is the attractor for this system. Phase paths

*B. van der Pol, Phil. Mag. 2, 978 (1926). Extensive treatments of van der Pol’s equation may be
found, for example, in Minorsky (Mi47) or in Andronow and Chaikin (An49); brief discussions are
given by Lindsay (Li51, pp. 64-66) and by Pipes (Pi46, pp. 606-610).

1The term was introduced by Poincaré and is often called the Poincaré limit cycle.
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outside the limit cycle spiral inward, and those inside the limit cycle spiral outward.
Inasmuch as the limit cycle defines locally bounded motion, we may refer to the
situation it represents as stable.

A system described by van der Pol’s equation is selflimiting; that is, once set
into motion under conditions that lead to an increasing amplitude, the ampli-
tude is automatically prevented from growing without bound. The system has
this property whether the initial amplitude is greater or smaller than the critical
(limiting) amplitude x,.

Now let us turn to the numerical calculation of van der Pol’s Equation 4.19.
In order to make the calculation simpler and to be able to examine the system’s
motion, we let a = 1 and wy, = 1 with appropriate units. Equation 4.19 becomes

¥+ p(x?—-Dx+x=0 (4.20)

In our case, we used Mathcad to solve this differential equation. We use a value
of u = 0.05, which will give a small damping term. It will take some time for the
solution to reach the limit cycle. We show the calculation for two initial values of
x(xg = 1.0 and 3.0) in Figure 4-7; in both cases, we let the initial value of x = 0.
Note that in this case the limit cycle is a circle of radius 2. In both cases, when
the initial values are both inside and outside the limit cycle, the solution spirals
toward the limit cycle. If we set x, = 2 (with X, = 0), the motion remains at the
limit cycle. The solution of the circle in this case is a result of our special values
for aand w; above. If we use a large damping term, p = 0.5, the solution reaches
the limit cycle much more quickly, and the limit cycle is distorted as shown in

I ] J T
/Limit cycle
2 - —
0 x
9 -
1 | 1 !
-3 -2 -1 0 1 2 3

FIGURE 4-8 Similar calculation to Figure 4-7 for the solution of the van der Pol
Equation 4.20. In this case the damping parameter u = 0.5. Note that
the solution reaches the limit cycle (now skewed) much more quickly.
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Figure 4-8. For a small value of u(0.05) the x and % terms are sinusoidal with
time, but for higher values of ©(0.5) the sinusoidal shapes become skewed (see
Problem 4-26). The van der Pol oscillator is a nice system for studying nonlinear
behavior and will be further examined in the problems.

4.4 Plane Pendulum

The solutions of certain types of nonlinear oscillation problems can be ex-
pressed in closed form by elliptic integrals.* An example of this type is the plane
pendulum. Consider a particle of mass m constrained by a weightless, extension-
less rod to move in a vertical circle of radius { (Figure 49). The gravitational
force acts downward, but the component of this force influencing the motion is
perpendicular to the support rod. This force component, shown in Figure 4-10, is
simply F(8) = —mgsin 0. The plane pendulum is a nonlinear system with a sym-
metric restoring force. It is only for small angular deviations that a linear ap-
proximation may be used.

We obtain the equation of motion for the plane pendulum by equating the
torque about the support axis to the product of the angular acceleration and the
rotational inertia about the same axis:

16 = IF
or, because I = m(? and F= —mgsin 6,
§ + w3sind = 0 (4.21)
where
ol = % 4.22)

FIGURE 49 The plane pendulum where the mass mis not required to oscillate in
small angles. The angle 6 > 0 is in the counterclockwise direction so
that 8, < 0.

*See Appendix B for a list of some elliptic integrals.
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FIGURE 410 The component of the force, F{8), and its associated potential that
acts on the plane pendulum. Notice that the force is nonlinear.

If the amplitude of the motion is small, we may approximate siné = 6, and the
equation of motion becomes identical with that for the simple harmonic oscillator:

6+ wi6=0

In this approximation, the period is given by the familiar expression

\F
T=2m, | —
g

If we wish to obtain the general result for the period in the event that the
amplitude is finite, we may begin with Equation 4.21. But because the system is
conservative, we can use the fact that

T+ U= E = constant

to obtain a solution by considering the energy of the system rather than by solv
ing the equation of motion.

If we take the zero of potential energy to be the lowest point on the circular
path described by the pendulum bob (i.e., § = 0; see Figure 4-10), the kinetic
and potential energies can be expressed as

1 1 ,
T==-1Iw?=-ml?6?
2 2

4.
U= mgl(l1 — cos 8) (*.23)



4.4 PLANE PENDULUM 157

If we let 8 = 0 at the highest point of the motion, then
TO=26,)=0
U6 = 05) = E= mgl(1 — cos 6,)
Using the trigonometric identity
cos 8 = 1 — 2sin%(6/2)
we have
E = 2mglsin®(6,/2) (4.24)
and
U= 2mglsin%(6/2) (4.25)
Expressing the kinetic energy as the difference between the total energy and the

potential energy, we have T= E — [,

%m?é? = 2mgl [sin2(8,/2) — sin2(6/2)]

or
6=2 \/;; [sin%(6,/2) — sin2(6/2)]1'/2 (4.26)
from which

dt = %\/;é [sin2(6,/2) — sin2(6/2)] /2 d0

This equation may be integrated to obtain the period 7. Because the motion is
symmetric, the integral over 6 from 8 = 0 to § = 6, yields 7/4; hence

By
T=2 \/;;J [sin?(8y/2) — sin?(6/2)]17/2 d6 4.27)

(]

That this is actually an elliptic integral of the first kind* may be seen more clearly by
making the substitutions

sin(6/2 )
z= ﬁo/;)’ k = sin(6,/2)
Then
L cos(6/2) 50 = V1 — k222 10
2 sin(8y/2) 2k

*Refer to Equation B.2, Appendix B.
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from which

T = 4\/;]J [(1—2)(1 — B3] 2dz (4.28)

Numerical values for integrals of this type can be found in various tables.

For oscillatory motion to result, |60| < 7, or, equivalently, sin(6,/2) = &
where —1 < k < +1. For this case, we can evaluate the integral in Equation 4.28
by expanding (1 — k%2%)"'/2in a power series:

B2 3kt

(1—k22)712=1+—+
2 8

+ .-

Then, the expression for the period becomes

_4\/7J1.i__1+ﬁ+ﬁ+
T (1— 21”2 9 8

If | k| is large (i.e., near 1), then we need many terms to produce a reasonably
accurate result. But for small %, the expansion converges rapidly. And because
k= sin(0,/2), then k = (8,/2) — (63/48); the result, correct to the fourth

order, is
=9 \/7 1+i02+ 11 64 4.29
Ty 16 3072 ¢ (4.29)

Therefore, although the plane pendulum is not isochronous, it is very nearly so
for small amplitudes of oscillation.*

We may construct the phase diagram for the plane pendulum in Figure 411
because Equation 4.26 provides the necessary relationship 6 = 6(6). The param-
eter 0, specifies the total energy through Equation 4.24. If 6 and 6, are small an-
gles, then Equation 4.26 can be written as

2

I >
-0) + 6% = 63 4.30
(ﬁr ; (4.30)

If the coordinates of the phase plane are 6 and é/\/@, then the phase paths

near § = 0 are approximately circles. This result is

expected, because for small 8,, the motion is approximately simple harmonic.
For —m < 6 < mand E < 2mgl = E,, the situation is equivalent to a particle

bound in the potential well U(6) = mgl(1 — cos 8) (see Figure 4-10). The phase

*This was discovered by Galileo in the cathedral at Pisa in 1581. The expression for the period of
small oscillations was given by Christiaan Huygens (1629-1695) in 1673. Finite oscillations were first
treated by Euler in 1736.
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FIGURE 4-11 The phase diagram for the plane pendulum. Note the stable and

unstable equilibrium points and the regions of bounded and
unbounded motion.

paths are therefore closed curves for this region and are given by Equation 4.26.
Because the potential is periodic in 6, exactly the same phase paths exist for the
regions 7 < 6 < 3w, =37 < 6 < —, and so forth. The points § = ---,
—2m, 0, 27, -+~ along the f-axis are positions of stable equilibrium and are the at-
tractors when the undriven pendulum is damped.

For values of the total energy exceeding E,;, the motion is no longer
oscillatory—although it is still periodic. This situation corresponds to the pen-
dulum executing complete revolutions about its support axis. Normally the
phase space diagram is plotted for only one complete cycle or a “unit cell,” in
this case over the interval —7 < 6§ < 7. We denote this region in Figure 4-11
between the dashed lines at angles —# and 7. One can follow a phase path by
noting that motion that exits on the left of the cell re-enters on the right and
vice versa.

If the total energy equals E,, then Equation 4.24 shows that §, = = . In this
case, Equation 4.26 reduces to

6= 2 \/% cos(6/2) (4.31)
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so the phase paths for E = E, are just cosine functions (see the heavy curves in
Figure 4-11). There are two branches, depending on the direction of motion.

The phase paths for E = E, do not actually represent possible continuous
motions of the pendulum. If the pendulum were at rest at, say, § = 7 (which is a
point on the E = E; phase paths), then any small disturbance would cause the
motion to follow closely but not exactly on one of the phase paths that diverges
from 6 = 7, because the total energy would be E = E; + 8, where & is a small but
nonzero quantity. If the motion were along one of the E = E, phase paths, the
pendulum would reach one of the points § = nm with exactly zero velocity, but
only after an infinite time! (This may be verified by evaluating Equation 4.27 for
0, = ; the result is 7 —> 00.)

A phase path separating locally bounded motion from locally unbounded
motion (such as the path for E = E, in Figure 4-11) is called a separatrix. A sep-
aratrix always passes through a point of unstable equilibrium. The motion in the
vicinity of such a separatrix is extremely sensitive to initial conditions because
points on either side of the separatrix have very different trajectories.

4.5 Jumps, Hysteresis, and Phase Lags

In Example 4.1 we considered a particle of mass m suspended between two
springs. We showed that the system was nonlinear and mentioned the phenom-
ena of jumps in amplitude and hysteresis effects. Now, we want to examine such
phenomena more carefully. We follow closely the description by Janssen and col-
leagues* who developed a simple method to investigate such effects.

Consider a harmonic oscillator subjected to an external force F(f) =
F, cos wt and a resistive viscous force —rx, where ris a constant. The equation of
motion for a particle of mass m connected to a spring with force constant £ is

mi = —rx~ kx + F,cos wt (4.32)

A solution to Equation 4.32 is

x(t) = A(w) cos [wt — P (w)] (4.33)
where
A(w) = fo (4.34)
[(k~ mo?)? + (r0)*]12
and
tan[¢(w)] = a—_mm—w (4.35)

The reader can verify that Equation 4.33 is a particular solution by substitution
into Equation 4.32.

*H. J. Janssen, et al., Am. J. Phys., 51, 655 (1983).
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FIGURE 412 The amplitude A(w) and phase angle ¢(w) as a function of the
angular frequency . Notice the “jumps” at w; and w, depending
on the direction of change of .

If the spring constant k depends on x as k(x), then we have a nonlinear oscil-
lator. An often used dependence is

k(%) = (1 + Bxd)k, (4.36)

and the resulting equation of motion in Equation 4.32 is known as the Duffing
equation. It has been widely studied through perturbation techniques with solu-
tions similar to Equation 4.33 but with complicated results for A(w) and ¢(w) as
shown in Figure 4-12. As w increases, A(w) increases to its peak until it reaches
® = wy, where the amplitude suddenly decreases by a large factor! As w de-
creases from large values, the amplitude slowly increases until @ = w, where the
amplitude suddenly approximately doubles. These are the “jumps” referred to
earlier. The amplitude between w; and w, depends on whether w is increasing
or decreasing (hysteresis effect). Similarly strange phenomena occur for the
phase ¢(w) in Figure 4-12. The physical explanation of Figure 4-12 is not very
transparent, so we consider a simpler dependence of k as shown in Figure 4-13.

Fx) = —kx X< a

=—kx—c X=a

(4.37)

—F(x)

'3

|
|
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L x
a

FIGURE 413 A simpler dependence of F(x) on the spring constant k than that in
Equation 4.36.
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FIGURE 4-14 The values of A(w) for the two values of k shown in Figure 4-12.

The Duffing equation represents a situation with many values of a, because k(x)
continuously varies in Equation 4.36. Our example of an anharmonic oscillator
allows simpler mathematics.

Figure 4-14 shows the harmonic response curves A(w) for k and k' (with
k < k’). For very large values of a(a — =), we have a linear oscillator with force
constant k (because x< g, see Figure 4-13) and a resonance frequency
wo = (k/m)Y2. For very small values of a(a — 0), the force constant is &’ and
w) = (k'/m)/2.

We want to consider intermediate values of a, where both k and %' are effec-
tive. We consider the situation in which a is much smaller than the maximum
amplitude of A(w). If we start at small values of w, our system has small vibrations
that follow the amplitude curve for 4 The amplitude moves up the tail of the
A(w) curve for k as shown in Figure 4-15.

However, when the vibration amplitude A(w) is larger than the critical am-
plitude q, the force constant %’ is effective. For these larger amplitudes, the sys-
tem follows A’ (w) for force constant k’. This is represented by the solid bold line
from Bto Cin Figure 4-15.

o 0
FIGURE 415 The bold lines and arrows help follow the path as @ increases
and decreases.
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FIGURE 4-16 The phase angle ¢(w) for kand %' is shown in (a), and the system’s
path is shown in (b).

Between A and B, as the frequency increases, the system follows the simpli-
fied amplitude rise shown by the dashed line in Figure 4-15. Continuing to in-
crease the driving frequency w at C, we again reach the critical amplitude « at
point D. If w is only slightly increased, the system must follow A(w) for k, and the
amplitude suddenly jumps down from A’(w) at point D to A(w) at point F at
® = wy. As w continues increasing above w,, the system follows the A(w) curve.

Now let us see what happens if we decrease w from large values. The system
follows A(w) until @ = w, where A(w) = a. If w is barely decreased, the ampli-
tude increases above a, and the system must follow A’(w). Therefore the ampli-
tude jumps from E to G. As w continues decreasing, it follows a similar path as
before.

A hysteresis effect occurs because the system behaves differently depending
on whether w is increasing or decreasing. Two amplitude jumps occur, one for @
increasing and one for w decreasing. The system’s paths are ABGCDF (w increas-
ing) and FEGBA (w decreasing).

Similar phenomena occur for the phase lag ¢(w). Figure 4-16a shows the
phase curves ¢ (w) and ¢'(w) for the linear harmonic oscillators. Using the same
arguments as applied to A(w), we depict the system’s paths in Figure 4-16b by the
bold lines and the arrows. The reader is referred to the article by Janssen et al. for
an experiment suitably demonstrating these phenomena.

4.6 Chaos in a Pendulum

We will use the damped and driven pendulum to introduce several chaos con-
cepts. The simple motion of a pendulum is well understood after hundreds of
years of study, but its chaotic motion has been extensively studied only in the
past few years. Among the motions of pendula that have been found to be
chaotic are a pendulum with a forced oscillating support as shown in Figure
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(a) Forced pivot (b) Double pendulum
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(¢) Coupled pendulums (d) Magnetic pendulum

FIGURE 4-17 Examples of pendulums that have chaotic motion.

4-17a, the double pendulum (Figure 4-17b), coupled pendulums (Figure 4-17¢),
and a pendulum oscillating between magnets (Figure 4-17d). The damped and
driven pendulum that we will consider is driven around its pivot point, and the
geometry is displayed in Figure 4-18.

Forced
» ™ motion

FIGURE 4-18 A damped pendulum is driven about its pivot point.
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The torque around the pivot point can be written as

d20 " .
N= IF =10 = —bf — mgl sin 0 + N, cos w,t (4.38)
where Iis the moment of inertia, »is the damping coefficient, and N, is the driv-
ing torque of angular frequency w,. If we divide by I = m{?, we have

g . N,
6=— 7 6 — ¢ sin 6 + 7 cos w,t (4.39)
We will eventually want to deal with this equation with a computer, and it will be
much easier in that case to use dimensionless parameters. Let us divide
Equation 4.39 by w,? = g/€ and define the dimensionless time ¢’ = ¢/¢, with
ty = 1/wy and the dimensionless driving frequency @ = w,;/w). The new dimen-
sionless variables and parameters are

x=10 oscillating variable (4.40a)
b d i fficient (4.40b
= ng coefficien .
¢ %0, amping c e )
o N riving trength (4.40
= =— e strengt .
m20y?  mgl riving forc eng c)
! g . . .
t = - = \/% t dimensionless time (4.40d)
0
Wq ¢ . .
w=—= é Wy driving angular frequency (4.40e)
Wo
Note that
dx _d6 dt df 1
X = —_—

at ~ dtdtl dtw
d®x d2a<dt> 4% 1 _ 6

x= a2 de\dt

dr w? @,
Using these variables and parameters, Equation 4.39 becomes

¥= —¢x—sinx + F cos o’ (4.41)
Equation 4.41 is a nonlinear equation of the form first presented in
Equation 4.1. We will use numerical methods to solve this equation for x, given
the parameters ¢, F, and w. The techniques mentioned in Chapter 3 are used to
solve this equation, depending on the accuracy desired and computer speed
available, and commercial software programs are available. We use the program
Chaos Demonstrations by Sprott and Rowlands (Sp92).
Equation 4.41, a second-order differential equation, can be reduced to two
first-order equations by making the substitution

dx

== 4.
ar t4.42)

y:
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Equation 4.41 becomes a first-order differential equation

d
d_ty’ = —¢y — sinx + Fcosz (4.43)

where we have also made the substitution z = wt'. Equations 4.42 and 4.43 are
the first-order differential equations.

We present the results of numerical methods solutions in Figure 4-19. We
ieave the parameters ¢ and w set at 0.05 and 0.7, respectively, and vary only the
driving strength Fin steps of 0.1 from 0.4 to 1.0. The results are that the motion
is periodic for Fvalues of 0.4, 0.5, 0.8, and 0.9 but is chaotic for 0.6, 0.7, and 1.0.
These results indicate the beautiful and surprising results obtained from nonlin-
ear dynamics. The left side of Figure 4-19 displays y = dx/dt¢' (angular velocity)
versus time long after the initial motion (i.e., transient effects have died out).
The value of F = 0.4 shows simple harmonic motion, but the results for 0.5, 0.8,
and 0.9, although periodic, are hardly simple.

We can learn more by examining the phase space plots, shown in the middle
column of Figure 4-19 (note that we present only a unit cell of the phase dia-
gram from —7 to 7). As expected, the result for ¥ = 0.4 shows the results seen
previously in Chapter 3 (Figure 3-5). The phase plot for F= 0.5 shows one long
cycle that includes two complete revolutions and two oscillations. The entire al-
lowed area in the phase plane is accessed chaotically for F= 0.6 and 0.7, but for
F = 0.8, the motion becomes periodic again with one complete revolution and
an oscillation. The result for = 0.9 is interesting, because there appears to be
two different revolutions in one cycle, each similar to the one for /= 0.8. This
result is called period doubling (i.e., the period for ¥ = 0.9 is twice the period for
F = 0.8). After close inspection, this effect can also be observed from the dx/d¢'
versus time plot, shown on the left column of Figure 4-19.

Poincaré Section

Henry Poincaré invented a technique to simplify the representations of phase
space diagrams, which can become quite complicated. It is equivalent to taking a
strobdscopic view of the phase space diagram. A three-dimensional phase dia-
gram plots y( = x = ) versus x (= ) versus z( = wt'). The left column of Figure
4-19 is a projection of this plot onto a y-z plane, showing points that correspond
to various values of phase angle x. The middle column of Figure 4-19 is a projection
onto a y-x plane, showing points belonging to various values of z. In Figure 4-20 we
show the three-dimensional phase space diagram intersected by a set of y-x
planes, perpendicular to the z-axis, at equal z intervals. A Poincaré section plot is
the sequence of points formed by the intersections of the phase path with these
parallel planes in phase space, projected onto one of the planes. The phase
path pierces the planes as a function of angular speed (y = 6), time (z = wt'),
and phase angle (x = 6). The points on the intersections are labeled as
Ay, Ay, Aj, etc. This set of points A; forms a pattern when projected onto one of
the planes (Figure 4-20b) that sometimes will be a recognizable curve, but some-
times will appear irregular. For simple harmonic motion, such as ' = 0.4 in
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FIGURE 419 The damped and driven pendulum for various values of the driving
force strength. The angular velocity versus time is shown on the left,
and phase diagrams are in the center. Poincaré sections are shown on
the right. Note that motion is chaotic for the driving force F values of

0.6, 0.7, and 1.0.
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FIGURE 4-20 (a) Poincaré plot, a three-dimensional phase diagram, showing three
Poincaré sections and the phase path. The sections are projections
along the y-x plane. (b) The points A; are the phase path intersections
with the section plots. They are plotted here on the y-x plane to help
visualize the motion in phase space.

Figure 4-19, all the points projected are the same (or in a smooth curve, de-
pending on the z spacing of the y-x planes). Poincaré realized that the simple
curves represent motion with possibly analytic solutions, but the many compli-
cated, apparently irregular, curves represent chaos. The Poincaré section curve
effectively reduces an N-dimensional diagram to (N — 1)-dimensions for graph-
ical purposes and often helps visualize the motion in phase space.

For the case of the damped and driven pendulum, the regularity of the dy-
namical motion is due to the forcing period, and a complete description of the
dynamical motion depends on three parameters. We can take those parameters
to be x (angle 8), y = dx/dt¢' (angular frequency), and z = wt’ (phase of the driv-
ing force). A complete description of the motion in phase space would require
three-dimensional phase diagrams rather than displaying just two parameters as in
Figure 4-19. All the values of z are included in the middle column of Figure 4-19,
so we choose to take the stroboscopic sections of the motion for just the values
of z=2nm (n=20,1,2,...), which is at a frequency equal to that of the driving
force.

We show the Poincaré section for the pendulum in the right column of
Figure 4-19 for the same systems displayed in the left and middle columns. For
the simple motion of F = 0.4, the system always comes back to the same position
of (x, y) after z goes through 27. Therefore, we expect the Poincaré section to
show only one point, and that is what we find in the top figure of the right column
of Figure 4-19. The motion for F= 0.8 also shows only one point, but /= 0.5 and
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0.9 show three and two points, respectively, because of the more complex mo-
tion. The number of points # on the Poincaré section here shows that the new
period T'= Ton/m, where Ty = 27/w is the period of the driven force and m is
an integer (m = 2 for the F = 0.5 plot and m = 1 for the F = 0.9 plot). The
chaotic motions for F = 0.6, 0.7, and 1.0 display the complicated variation of
points expected for chaotic motion with a period T— oco. The Poincaré sections
are also rich in structure for chaotic motion.

On three occasions thus far (Figures 4-5, 4-7, and 4-11), we have pointed out
attractors, a set of points (or a point) on which the motion converges for dissipa-
tive systems. The regions traversed in phase space are strictly bounded when
there is an attractor. In chaotic motion, nearby trajectories in phase space are
continually diverging from one another but must eventually return to the attrac-
tor. Because the attractors in these chaotic motions, called strange or chaotic at-
tractors, are necessarily bounded in phase space, the attractors must fold back
into the nearby regions of phase space. Strange attractors create intricate pat-
terns, because the folding and stretching of the trajectories must occur such that
no trajectory in phase space intersects, which is ruled out by the deterministic
dyamical motion. The Poincaré sections of Figure 4-19 reveal the folded, layered
structure of the attractors. Chaotic attractors are fractals, but space does not per-
mit further discussion of this extremely interesting phenomenon.

4.7 Mapping

If we use » to denote the time sequence of a system and x to denote a physical
observable of the system, we can describe the progression of a nonlinear system
at a particular moment by investigating how the (n + 1)th state (or iterate) de-
pends on the nth state. An example of such a simple, nonlinear behavior is
X,4+1 = (2x, + 3)% This relationship, x,,; = f(x,), is called mapping and is
often used to describe the progression of the system. The Poincaré section plots
previously discussed are examples of two-dimensional maps. A physical example
appropriate for mapping might be the temperature of the space shuttle orbiter
tiles while the shuttle descends through the atmosphere. After the orbiter has
been on the ground for some time, the temperature 7', is the same as T, but
this was not true while the shuttle plummeted through the atmosphere from its
earth orbit. Modeling the tile temperatures correctly with a mathematical model
is difficult, and linear assumptions are often first assumed in such calculations
with nonlinear terms added to make more realistic calculations.

We can write a difference equation using f(a, x,) where x, is restricted to a real
number in the interval (0, 1) between 0 and 1, and « is a model-dependent
parameter.

x,41 = fla, x,) (4.44)

The function f(«, x,) generates the value of x,,, from x,, and the collection
of points generated is said to be a map of the function itself. The equations,
which are often nonlinear, are amenable to numerical solution by iteration,



170 4 / NONLINEAR OSCILLATIONS AND CHAOS

starting with x;. We will restrict ourselves here to one-dimensional maps, but
two-dimensional (and higher order) equations are possible.

Mapping can best be understood by looking at an example. Let us consider
the “logistic” equation, a simple one-dimensional equation given by

fla, x) = ax(l — x) (4.45)
so that the iterative equation becomes
Xp+1 = axn(l - xn) (4-46)

We follow the discussion of Bessoir and Wolf (Be91) who use the logistic equa-
tion for a biological application example of studying the population growth of
fish in a pond, where the pond is well isolated from external effects such as
weather. The iterations, or nvalues, represent the annual fish population, where
%1 is the number of fish in the pond at the beginning of the first year of the
study. If x; is small, the fish population may grow rapidly in the early years be-
cause of available resources, but overpopulation may eventually deplete the
number of fish. The population x,, is scaled so that its value fits in the interval (0, 1)
between 0 and 1. The factor « is a model-dependent parameter representing av-
erage effects of environmental factors (e.g., fishermen, floods, drought, preda-
tors) that may affect the fish. The factor o« may be varied as desired in the study,
but experience shows that a should be limited in this example to the interval (0, 4)
to prevent the fish population from becoming negative or infinite.

The results of the logistic equation are most easily observed by graphical
means in a map called the logistic map. The iteration x,, is plotted versus x, in
Figure 4-21a for a value of @ = 2.0. Starting with an initial value x; on the hori-
zontal (x,) axis, we move up until we intersect with the curve x,.; = 2x,(1 — x,),
and then we move to the left where we find x, on the vertical axis (x,,). We
then start with this value of x, on the horizontal axis and repeat the process to
find x5 on the vertical axis. If we do this for a few iterations, we converge on the
value x = 0.5, and the fish population stabilizes at half its maximum. We arrive at
this result independent of our initial value of x; as long as it isnot 0 or 1.

An easier way to follow the process is to add the 45° line, x,,; = x,, to the
same graph. Then after initially intersecting the curve from x;, one moves hori-
zontally to intersect with the 45° line to find x, and then moves up vertically to
find the next iterative value of x5. This process can go on and reach the same re-
sult as in Figure 4-21a. We show the process in Figure 4-21b to indicate that this
method is easier to use than the one without the 45° line.

In practice, we want to study the behavior of the system when the model pa-
rameter « is varied. In the present case, for values of « less than 3.0, stable pop-
ulations will result (Figure 4-22a). The solutions follow a square spiral path to
the central, final value. For values of « just above 3.0, more than one solution
for the fish population occurs (Figure 4-22b). The solutions follow a path simi-
lar to the square spiral, which converges to the two points at which the square
intersects the “iteration line,” rather than to a single point. Such a change in
the number of solutions to an equation, when a parameter such as « is varied, is
called a bifurcation.
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FIGURE 4-21 Techniques for producing a map of the logistics equation.

We obtain a more general view of the global picture by plotting a bifurcation
diagram, which consists of x,, determined after many iterations to avoid initial ef-
fects, plotted as a function of the model parameter &. Many new interesting ef-
fects emerge indicating regions and windows of stability as well as those of
chaotic dynamics. We show the bifurcation diagram in Figure 4-23 for the logis-
tic equation over the range of « values from 2.8 to 4.0. For the value of & = 2.9
shown in Figure 4-22a, we observe that after a few iterations, a stable configura-
tion for x = 0.655 results. An N cycle is an orbit that returns to its original posi-
tion after N iterations, that is, xy.; = x; The period for @ = 2.9 is then a one
cycle. For @ = 3.1 (Figure 4-22b), the value of x oscillates between 0.558 and
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FIGURE 422 Logistic equation map for a values of 2.9 and 3.1, indicating stable
populations in (a) and multiple possible solutions for & > 3.0 in (b).

0.765 (two cycle) after a few iterations evolve. The bifurcation occuring at 3.0 is
called a pitchfork bifurcation because of the obvious shape of the diagram caused
by the splitting. At « = 3.1, the period doubling effect has x,,, = x,. At @ =
3.45, the two-cycle bifurcation evolves into a four cycle, and the bifurcation and
period doubling continues up to an infinite number of cycles near ¢ = 3.57.
Chaos occurs for many of the a values between 3.57 and 4.0, but there are still
windows of periodic motion, with an especially wide window around 3.84. A re-
ally interesting behavior occurs for & = 3.82831 (Problem 4-11). An apparent
periodic cycle of 3 years seems to occur for several periods, but then it suddenly
violently changes for a few years, and then returns again to the 3-year cycle. This
intermittent behavior could certainly prove devastating to a biological study oper-
ating over several years that suddenly turns chaotic without apparent reason.
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FIGURE 4-23 Bifurcation diagram for the logistic equation map.

EXAMPLE 4.2

Let A, = a, — a,_; be the width between successive period doubling bifurca-
tions of the logistic map that we have been discussing. For example, from
Figure 4-23, we let &; = 3.0 where the first bifurcation occurs and a, =
3.449490 where the next one occurs. Let §, be defined as the ratio

Aa,

o
Aan+1

(4.47)

n

and let §,, > & as n— oo. Find §,, for the first few bifurcations and the limit 8.

Solution. Although we could program this numerical calculation with a com-
puter, we will use one of the commercially available software programs (Be91)to
work this example. We make a table of the «,, values using the computer pro-
gram, find A«,, and then determine a few values of «,,.

n a, Aa d,

1 3.0

2 3.449490 0.449490 4.7515
3 3.544090 0.094600 4.6562
4 3.564407 0.020317 4.6684
5 3.568759 0.004352

oo 3.5699456 4.6692

As a,, approaches the limit 3.5699456, the number of period doublings
approaches infinity, and the ratio 8,, called Feigenbaum’s number, approaches
4.669202. This result was first found by Mitchell Feigenbaum in the 1970s, and
he found that the limit 8 was a universal property of the period doubling route
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to chaos when the function f(«, x) has a quadratic maximum. It is a remarkable
fact that this universality is not confined to one-dimensional mappings; it is also
true for two-dimensional maps and has been confirmed for several cases.
Feigenbaum claims to have found this result using a programmable hand calcu-
lator. The calculation obviously has to be carried to many significant figures to
establish its accuracy, and such a calculation was not possible before such calcu-
lators (or computers) were available.

4.8 Chaos Identification

In our driven and damped pendulum, we found that chaotic motion occurs for
some values of the parameters, but not for others. What are the characteristics of
chaos and how can we identify them? Chaos does not represent periodic motion,
and its limiting motion will not be periodic. Chaos can generally be described as
having a sensitive dependence on initial conditions. We can demonstrate this ef-
fect by the following example.

EXAMPLE 4.3

Consider the nonlinear relation x,.; = f(a, x,) = ax,(1 — x,%).Leta =25
and make two numerical calculations with initial x; values of 0.700000000 and
0.700000001. Plot the results and find the iteration n where the solutions have
clearly diverged.

Solution. The iterative equation that we are considering is
a1 = ax,(l = x,%) (4.48)

We perform a short numeric calculation and plot the results of iterations for
the two initial values on the same graph. The result is shown in Figure 4-24
where there is no observed difference for x,.,; until » reaches at least 30. By
n = 39, the difference in the two results is marked, despite the original values
differing by only 1 part in 108.

If the computations are made without error, and the difference between it-
erated values doubled on the average for each iteration, then there will be an
exponential increase such as

2n — enln?

where 7 is the number of iterations undergone. For the iterates to be separated
by the order of unity (the size of the attractor), we will have

271078~ 1
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FIGURE 424 Example 4.3. The n + 1 iterative state is plotted versus the number of
iterations and shows two eventual results for slightly different initial
conditions of x;.

which gives n = 27. That is, after 27 iterations, the difference between the two
iterates reaches the full range of x,,. To have the results differ by unity for n =
40 iterations, we would have to know the initial values with a precision of 1 part
in 102!

The previous example indicates the sensitive dependence on initial condi-
tions that is characteristic of chaos. The two results can still be determined in
this case, but it is rare to know the initial values to a precision of 108, If we add
another factor of 10 to the precision of x;, we gain only four interative steps of
agreement in the calculation. We must accept the reality that increasing the pre-
cision of the initial conditions only gains us a little in the accuracy of the ulti-
mate measurement. This exponential growth of an initial error will ultimately
prevent us from predicting the outcome of a measurement.

The effect of sensitive dependence on initial conditions has been called the
“butterfly” effect. A butterfly moving slowly through the air may cause an ex-
tremely small effect on the airflow that will prevent us from predicting the
weather patterns next week. Background noise or thermal effects will usually
add uncertainties larger than the ones we have discussed here, and we cannot
distinguish these effects from measurement errors. Precise predictive power of
many steps is just not possible.

Lyapunov Exponents

One method to quantify the sensitive dependence on initial conditions for
chaotic behavior uses the Lyapunov characteristic exponent. It is named after the
Russian mathematician A. M. Lyapunov (1857-1918). There are as many
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Lyapunov exponents for a particular system as there are variables. We will limit
ourselves at first to considering only one variable and therefore one exponent.
Consider a system with two initial states differing by a small amount; we call the
initial states x, and x, + &. We want to investigate the eventual values of x,
after n iterations from the two initial values. The Lyapunov exponent A repre-
sents the coefficient of the average exponential growth per unit time between
the two states. After n iterations, the difference d, between the two x, values is
approximately

d, = ge™ (4.49)

From this equation, we can see that if A is negative, the two orbits will eventually
converge, but if positive, the nearby trajectories diverge and chaos results.

Let us look at a one-dimensional map described by x,,, = f(x,). The initial
difference between the states is d, = &, and after one iteration, the difference d,
is

af
d, = flx, + &) — fix) = £
X0
where the last result on the right side occurs because & is very small. After n iter-
ations, the difference d, between the two initially nearby states is given by

d,= fr(x+ &) — f"(x,) = ee™ (4.50)

where we have indicated the nth iterate of the map f(x) by the superscript n. If
we divide by & and take the logarithm of both sides, we have

(ﬂu+s>—ﬂua>
In .

= In(e™) = nA

and because & is very small, we have for A,

1 "(x+ &) — fM(x 1 df™(x
A:_m@wx ) f<0>>:_ln (%) 51
n € n dx |,
The value of f"(x,) is obtained by iterating the function f(x,) n times.
S™(x0) = J(fC (f(xg)) =--))
We use the derivative chain rule of the nth iterate to obtain
| ) _#
dx |, dx|,_dxi, , dx|,
We take the limit as n — oo and finally obtain
nl d X;
A=lim L Sn . J(x) (4.52)
n—o0 N i=0 dx
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FIGURE 425 Lyapunov exponent as a function of « for the logistic equation map.
Avalue of A > 0 indicates chaos.

We plot the Lyapunov exponent as a function of « in Figure 4-25 for the lo-
gistic map. We note the agreement of the sign of A with the discussion of chaotic
behavior in Section 4.6. The value of A is zero when bifurcation occurs, because
Idf/dxl = 1, and the solution becomes unstable (see Problem 4-16). A super-
stable point occurs where df(x)/dx = 0, and this implies that A = —. From
Figure 4-25 as A goes above 0, we see there are windows where A returns to A < 0
and periodic orbits occur amid the chaotic behavior. The relatively wide window
just above 3.8 is apparent.

Remember that for n dimensional maps, there will be n Lyapunov expo-
nents. Only one of them need be positive for chaos to occur. For dissipative sys-
tems, the phase space volume will decrease as time passes. This means the sum
of the Lyapunov exponents will be negative.

The calculation of Lyapunov exponents for the damped and driven pendu-
lum is difficult, because one has to deal with the solutions of differential equa-
tions rather than maps such as those of the logistic equation. Nevertheless,
these calculations have been done, and we show in Figure 4-26 the Lyapunov
exponents, three of them because of the three dimensions (calculated using
Baker’s program [Ba90]). The parameters are the same as those discussed in
Section 4.6: ¢ = 0.05, w = 0.7, and F= 0.4 (periodic) and F= 0.6 (chaotic). For
both cases, we must make at least several hundred iterations to make sure tran-
sient effects have died out. Note that one of the Lyapunov exponents is zero,
because it does not contribute to the expansion or contraction of the phase
space volume. For the case of F = 0.4, none of the Lyapunov exponents is
greater than zero after 350 iterations, but for the F = 0.6 driven case, one of the
exponents is still well above zero. The motion is chaotic for F = 0.6, as we found
earlier in Figure 4-19. However, because the motion described in Figure 4-26 is
damped, the sum of the three Lyapunov exponents is negative for both cases, as
it should be.
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FIGURE 4-26 The three Lyapunov exponents for the damped and driven
pendulum. The values of A are those approached as {— 0o
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PROBLEMS

4-1.

4-2.

43.

Refer to Example 4.1. If each of the springs must be stretched a distance d to attach
the particle at the equilibrium position (i.e., in its equilibrium position, the particle
is subject to two equal and oppositely directed forces of magnitude kd), then show
that the potential in which the particle moves is approximately

U(x) = (kd/l)x? + [k(I — d)/41%]«*
Construct a phase diagram for the potential in Figure 4-1.
Construct a phase diagram for the potential U(x) = —(A/3)x%.

Lord Rayleigh used the equation
i—(a— bx)x+ wix=0

in his discussion of nonlinear effects in acoustic phenomena.* Show that differenti-
ating this equation with respect to time and making the substitution y = %,V 3¥/a%

*]. W. S. Rayleigh, Phil. Mag. 15 (April 1883); see also Ra94, Section 68a.
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4-5.

47,

49.

4-10.

4-11.

results in van der Pol’s equation:

o a .
y—ﬁ(y%—y“’)w wiy="0
0

Solve by a successive approximation procedure, and obtain a result accurate to four

significant figures:

(a) x+ x? + 1 = tanx, 0=x=mxw/2
(b) x(x + 3) = 10 sin x, x>0
()1 + x+ cosx = &%, x>0

(It may be profitable to make a crude graph to choose a reasonable first
approximation.)

Derive the expression for the phase paths of the plane pendulum if the total energy
is E > 2mgl. Note that this is just the case of a particle moving in a periodic poten-
tial U(0) = mgl(1 — cos ).

Consider the free motion of a plane pendulum whose amplitude is not small. Show
that the horizontal component of the motion may be represented by the approximate
expression (components through the third order are included)

2

x
5E+a)%<l+l—§>x—sx3=0

where w3 = g/land &€ = 3g/203, with [ equal to the length of the suspension.,

A mass m moves in one dimension and is subject to a constant force +F, when
x < 0 and to a constant force —F, when x > 0. Describe the motion by constructing
a phase diagram. Calculate the period of the motion in terms of m, F,, and the am-
plitude A (disregard damping).

Investigate the motion of an undamped particle subject to a force of the form

—kx, <
Flx) = X, x| < a
—(k+ &x+8a, |x| > a

where kand 8 are positive constants.

The parameters F = 0.7 and ¢ = 0.05 are fixed for Equation 4.43 describing the
driven, damped pendulum. Determine which of the values for w (0.1,0.2,0.3, .. .,
1.5) produce chaotic motion. Produce a phase plot for w = 0.3. Do this problem
numerically.

A really interesting situation occurs for the logistic equation, Equation 4.46, when
a = 3.82831 and x; = 0.51. Show that a three cycle occurs with the approximate x
values 0.16, 0.52, and 0.96 for the first 80 cycles before the behavior apparently
turns chaotic. Find for what iteration the next apparently periodic cycle occurs and
for how many cycles it stays periodic.
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4-12.

4-13.

4-14.

4-15.

4-16.

4-17.

4-18.

4-19.

4-20.

4-21.

4 / NONLINEAR OSCILLATIONS AND CHAOS

Let the value of « in the logistic equation, Equation 4.46, be equal to 0.9. Make a
map like that in Figure 421 when x; = 0.4. Make the plot for three other values of
x, for which 0 < x; < 1.

Perform the numerical calculation done in Example 4.3 and show that the two cal-
culations clearly diverge by n = 39. Next, let the second initial value agree to within
another factor of 10 (i.e., 0.700 000 000 1), and confirm the statement in the text
that only four more iterations are gained in the agreement between the two initial
values.

Use the function described in Example 4.3, x,,, = ax,(1 — x,?) where a = 2.5.
Consider two starting values of x; that are similar, 0.900 000 0 and 0.900 000 1.
Make a plot of x, versus n for the two starting values and determine the lowest
value of n for which the two values diverge by more than 30%.

Use direct numerical calculation to show that the map f(x) = a sin 7x also leads to
the Feigenbaum constant, where x and « are limited to the interval (0, 1).

The curve x,.; = f(x,) intersects the curve x,.1 = x, at xo. The expansion of x,,,;
about xgis x,,1 — x9 = B(x, — x¢) where B = (df/dx) at x = x,.

(a) Describe the geometrical sequence that the successive values of x,,,; — x, form.
(b) Show that the intersection is stable when 8| < 1 and unstable when |8]| > 1.

The tent map is represented by the following iterations:

X, = 20x, for0 < x <1/2
X1 = 20(1 —x,) forl/2 < x<1

where 0 < a < 1. Make a map up to 20 iterations for & = 0.4 and 0.7 with x; = 0.2.
Does it appear that either of the maps represent chaotic behavior?

Plot the bifurcation diagram for the fent map of the previous problem. Discuss the
results for the various regions.

Show analytically that the Lyapunov exponent for the tent maps is A = In(2a). This
indicates that chaotic behavior occurs for @ > 1/2.

Consider the Henon map described by

= _ 2
xn+1—yn+ 1 axs,

Yo+1 = bxn

Let @ = 1.4 and b = 0.3, and use a computer to plot the first 10,000 points (x,, ¥,)
starting from the initial values x, = 0, yo = 0. Choose the plot region as —1.5 < x <
1.5 and —0.45 < y < 0.45.

Make a plot of the Henon map, this time starting from the initial values
xg = 0.63135448, y, = 0.18940634. Compare the shape of this plot with that ob-
tained in the previous problem. Is the shape of the curves independent of the ini-
tial conditions?
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4-22. A circuit with a nonlinear inductor can be modeled by the first-order differential

4-23.

4-24.

4-25.

4-26.

equations
ax _
ar

ﬂ=—k — x3 + Bcost
2t ¥ co

Chaotic oscillations for this situation have been extensively studied. Use a com-
puter to construct the Poincaré section plot for the case k= 0.1 and 9.8 = B=134.
Describe the map.

The motion of a bouncing ball, on successive bounces, when the floor oscillates
sinusoidally can be described by the Chirikov map:

pn+1 = pn - KSinqn
In+1 = qn + pn+1

where —7 < p = 7 and —7 < ¢ = 7. Construct two-dimensional maps for K= 0.8,
3.2, and 6.4 by starting with random values of p and ¢ and iterating them. Use peri-
odic boundary conditions, which means that if the iterated values of p or ¢ exceed
7, a value of 27 is subtracted and whenever they are less than —, a value of 27 is
added. Examine the maps after thousands of iterations and discuss the differences.

Assume that x(f) = & cos (wqf) + u(f) is a solution of the van der Pol Equation 4.19.
Assume that the damping parameter u is small and keep terms in u(f) to first order
in . Show that b = 2a and u(f) = —(na®/4w,)sin (3w, is a solution. Produce a
phase diagram of x versus x and produce plots of x(#) and x(#) for values of a = 1,
w, = 1,and p = 0.05.

Use numerical calculations to find a solution for the van der Pol oscillator of
Equation 4.19. Let x, and w, equal 1 for simplicity. Plot the phase diagram, x(f),
and x(#) for the following conditions: (a) . = 0.07, x = 1.0, kg = 0att=0; (b) u =
0.07, x = 3.0, %, = 0 at ¢ = 0. Discuss the motion; does the motion appear to ap-
proach a limit cycle?

Repeat the previous problem with p = 0.5. Discuss also the appearance of the limit
cycle, x(t), and x(?).



CHAPTER pJ

Gravitation

5.1 Introduction

By 1666, Newton had formulated and numerically checked the gravitation law
he eventually published in his book Principia in 1687. Newton waited almost 20
years to publish his results because he could not justify his method of numerical
calculation in which he considered Earth and the Moon as point masses. With
mathematics formulated on calculus (which Newton later invented), we have a
much easier time proving the problem Newton found so difficult in the seven-
teenth century.

Newton’s law of universal gravitation states that each mass particle attracts every
other particle in the universe with a force that varies divectly as the product of the two
masses and inversely as the square of the distance between them. In mathematical form,
we write the law as

F= _G_;? e, (5.1)

where at a distance 7 from a particle of mass M a second particle of mass m expe-
riences an attractive force (see Figure 5-1). The unit vector e, points from M to m,
and the minus sign ensures that the force is attractive—that is, that m is attracted
toward M.

A laboratory verification of the law and a determination of the value of Gwas
made in 1798 by the English physicist Henry Cavendish (1731-1810). Cavendish’s
experiment, described in many elementary physics texts, used a torsion balance
with two small spheres fixed at the ends of a light rod. The two spheres were at-
tracted to two other large spheres that could be placed on either side of the
smaller spheres. The official value for G is 6.673 = 0.010 X 107" N - m?/kg?
Interestingly, although G is perhaps the oldest known of the fundamental constants,
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FIGURE 5-1 Particle m feels an attractive gravitational force toward M.

we know it with less precision than we know most of the modern fundamental
constants such as ¢ ¢, and 7. Considerable research is ongoing today to improve
the precision of G.

In the form of Equation 5.1, the law strictly applies only to point particles. If
one or both of the particles is replaced by a body with a certain extension, we
must make an additional hypothesis before we can calculate the force. We must
assume that the gravitational force field is a linear field. In other words, we as-
sume that it is possible to calculate the net gravitational force on a particle due
to many other particles by simply taking the vector sum of all the individual
forces. For a body consisting of a continuous distribution of matter, the sum be-
comes an integral (Figure 5-2):

F= —ij B(—rQ)—efdv' (5.2)
1% Vs

where p(r') is the mass density and dv’ is the element of volume at the position
defined by the vector r' from the (arbitrary) origin to the point within the mass
distribution.

If both the body of mass M and the body of mass m have finite extension, a
second integration over the volume of m will be necessary to compute the total
gravitational force.

FIGURE 5-2 To find the gravitational force between a point mass m and a continuous
distribution of matter, we integrate the mass density over the volume.
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The gravitational field vector g is the vector representing the force per unit
mass exerted on a particle in the field of a body of mass M. Thus

F M
8=, *Gper (5.3)
or
[ e,
GJV —a dv (5.4)

Note that the direction of e, varies with ' (in Figure 5-2).

The quantity g has the dimensions of force per unit mass, also equal to accelera-
tion. In fact, near the surface of the earth, the magnitude of g is just the quantity
that we call the gravitational acceleration constant. Measurement with a simple
pendulum (or some more sophisticated variation) is sufficient to show that lgl is
approximately 9.80 m/ s? (or 9.80 N/kg) at the surface of the earth.

5.2 Gravitational Potential

The gravitational field vector g varies as 1/7? and therefore satisfies the require-
ment* that permits g to be represented as the gradient of a scalar function.
Hence, we can write

g=—-Vo (5.5)

where @ is called the gravitational potential and has dimensions of ( force per unit
mass) X {distance), or energy per unit mass.

Because g has only a radial variation, the potential ¢ can have at most a vari-
ation with ». Therefore, using Equation 5.3 for g, we have

dd M
Vo = i e, = G—r_?e’
Integrating, we obtain
M
= —G—T— (5.6)

The possible constant of integration has been suppressed, because the potential
is undetermined to within an additive constant; that is, only differences in poten-
tial are meaningful, not particular values. We usually remove the ambiguity in
the value of the potential by arbitrarily requiring that ¢ —0 as r— oo; then
Equation 5.6 correctly gives the potential for this condition.

*Thatis, VX g = 0.
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The potential due to a continuous distribution of matter is

p(r’)

D = —GJ - dv' (5.7

1%
Similarly, if the mass is distributed only over a thin shell (i.e., a surface distri-
bution), then

r

& = —GJ Ps i (5.8)
N

where p, is the surface density of mass (or areal mass density).
Finally, if there is a line source with linear mass density p;, then

& = —GJ s (5.9)
rr

The physical significance of the gravitational potential function becomes
clear if we consider the work per unit mass dW' that must be done by an outside
agent on a body in a gravitational field to displace the body a distance dr. In this
case, work is equal to the scalar product of the force and the displacement.
Thus, for the work done on the body per unit mass, we have

dW' = —g.dr = (V®) - dr

=232dx,»= i (5.10)
i 0x;

because @ is a function only of the coordinates of the point at which it is meas-
ured: @ = P(x,, xy, x5) = DP(x;). Therefore the amount of work per unit mass
that must be done on a body to move it from one position to another in a gravi-
tational field is equal to the difference in potential at the two points.

If the final position is farther from the source of mass M than the initial posi-
tion, work has been done on the unit mass. The positions of the two points are arbi-
trary, and we may take one of them to be at infinity. If we define the potential to
be zero at infinity, we may interpret @ at any point to be the work per unit mass
required to bring the body from infinity to that point. The potential energy is
equal to the mass of the body multiplied by the potential @. If U is the potential
energy, then

U= m® (5-11)

and the force on a body is given by the negative of the gradient of the potential
energy of that body,

F=-VU (5.12)

which is just the expression we have previously used (Equation 2.88).

We note that both the potential and the potential energy increase when work
is done on the body. (The potential, according to our definition, is always nega-
tive and only approaches its maximum value, that is, zero, as r tends to infinity.)
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A certain potential energy exists whenever a body is placed in the gravita-
tional field of a source mass. This potential energy resides in the field,* but it is
customary under these circumstances to speak of the potential energy “of the
body.” We shall continue this practice here. We may also consider the source
mass itself to have an intrinsic potential energy. This potential energy is equal to
the gravitational energy released when the body was formed or, conversely, is
equal to the energy that must be supplied (i.e., the work that must be done) to
disperse the mass over the sphere at infinity. For example, when interstellar gas
condenses to form a star, the gravitational energy released goes largely into the
initial heating of the star. As the temperature increases, energy is radiated away
as electromagnetic radiation. In all the problems we treat, the structure of the
bodies is considered to remain unchanged during the process we are studying.
Thus, there is no change in the intrinsic potential energy, and it may be neg-
lected for the purposes of whatever calculation we are making.

EXAMPLE 5.1

What is the gravitational potential both inside and outside a spherical shell of
inner radius b and outer radius a?

Solution. One of the important problems of gravitational theory concerns the
calculation of the gravitational force due to a homogeneous sphere. This prob-
lem is a special case of the more general calculation for a homogeneous spheri-
cal shell. A solution to the problem of the shell can be obtained by directly com-
puting the force on an arbitrary object of unit mass brought into the field (see
Problem 5-6), but it is easier to use the potential method.

We consider the shell shown in Figure 5-3 and calculate the potential at
point P a distance R from the center of the shell. Because the problem has sym-
metry about the line connecting the center of the sphere and the field point P,
the azimuthal angle ¢ is not shown in Figure 5-3 and we can immediately inte-
grate over d¢ in the expression for the potential. Thus,

&b —GJ B(T—)dv’
v T

—2prJ r’?dT'J Sin 0 g (5.13)

b o T

where we have assumed a homogeneous mass distribution for the shell,
p(r") = p. According to the law of cosines,

r2=171'24+ R2 — 2YRcos 0 (5.14)

Because R is a constant, for a given v we may differentiate this equation and
obtain

2rdr = 27'R sin 6d0

*See, however, the remarks at the end of Section 9.5 regarding the energy in a field.
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FIGURE 5-3 The geometry for finding the gravitational potential at point Pdue to a
spherical shell of mass.

or

do = 5.15
r 7R ( )

Substituting this expression into Equation 5.13, we have

2mwpG (¢ Tmax
b= - ‘"Ig‘“J r’dr’J dr (5.16)

T min

The limits on the integral over dr depend on the location of point P. If Pis out-
side the shell, then

D(R> a) = 277PGJ J

_ 4mpG ’2 o
R ),
4 mpG,
- = - b 17
3 (a0 (5.17)
But the mass M of the shell is
4
M= g'rrp(a3 - %) (5.18)
so the potential is
GM
DPR> a) = — R (5.19)
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If the field point lies inside the shell, then

2mpG [ 7" +R
P(R< b = — p Jr’dT’J dr
R b r"—R

= —4mp GJ r'dr’

b
= —27pG(a® — b?) (5.20)

The potential is therefore constant and independent of position inside the shell.

Finally, if we wish to calculate the potential for points within the shell, we
need only replace the lower limit of integration in the expression for (R < b)
by the variable R, replace the upper limit of integration in the expression for
®(R> a) by R, and add the results. We find

4mpG
Sb<R<a) = — —%;—(Rg — 1% — 2wpG(a® — RY)
a2 b R
= —dmpe|L - & :
e (2 3R 6) (5.21)

We see that if R— q, then Equation 5.21 yields the same result as Equation 5.19
for the same limit. Similarly, Equations 5.21 and 5.20 produce the same result
for the limit R— &. The potential is therefore continuous. If the potential were
not continuous at some point, the gradient of the potential—and hence, the
force—would be infinite at that point. Because infinite forces do not represent
physical reality, we conclude that realistic potential functions must always be
continuous.

Note that we treated the mass shell as homogeneous. In order to perform
calculations for a solid, massive body like a planet that has a spherically symmet-
ric mass distribution, we could add up a number of shells or, if we choose, we
could allow the density to change as a function of radius.

The results of Example 5.1 are very important. Equation 5.19 states that the
potential at any point outside of a spherically symmetric distribution of matter
(shell or solid, because solids are composed of many shells) is independent of
the size of the distribution. Therefore, to calculate the external potential (or the
force), we consider all the mass to be concentrated at the center. Equation 5.20
indicates that the potential is constant (and the force zero) anywhere inside a
spherically symmetric mass shell. And finally, at points within the mass shell, the
potential given by Equation 5.21 is consistent with both of the previous results.

The magnitude of the field vector g may be computed from g= —d®P/dR for
each of the three regions. The results are

gR< ) =0
g(b<R<a)=ﬁ’££—R
3 \R? (5.22)
(R > @ = - M
o = - CM

R2
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FIGURE 54 The results of Example 5.1 indicating the gravitational potential
and magnitude of the field vector g (actually —g) as a function
of radial distance.

We see that not only the potential but also the field vector (and hence, the
force) are continuous. The derivative of the field vector, however, is not continu-
ous across the outer and inner surfaces of the shell.

All these results for the potential and the field vector can be summarized as
in Figure 5-4.

EXAMPLE 5.2

Astronomical measurements indicate that the orbital speed of masses in many
spiral galaxies rotating about their centers is approximately constant as a func-
tion of distance from the center of the galaxy (like our own Milky Way and our
nearest neighbor Andromeda) as shown in Figure 5-5. Show that this experi-
mental result is inconsistent with the galaxy having its mass concentrated near
the center of the galaxy and can be explained if the mass of the galaxy increases
with distance R.

Solution. We can find the expected orbital speed v due to the galaxy mass M
that is within the radius R. In this case, however, the distance R may be hundreds
of light years. We only assume the mass distribution is spherically symmetric.
The gravitational force in this case is equal to the centripetal force due to the
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FIGURE 5-5 Example 5.2. The solid line represents data for the orbital speed of mass
as a function of distance from the center of the Andromeda galaxy. The
dashed line represents the 1/V/R behavior expected from the Keplerian
result of Newton’s laws.

mass m having orbital speed v:

GMm _ mv?
r2 R
We solve this equation for v:
GM
v=
R

If this were the case, we would expect the orbital speed to decrease as 1/ VR as
shown by the dashed line in Figure 5-5, whereas what is found experimentally is
that v is constant as a function of R. This can only happen in the previous equa-
tion if the mass M of the galaxy itself is a linear function of R, M(R) &< R.
Astrophysicists conclude from this result that for many galaxies there must be
matter other than that observed, and that this unobserved matter, often called
“dark matter,” must account for more than 90 percent of the known mass in the
universe. This area of research is at the forefront of astrophysics today.

EXAMPLE 5.3

Consider a thin uniform circular ring of radius 4 and mass M. A mass mis
placed in the plane of the ring. Find a position of equilibrium and determine
whether it is stable.

Solution. From symmetry, we might believe that the mass m placed in the cen-
ter of the ring (Figure 5-6) should be in equilibrium because it is uniformly sur-
rounded by mass. Put mass m at a distance ' from the center of the ring, and
place the x-axis along this direction.
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(r, 9)
aMm

X

FIGURE 5-6 Example 5.3. The geometry of the point mass 7 and ring of mass M.

The potential is given by Equation 5.7 where p = M/2ma:
aMm G

db= -5 = - 22

b b

where b is the distance between dM and m, and dM = pad¢. Let r and r’ be the
position vectors to dM and m, respectively.

d¢ (5.23)

b= |r—r'| = lacos pe, + asin pe, — r'e,]
= |[(acosd — r')e, + asin pe,] = [(acosd — 7)? + a?sin2p]!/2
7 \2 94 1/2
=(a?+ 7?2 = 2ar'cos )2 = 4|1 + P cos ¢ (5.24)

Integrating Equation 5.23 gives

aM )
D(r) = _GJT = —paGL T(b

2m

; ; (5.25)
0 l:l + (%)2 - 27Tcos <¢>:|1/2

The integral in Equation 5.25 is difficult, so let us consider positions close to
the equilibrium point, ' = 0. If 7' << a, we can expand the denominator in
Equation 5.25.

T’ 2 2,’-’ —1/2 1 1\ 2 ’
e (o) 5 oo () - o]

—1+1, +11’23 Zp— 1) + - (5.26
= acos¢ 2a(cos¢ ) (5.26)
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Equation 5.25 becomes

D(ry = —pGJQ”{l + r cos¢p + 1 (ﬁ)Q(B cos2¢p — 1) + }d¢ (5.27)
0 a 2 \a

which is easily integrated with the result

. _ MG 1(r\?
(') = p ,:1 + 7 (a) + :| (5.28)
The potential energy U(r') is from Equation 5.11, simply
M "\?
UG’y = m®(r') = —1"—6[1 +1 (1) + } (5.29)
a 4 \a

The position of equilibrium is found (from Equation 2.100) by

dU(r") —0=— mMGll'_

2 a9 (5.30)

so ' = 0 is an equilibrium point. We use Equation 2.103 to determine the stability:

d2U(r) mMG
T = " gp t <0 (5.31)

so the equilibrium point is unstable.

This last result is not obvious, because we might be led to believe that a small
displacement from ' = 0 might still be returned to " = 0 by the gravitational
forces from all the mass in the ring surrounding it.

Poisson’s Equation

It is useful to compare these properties of gravitational fields with some of the fa-
miliar results from electrostatics that were determined in the formulation of
Maxwell’s equations. Consider an arbitrary surface as in Figure 5-7 with a mass m
placed somewhere inside. Similar to electric flux, let’s find the gravitational flux
@, emanating from mass m through the arbitrary surface S.

D, = J n-gda (5.32)
s

where the integral is over the surface Sand the unit vector n is normal to the
surface at the differential area da. If we substitute g from Equation 5.3 for
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FIGURE 5-7 An arbitrary surface with a mass m placed inside. The unit vector n is
normal to the surface at the differential area da.

the gravitational field vector for a body of mass m, we have for the scalar
productn - g,

cos 0
9

n-g=—-G6Gm

r
where 0 is the angle between n and g. We substitute this into Equation 5.32 and
obtain

cos 0
9

D, = —GmJ da
s

r

The integral is over the solid angle of the arbitrary surface and has the value 4
steradians, which gives for the mass flux

@, = J n-gda= —4wGm (5.33)
s

Note that it is immaterial where the mass is located inside the surface S. We can
generalize this result for many masses m; inside the surface § by summing over
the masses.

J n-gda= —47G2m, (5.34)
Y 1
If we change to a continuous mass distribution within surface S, we have
J n-gda= —47rGJ pdv (5.35)
s v

where the integral on the right-hand side is over the volume V enclosed by S, p is
the mass density, and dv is the differential volume. We use Gauss’s divergence
theorem to rewrite this result. Gauss’s divergence theorem, Equation 1.130
where da = n da, is

Jn-gda= JV-gdv (5.36)
N 1%
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If we set the right-hand sides of Equations 5.35 and 5.36 equal, we have

J(—47rG)pdv = J V-gdv
v v

and because the surface S, and its volume V, is completely arbitrary, the two inte-
grands must be equal.

V-g=—4wGp (5.37)

This result is similar to the differential form of Gauss’s law for electric field,
V-E = p/g, where p in this case is the charge density.

We insert g = — V@ from Equation 5.5 into the left-hand side of Equation
5.837 and obtain V-g = — V. V@ = — V2P, Equation 5.37 becomes

V2P = 47Gp (5.38)

which is known as Poisson’s equation and is useful in a number of potential theory
applications. When the right-hand side of Equation 5.38 is zero, the result
V2@ = 0 is an even better known equation called Laplace’s equation. Poisson’s
equation is useful in developing Green’s functions, whereas we often encounter
Laplace’s equation when dealing with various coordinate systems.

5.3 Lines of Force and Equipotential Surfaces

Let us consider a mass that gives rise to a gravitational field that can be described
by a field vector g. Let us draw a line outward from the surface of the mass such
that the direction of the line at every point is the same as the direction of g at
that point. This line will extend from the surface of the mass to infinity. Such a
line is called a line of force.

By drawing similar lines from every small increment of surface area of the
mass, we can indicate the direction of the force field at any arbitrary point in
space. The lines of force for a single point mass are all straight lines extending
from the mass to infinity. Defined in this way, the lines of force are related only
to the direction of the force field at any point. We may consider, however, that the
density of such lines—that is, the number of lines passing through a unit area ori-
ented perpendicular to the lines—is proportional to the magnitude of the force
at that area. The lines-of-force picture is thus a convenient way to visualize both
the magnitude and the direction (i.e., the vector property) of the field.

The potential function is defined at every point in space (except at the posi-
tion of a point mass). Therefore, the equation

D = D(x, x9, x3) = constant (5.39)

defines a surface on which the potential is constant. Such a surface is called an
equipotential surface. The field vector g is equal to the gradient of &, so g can
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FIGURE 58 The equipotential surfaces due to two point masses M.

have no component along an equipotential surface. It therefore follows that
every line of force must be normal to every equipotential surface. Thus, the field
does no work on a body moving along an equipotential surface. Because the po-
tential function is single valued, no two equipotential surfaces can intersect or
touch. The surfaces of equal potential that surround a single, isolated point
mass (or any spherically symmetric mass) are all spheres. Consider two point
masses M that are separated by a certain distance. If r; is the distance from one
mass to some point in space and if r, is the distance from the other mass to the
same point, then

1 1
D =-GM (— + —) = constant (5.40)
1T

defines the equipotential surfaces. Several of these surfaces are shown in Figure
5-8 for this two-particle system. In three dimensions, the surfaces are generated
by rotating this diagram around the line connecting the two masses.

5.4 When Is the Potential Concept Useful?

The use of potentials to describe the effects of “action-at-a-distance” forces is an
extremely important and powerful technique. We should not, however, lose
sight of the fact that the ultimate justification for using a potential is to provide a
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convenient means of calculating the force on a body (or the energy for the body
in the field)—for it is the force (and energy) and not the potential that is the phys-
ically meaningful quantity. Thus, in some problems, it may be easier to calculate
the force directly, rather than computing a potential and then taking the gradi-
ent. The advantage of using the potential method is that the potential is a scalar
quantity*: We need not deal with the added complication of sorting out the
components of a vector until the gradient operation is performed. In direct cal-
culations of the force, the components must be carried through the entire com-
putation. Some skill, then, is necessary in choosing the particular approach to
use. For example, if a problem has a particular symmetry that, from physical
considerations, allows us to determine that the force has a certain direction,
then the choice of that direction as one of the coordinate directions reduces the
vector calculation to a simple scalar calculation. In such a case, the direct calcu-
lation of the force may be sufficiently straightforward to obviate the necessity of
using the potential method. Every problem requiring a force must be examined
to discover the easiest method of computation.

EXAMPLE 5.4

Consider a thin uniform disk of mass M and radius a. Find the force on a mass
mlocated along the axis of the disk.

Solution. We solve this problem by using both the potential and direct force
approaches. Consider Figure 5.9. The differential potential d® at a distance zis

. dx

FIGURE 59 Example 5.4. We use the geometry shown here to find the gravitational
force on a point mass m due to a thin uniform disk of mass M.

*We shall see in Chapter 7 another example of a scalar function from which vector results may be ob-
tained. This is the Lagrangian function, which, to emphasize the similarity, is sometimes (mostly in
older treatments) called the kinetic potential.
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given by

dM
b= —G— (5.41)

The differential mass dM is a thin ring of width dx, because we have azimuthal

symmetry.

dM = pdA = p2mx dx (5.42)
x dx x dx
dd = —27TpG—T" = —277'me
¢ 2xdx “
D(z) = —anL m = —2mwpG(x? + z2)1/2O
= —2mpG[(a® + 2%)1/? — 7] (5.43)
We find the force from
F=-VU= —mV® (5.44)

From symmetry, we have only a force in the z direction,

P _m6¢(z)

. =+2nmpG[—;~ 1} " (5.45)
0z

(@@ + 22)12
In our second method, we compute the force directly using Equation 4.2:

dF = —Gm—"e, (5.46)
r

where dM’ refers to the mass of a small differential area more like a square than
a thin ring. The vectors complicate matters. How can symmetry help? For every
small dM’ on one side of the thin ring of width dx, another dM’ exists on the
other side that exactly cancels the horizontal component of dF on m. Similarly,
all horizontal components cancel, and we need only consider the vertical com-
ponent of dF along z.

0 dM’
dF, = cos 8] dF| = —mG=""
r
and, because cos 0 = z/7,
dF, = —mG=
r

Now we integrate over the mass dM' = p2mx dx around the ring and obtain

2mxz dx
3

dF, = —mGp

r
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and

¢ 2xdx
E = —TmpGz L (2’.2 + x?)S/?

= 27rmpG[——z— 1} (5.47)

(a2 + 2212 -

which is identical to Equation 5.45. Notice that the value of F, is negative, indi-
cating that the force is downward in Figure 5-9 and attractive.

5.5 Ocean Tides

The ocean tides have long been of interest to humans. Galileo tried unsuccess-
fully to explain ocean tides but could not account for the timing of the approxi-
mately two high tides each day. Newton finally gave an adequate explanation.
The tides are caused by the gravitational attraction of the ocean to both the
Moon and the Sun, but there are several complicating factors.

The calculation is complicated by the fact that the surface of Earth is not an
inertial system. Earth and Moon rotate about their center of mass (and move
about the Sun), so we may regard the water nearest the Moon as being pulled
away from Earth, and Earth as being pulled away from the water farthest from
the Moon. However, Earth rotates while the Moon rotates about Earth. Let’s first
consider only the effect of the Moon, adding the effect of the Sun later. We will
assume a simple model whereby Earth’s surface is completely covered with
water, and we shall add the effect of Earth’s rotation at an appropriate time. We
set up an inertial frame of reference x'y’z’ as shown in Figure 5.10a. We let M,,
be the mass of the Moon, r the radius of a circular Earth, and D the distance
from the center of the Moon to the center of Earth. We consider the effect of
both the Moon’s and Earth’s gravitational attraction on a small mass m placed on
the surface of Earth. As displayed in Figure 5-10a, the position vector of the mass
m from the Moon is R, from the center of Earth is r, and from our inertial system
r,. The position vector from the inertial system to the center of Earth is rz. As
measured from the inertial system, the force on m, due to the earth and the
Moon, is

GmM, GmM,,

my, = 2 e, — R ex (5.48)

Similarly, the force on the center of mass of Earth caused by the Moon is

GM M,
D?

ey
METE_

ep (5.49)
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Earth
(a)

O—=
€p

Moon

(b)
FIGURE 5-10 (a) Geometry to find ocean tides on Earth due to the Moon.
(b) Polar view with the polar axis along the z-axis.

We want to find the acceleration ¥ as measured in the noninertial system
placed at the center of Earth. Therefore, we want

mi, Mg¥g

m Mg
_ GMy GM,, GM,,
=Tz e, — I eg + D2 €p
GMg e €
= - 2 e, — GMm (ﬁ - E (5.50)

The first part is due to Earth, and the second part is the acceleration from the
tidal force, which is responsible for producing the ocean tides. It is due to the
difference between the Moon’s gravitational pull at the center of Earth and on
Earth’s surface.
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We next find the effect of the tidal force at various points on Earth as
noted in Figure 5-10b. We show a polar view of Earth with the polar axis along
the z-axis. The tidal force F,.on the mass m on Earth’s surface is

€r €p
F,=—-GmM, ;{E - B; (5.51)

where we have used only the second part of Equation 5.50. We look first at point
a, the farthest point on Earth from the Moon. Both unit vectors e, and e, are
pointing in the same direction away from the Moon along the x-axis. Because R
> D, the second term in Equation 5.51 predominates, and the tidal force is
along the +x-axis as shown in Figure 5-10b. For point b, R < D and the tidal
force has approximately the same magnitude as at point a because /D << 1, but
is along the —x-axis. The magnitude of the tidal force along the x-axis, F,, is

|
4
]
3
=
~~
)
+ |~
3
2=
SN——

11
P, = —GmMm(ﬁ _ E) _

I
—

We expand the first term in brackets using the (1 + x) 2 expansion in Equation
D.9.

F.. = GmM"‘l_21+312_..._1—+M 5.52
Tx — D2 D D Dg (')

where we have kept only the largest nonzero term in the expansion, because /D =
0.02.

For point ¢, the unit vector ey (Figure 5-10b) is not quite exactly along ep,
but the x-axis components approximately cancel, because R = D and the x-com-
ponents of e and e are similar. There will be a small component of e along
the y-axis. We approximate the y-component of e by (r/D)j, and the tidal force
at point ¢, call it Fy,, is along the y-axis and has the magnitude

1 r\ _ GmM,r
Fp=—-GmM,, 0°n) = T D8 (5.53)

Note that this force is along the —y-axis toward the center of Earth at point ¢. We
find similarly at point D the same magnitude, but the component of e will be
along the —y-axis, so the force itself, with the sign of Equation 5.53, will be along
the +y-axis toward the center of Earth. We indicate the tidal forces at points a, 5,
¢, and d on Figure 5-11a.
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Moon
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Moon

(®)

FIGURE 5-11 (a) The tidal forces are shown at various places on Earth’s surface
including the points g, b, ¢, and d of Figure 5-10. (b) An exaggerated
view of Earth’s ocean tides.

We determine the force at an arbitrary point e by noting that the x- and y-
components of the tidal force can be found by substituting x and y for r in Fr,
and Fr,, respectively, in Equations 5.52 and 5.53.

_ 2GmM,,x
Tx — D3
GmM,,y
Fn= = ps
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Then at an arbitrary point such as ¢, we let x = rcos § and y = r sin 6§, so we have

2GmM,,r cos 6

Te = -—‘D—S‘—‘ (5.54a)
GmM,,r sin 0

= _——DS_—_ (5.54b)

Equations 5.54a and b give the tidal force around Earth for all angles 6. Note
that they give the correct result at points a, b, ¢, and d.

Figure 5-11a gives a representation of the tidal forces. For our simple model,
these forces lead to the water along the y-axis being more shallow than along
the x-axis. We show an exaggerated result in Figure 5-11b. As Earth makes a rev-
olution about its own axis every 24 hours, we will observe two high tides a day.

A quick calculation shows that the Sun’s gravitational attraction is about 175
times stronger than the Moon’s on Earth’s surface, so we would expect tidal
forces from the Sun as well. The tidal force calculation is similar to the one we
have just performed for the Moon. The result (Problem 5-18) is that the tidal
force due to the Sun is 0.46 that of the Moon, a sizable effect. Despite the
stronger attraction due to the Sun, the gravitational force gradient over the sur-
face of Earth is much smaller, because of the much larger distance to the Sun.

EXAMPLE 5.5
Calculate the maximum height change in the ocean tides caused by the Moon.

Solution. We continue to use our simple model of the ocean surrounding
Earth. Newton proposed a solution to this calculation by imagining that two
wells be dug, one along the direction of high tide (our x-axis) and one along
the direction of low tide (our y-axis). If the tidal height change we want to de-
termine is 4, then the difference in potential energy of mass m due to the
height difference is mgh. Let’s calculate the difference in work if we move the
mass m from point ¢ in Figure 5-12 to the center of Earth and then to point a.
This work W done by gravity must equal the potential energy change mgh. The
work Wis

r+8,

0
W= J' FTydy+ J' FTxd.X'

r+8,; 0

where we use the tidal forces Fr, and Fr, of Equations 5.54. The small distances
0, and 8, are to account for the small variations from a spherical Earth, but
these values are so small they can be henceforth neglected. The value for W

becomes
_ GmM,, 0 4
W= D ) (—ydy + 02xdx

_ GmM,, (r? r2) _ 3GmM,,1*?

pd \2 D3
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Earth

FIGURE 5-12 Example 5.5. We calculate the work done to move a point mass m from
point ¢ to the center of Earth and then to point a.

Because this work is equal to mgh, we have
3GmM 1>
"= oy
_ 3GM,,*

= —TEDT (5.55)

Note that the mass m cancels, and the value of % does not depend on m. Nor
does it depend on the substance, so to the extent Earth is plastic, similar tidal
effects should be (and are) observed for the surface land. If we insert the
known values of the constants into Equation 5.55, we find

, _ 3(667 X107 m¥/kg -5 (7.350 X 10?kg) (6.37 X 10°m)*
a 2(9.80 m/s?) (3.84 X 108m)3

=054 m

The highest tides (called spring tides) occur when Earth, the Moon, and the
Sun are lined up (new moon and full moon), and the smallest tides (called neap
tides) occur for the first and third quarters of the Moon when the Sun and
Moon are at right angles to each other, partially cancelling their effects. The
maximum tide, which occurs every 2 weeks, should be 1.464 = 0.83 m for the
spring tides.

An observer who has spent much time near the ocean has noticed that typi-
cal oceanshore tides are greater than those calculated in Example 5.5. Several
other effects come into play. Earth is not covered completely with water, and the
continents play a significant role, especially the shelfs and narrow estuaries.
Local effects can be dramatic, leading to tidal changes of several meters. The
tides in midocean, however, are similar to what we have calculated. Resonances
can affect the natural oscillation of the bodies of water and cause tidal changes.
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Tidal distortion
(highly exaggerated)

Earth

FIGURE 5-13 Some effects cause the high tides to not be exactly along
the Earth-Moon axis.

Tidal friction between water and Earth leads to a significant amount of energy
loss on Earth. Earth is not rigid, and it is also distorted by tidal forces.

In addition to the effects just discussed, remember that as Earth rotates, the
Moon is also orbiting Earth. This leads to the result that there are not quite ex-
actly two high tides per day, because they occur once every 12 h and 26 min
(Problem 5-19). The plane of the moon’s orbit about Earth is also not perpendi-
cular to Earth’s rotation axis. This causes one high tide each day to be slightly
higher than the other. The tidal friction between water and land mentioned pre-
viously also results in Earth “dragging” the ocean with it as Earth rotates. This
causes the high tides to be not quite along the Earth-Moon axis, but rather sev-
eral degrees apart as shown in Figure 5-13.

PROBLEMS

5-1. Sketch the equipotential surfaces and the lines of force for two point masses sepa-
rated by a certain distance. Next, consider one of the masses to have a fictitious
negative mass —M. Sketch the equipotential surfaces and lines of force for this
case. To what kind of physical situation does this set of equipotentials and field
lines apply? (Note that the lines of force have direction; indicate this with appropri-
ate arrows.)

5-2. If the field vector is independent of the radial distance within a sphere, find the
function describing the density p = p(#) of the sphere.
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5-3.

54.

5-5.

5-6.

5-7.

5-8.

5-9.

5-10.

5-11.

5-12.

5-13.

Assuming that air resistance is unimportant, calculate the minimum velocity a par-
ticle must have at the surface of Earth to escape from Earth’s gravitational field.
Obtain a numerical value for the result. (This velocity is called the escape velocity.)

A particle at rest is attracted toward a center of force according to the relation F =
—mk2/x. Show that the time required for the particle to reach the force center
from a distance dis d%/k.

A particle falls to Earth starting from rest at a great height (many times Earth’s
radius). Neglect air resistance and show that the particle requires approximately %
of the total time of fall to traverse the first half of the distance.

Compute directly the gravitational force on a unit mass at a point exterior to a ho-
mogeneous sphere of matter.

Calculate the gravitational potential due to a thin rod of length / and mass M ata
distance R from the center of the rod and in a direction perpendicular to the rod.

Calculate the gravitational field vector due to a homogeneous cylinder at exterior
points on the axis of the cylinder. Perform the calculation (a) by computing the
force directly and (b) by computing the potential first.

Calculate the potential due to a thin circular ring of radius @ and mass M for points
lying in the plane of the ring and exterior to it. The result can be expressed as an
elliptic integral.* Assume that the distance from the center of the ring to the field
point is large compared with the radius of the ring. Expand the expression for the
potential and find the first correction term.

Find the potential at off-axis points due to a thin circular ring of radius  and mass
M. Let R be the distance from the center of the ring to the field point, and let  be
the angle between the line connecting the center of the ring with the field point
and the axis of the ring. Assume R>3> a so that terms of order (a/R)® and higher
may be neglected.

Consider a massive body of arbitrary shape and a spherical surface that is exterior
to and does not contain the body. Show that the average value of the potential due
to the body taken over the spherical surface is equal to the value of the potential at
the center of the sphere.

In the previous problem, let the massive body be inside the spherical surface. Now
show that the average value of the potential over the surface of the sphere is equal
to the value of the potential that would exist on the surface of the sphere if all the
mass of the body were concentrated at the center of the sphere.

A planet of density p, (spherical core, radius R;) with a thick spherical cloud of
dust (density py, radius R,) is discovered. What is the force on a particle of mass m
placed within the dust cloud?

*See Appendix B for a list of some elliptic integrals.
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5-14.

5-15,

5-16.

5-17.

5-18.

5-19.

5-20.

5-21.

5 / GRAVITATION

Show that the gravitational self-energy (energy of assembly piecewise from infinity)
of a uniform sphere of mass M and radius R is

3 GM?

5 R

A particle is dropped into a hole drilled straight through the center of Earth.
Neglecting rotational effects, show that the particle’s motion is simple harmonic if
you assume Earth has uniform density. Show that the period of the oscillation is
about 84 min.

A uniformly solid sphere of mass M and radius R is fixed a distance % above a thin
infinite sheet of mass density p, (mass/area). With what force does the sphere at-
tract the sheet?

Newton’s model of the tidal height, using the two water wells dug to the center of
Earth, used the fact that the pressure at the bottom of the two wells should be the
same. Assume water is incompressible and find the tidal height difference #,
Equation 5.55, due to the Moon using this model. (Hint: [™pg,dy = [;™pg,.dx;
h = Xpax = Ymax WHere Xppe ¥ ¥mae = 2Reang, and Ry, is Earth’s median radius.)

Show that the ratio of maximum tidal heights due to the Moon and Sun is given by
Mm RES 3
M\ D

and that this value is 2.2. Rg; is the distance between the Sun and Earth, and M, is
the Sun’s mass.

The orbital revolution of the Moon about Earth takes about 27.3 days and is in the
same direction as Earth’s rotation (24 h). Use this information to show that high
tides occur everywhere on Earth every 12 h and 26 min.

A thin disk of mass M and radius R lies in the (x, y) plane with the z-axis passing
through the center of the disk. Calculate the gravitational potential @(z) and the
gravitational field g(z) = —VP(z) = —kd®P(z)/dz on the z-axis.

A point mass mis located a distance D from the nearest end of a thin rod of mass M
and length L along the axis of the rod. Find the gravitational force exerted on the
point mass by the rod.



CHAPTER J

Some Methods in the
Calculus of Variations

6.1 Introduction

Many problems in Newtonian mechanics are more easily analyzed by means of
alternative statements of the laws, including Lagrange’s equation and Hamilton’s
principle.* As a prelude to these techniques, we consider in this chapter some
general principles of the techniques of the calculus of variations.

Emphasis will be placed on those aspects of the theory of variations that
have a direct bearing on classical systems, omitting some existence proofs. Our
primary interest here is in determining the path that gives extremum solutions,
for example, the shortest distance (or time) between two points. A well-known
example of the use of the theory of variations is Fermat’s principle: Light travels
by the path that takes the least amount of time (see Problem 6-7).

6.2 Statement of the Problem

The basic problem of the calculus of variations is to determine the function y(x)
such that the integral

J= sz{y(x),y’(x); x}dx (6.1)

*The development of the calculus of variations was begun by Newton (1686) and was extended by
Johann and Jakob Bernoulli (1696) and by Euler (1744). Adrien Legendre (1786), Joseph Lagrange
(1788), Hamilton (1833), and Jacobi (1837) all made important contributions. The names of Peter
Dirichlet (1805-1859) and Karl Weierstrass (1815-1879) are particularly associated with the estab-
lishment of a rigorous mathematical foundation for the subject.

207
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y(x) + an(x)

Varied
path

Extremum path, y(x)

x X9
FIGURE 6-1 The function y(x) is the path that makes the functional Jan extremum.

The neighboring functions y(x) + an(x) vanish at the endpoints and
may be close to y(x), but are not the extremum.

is an extremum (i.e., either a maximum or a minimum). In Equation 6.1,
y'(x) = dy/dx, and the semicolon in f separates the independent variable x from
the dependent variable y(x) and its derivative y'(x). The functional* Jdepends
on the function y(x), and the limits of integration are fixed.! The function y(x) is
then to be varied until ah extreme value of Jis found. By this we mean that if a
function y = y(x) gives the integral fa minimum value, then any neighboring func-
tion, no matter how close to y(x), must make Jincrease. The definition of a
neighboring function may be made as follows. We give all possible functions ya
parametric representation y = y(«a, x) such that, for & = 0, y = y(0, x) = y(x) is
the function that yields an extremum for . We can then write

e, x) = y(0, x) + an(x) (6.2)

where 7(x) is some function of x that has a continuous first derivative and that
vanishes at x; and x,, because the varied function y(a, x) must be identical with
¥(x) at the endpoints of the path: n(x;) = 1(x) = 0. The situation is depicted
schematically in Figure 6-1.

If functions of the type given by Equation 6.2 are considered, the integral J
becomes a functional of the parameter a:

X

2f {3(er, %), y' (e, %); x} dx (6.3)

X

J(e) = J

*The quantity [is a generalization of a function called a functional, actually an integral functional in
this case.

It is not necessary that the limits of integration be considered fixed. If they are allowed to vary, the prob-
lem increases to finding not only y(x) butalso x; and x, such that Jis an extremum.
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The condition that the integral have a stationary value (i.e., that an extremum re-
sults) is that [ be independent of « in first order along the path giving the ex-
tremum (« = 0), or, equivalently, that

g

=0 6.4
P (6.4)

for all functions 1(x). This is only a necessary condition; it is not sufficient.

EXAMPLE 6.1

Consider the function f= (dy/dx)?, where y(x) = x. Add to y(x) the function
1n(x) = sinx, and find J(«) between the limits of x = 0 and x = 2. Show that
the stationary value of J(a) occurs for a = 0.

Solution. We may construct neighboring varied paths by adding to y(x),
y(x) = x (6.5)
the sinusoidal variation a sin x,
ya, x) = x + asinx (6.6)

These paths are illustrated in Figure 6-2 for & = 0 and for two different nonvan-
ishing values of a. Clearly, the function 17(x) = sin x obeys the endpoint condi-
tions, that is, 7(0) = 0 = n(2m). To determine f(y, y'; x) we first determine,

dy(a, x)

=1+ acosx (6.7)
dx

y(@, x) =+ o sin x

0 b 4 2

X

FIGURE 6-2 Example 6.1. The various paths y(«, x) = x + a sin x. The extremum
path occurs for a = 0.
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then
dy(a, x) \2
= ( ! )) =1+ 2ucos x+ a?cos? x (6.8)
dx
Equation 6.3 now becomes
21
J@) = J (1 + 2a cos x + a? cos? x)dx (6.9)
0
=97 + ol (6.10)

Thus we see the value of J(«) is always greater than f(0), no matter what value
(positive or negative) we choose for . The condition of Equation 6.4 is also
satisfied.

6.3 Euler’s Equation

To determine the result of the condition expressed by Equation 6.4, we perform
the indicated differentiation in Equation 6.3:

g_ GJ i,y x}dx (6.11)

da oo

Because the limits of integration are fixed, the differential operation affects only
the integrand. Hence,

) % (9f o af oy’
y_ J (—f—y+—f,l)dx (6.12)
do » \Oyda 0y’ da
From Equation 6.2, we have
9y o' dn
== ;= 6.1
Pl LS F R (6.13)
Equation 6.12 becomes
of *(of of dn
- = - d 6.14
o J ( )t ey ) ¥ ©.19)

The second term in the integrand can be integrated by parts:

Ju dv= uv — Jv du (6.15)

(Y
. Ll dx(éy )n(x)dx (6.16)

J"? of dn of
PR LW
X, ay dx
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The integrated term vanishes because n(x;) = n(xy) = 0. Therefore, Equation

6.12 becomes
g_(*S a9
dor J [ayn(x) dx(@’)n(x)}x

_[HY_dY
= Ll <6y dxay')n(x)dx (6.17)

The integral in Equation 6.17 now appears to be independent of . But the
functions y and y’ with respect to which the derivatives of fare taken are still
functions of @. Because (9]/da)|,- o must vanish for the extremum value and be-
cause 7)(x) is an arbitrary function (subject to the conditions already stated), the
integrand in Equation 6.17 must itself vanish for o = 0:

T = Euler’s equation (6.18)

where now y and y’ are the original functions, independent of «. This result is
known as Euler’s equation,* which is a necessary condition for Jto have an ex-
tremum value.

EXAMPLE 6.2

We can use the calculus of variations to solve a classic problem in the history of
physics: the brachistochrone’ Consider a particle moving in a constant force field
starting at rest from some point (x;, y;) to some lower point (x, y9). Find the

path that allows the particle to accomplish the transit in the least possible time.

Solution. The coordinate system may be chosen so that the point (x,, y,) is at
the origin. Further, let the force field be directed along the positive x-axis as
in Figure 6-3. Because the force on the particle is constant—and if we ignore
the possibility of friction—the field is conservative, and the total energy of the
particle is T+ U = const. If we measure the potential from the point x = 0
[i.e., U(x = 0) = 0], then, because the particle starts from rest, '+ U= 0.
The kinetic energyis T = %va, and the potential energy is U= —Fx = —mgx,
where gis the acceleration imparted by the force. Thus

v="V2gx (6.19)
The time required for the particle to make the transit from the origin to (xs, ys) is
J(xz’yz) ds J(de + dyQ)l/?
t = —_— = B
(2gx) 1/2

EH 1+ y’Q 1/2
= J dx (6.20)
x =0 2gx

*Derived first by Euler in 1744. When applied to mechanical systems, this is known as the Euler-
Lagrange equation.
tFirst solved by Johann Bernoulli (1667-1748) in 1696.

(x1,91) v
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(215 31) y

(%9, ¥9)

X

FIGURE 6-3 Example 6.2. The brachistochrone problem is to find the path of a particle
moving from (xl,yl) to (x3, y9) that occurs in the least possible time.
The force field acting on the particle is F, which is down and constant.

The time of transit is the quantity for which a minimum is desired. Because the
constant (2g) ~!/2 does not affect the final equation, the function fmay be iden-

tified as
1+ y2\12
f= (6.21)
X
And, because 9f/0y = 0, the Euler equation (Equation 6.18) becomes
49 _
dx 8y’

or
d
— = constant = (2a) /2
dy

where ais a new constant.

Performing the differentiation 8f/0y’ on Equation 6.21 and squaring the
result, we have

x(1+9y2)  2a -22)
This may be put in the form
xdx
y= J_——-—@ax SN (6.23)

We now make the following change of variable:
x = a(l — cos8)
dx = asin 640 (6.24)

The integral in Equation 6.23 then becomes

¥y = Ja(l — cos 0)do
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FIGURE 64 Example 6.2. The solution of the brachistochrone problem is a cycloid.

and
y = a(f — sin §) + constant (6.25)
The parametric equations for a cycloid* passing through the origin are

x= a(l — cos 0)}

y= a(f — sin 0) (6.26)

which is just the solution found, with the constant of integration set equal to
zero to conform with the requirement that (0, 0) is the starting point of the
motion, The path is then as shown in Figure 6-4, and the constant ¢ must be
adjusted to allow the cycloid to pass through the specified point (x,, y,).
Solving the problem of the brachistochrone does indeed yield a path the parti-
cle traverses in a minimum time. But the procedures of variational calculus are
designed only to produce an extremum-—either a minimum or a maximum. It
is almost always the case in dynamics that we desire (and find) a minimum for
the problem.

EXAMPLE 6.3

Consider the surface generated by revolving a line connecting two fixed points
(%1, y1) and (xy, y9) about an axis coplanar with the two points. Find the equa-
tion of the line connecting the points such that the surface area generated by
the revolution (i.e., the area of the surface of revolution) is a minimum.

Solution, We assume that the curve passing through (x;, y;) and (xy, y,) is re-
volved about the y-axis, coplanar with the two points. To calculate the total area
of the surface of revolution, we first find the area dA of a strip. Refer to Figure 6-5.

*A cycloid is a curve traced by a point on a circle rolling on a plane along a line in the plane. See the
dashed sphere rolling along x = 0 in Figure 6-4.
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(%9, y9)

dA >\ds: (dx? + dy?)™
(21, y1)

FIGURE 6-5 Example 6.3. The geometry of the problem and area dA are indicated to
minimize the surface of revolution around the y-axis.

dA = 2mrx ds = 2mwx(dx® + dy?)'/? 6.27)
A= 27rJ x(1 + y'?)2dx (6.28)
where y' = dy/dx. To find the extremum value we let
f=x(1 + y'H)!72 (6.29)
and insert into Equation 6.18:
d
o,
9
of xy’

oy (1+yH2

dl_® 1,
dx| (1 + y'?)172

!

Xy

therefore,

m?)l-/? = constant = q (6.30)
From Equation 6.30, we determine
, a
y = ——~———(x2 EpN T (6.31)

adx
y= J(XQ —_ a?)l/? (6.32)
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The solution of this integration is

y = acos h‘1<g) + b (6.33)

where e and & are constants of integration determined by requiring the curve to
pass through the points (x, y;) and (xs, ¥9). Equation 6.33 can also be written as

x= acosh (y — ) (6.34)
a

which is more easily recognized as the equation of a catenary, the curve of a flex-
ible cord hanging freely between two points of support.

Choose two points located at (x;, ¥1) and (xy, y5) joined by a curve y(x). We
want to find y(x) such that if we revolve the curve around the x-axis, the surface
area of the revolution is a minimum. This is the “soap film” problem, because a
soap film suspended between two wire circular rings takes this shape (Figure 6-6).
We_want to minimize the integral of the area dA = 2wy ds where ds =
V1 + y'2dxand y' = dy/dx.

A= 27rJ yV1 + y'2dx (6.35)

We find the extremum by setting f = yV' 1 + y'? and inserting into Equation 6.18.
The derivatives we need are

d
a—f: V1 +y'2
'y

of yy’

@ \/l-i-y’2

(x9, y9)

(1, 1)

z

FIGURE 6-6 The “soap film” problem in which we want to minimize the surface area of
revolution around the x-axis.
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Equation 6.18 becomes

d '
V1+yt= _[7J (6.36)
dx| \/1 + y'2

Equation 6.36 does not appear to be a simple equation to solve for y(x). Let’s
stop and think about whether there might be an easier method of solution. You
may have noticed that this problem is just like Example 6.3, but in that case we
were minimizing a surface of revolution about the yaxis rather than around the
x-axis. The solution to the soap film problem should be identical to Equation
6.34 if we interchange x and y. But how did we end up with such a complicated
equation as Equation 6.36? We blindly chose x as the independent variable and
decided to find the function y(x). In fact, in general, we can choose the inde-
pendent variable to be anything we want: x, 8, ¢, or even y. If we choose y as the
independent variable, we would need to interchange x and yin many of the pre-
vious equations that led up to Euler’s equation (Equation 6.18). It might be eas-
ier in the beginning to just interchange the variables that we started with (i.e.,
call the horizontal axis y in Figure 6-6 and let the independent variable be x). (In
a right-handed coordinate system, the xdirection would be down, but that pres-
ents no difficulty in this case because of symmetry.) No matter what we do, the
solution of our present problem would just parallel Example 6.3. Unfortunately,
it is not always possible to look ahead to make the best choice of independent
variable. Sometimes we just have to proceed by trial and error.

6.4 The “Second Form” of the Euler Equation

A second equation may be derived from Euler’s equation that is convenient for
functions that do not explicitly depend on x: df/dx = 0. We first note that for any
function f(y, y’; x) the derivative is a sum of terms

if:if{ x}_afdy gy
dx %95 dydx 9y dx Ox
) ) )
= y'—f-l- y”—Z’ + —f (6.37)
dy dy 0x

Also

d /af //af /daf
YL Ty Yy
dx\ dy oy dx dy

or, substituting from Equation 6.37 for y"(9f/ dy"),

TR TE G S O X
d

6.38
x yay’ dx ox yay ydxay (6-38)
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The last two terms in Equation 6.38 may be written as

which vanishes in view of the Euler equation (Equation 6.18). Therefore,

o df, I _

We can use this so-called “second form” of the Euler equation in cases in which f
does not depend explicitly on x, and df/3x = 0. Then,

0 )
f— y’a—f, = constant <fora—f= 0) (6.40)
y

x
EXAMPLE 6.4

A geodesicis a line that represents the shortest path between any two points
when the path is restricted to a particular surface. Find the geodesic on a
sphere.

Solution. The element of length on the surface of a sphere of radius p is given
(see Equation F.15 with dr = 0) by

ds = p(d6? + sin2 0 d?)\2 (6.41)

The distance s between points 1 and 2 is therefore

2
s= le [(%)2 + sin? 0j|1/2d¢ (6.42)

and, if s is to be a minimum, fis identified as
f= (6'% + sin% 0)!/2 (6.43)

where 8' = d6/d¢. Because df/d¢p = 0, we may use the second form of the
Euler equation (Equation 6.40), which yields

d
(8’2 + sin2 )12 — 9’ @(t‘)’2 + sin? §)!/2 = constant = q (6.44)

Differentiating and multiplying through by f, we have

sin? @ = (6’2 + sin2 )12 (6.45)
This may be solved for d¢/d8 = 8'~ 1 with the result
d 29
d¢ acsc (6.46)

dg (1 — a2csc26)1/2
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Solving for ¢, we obtain

b = sin‘1<cog 0) +a (6.47)

where a is the constant of integration and 2 = (1 — a?)/a?. Rewriting
Equation 6.47 produces

cotf = Bsin(p — a) (6.48)
To interpret this result, we convert the equation to rectangular coordinates by
multiplying through by p sin 8 to obtain, on expanding sin(¢ — @),
(Bcos a)psinf singd — (Bsina)psinf cosd = pcos (6.49)
Because « and B are constants, we may write them as
Bcosa=A, PBsina=DB (6.50)
Then Equation 6.49 becomes
A(psin 0 sin ¢) — B(psin 6 cos ¢) = (p cos 6) (6.51)

The quantities in the parentheses are just the expressions for y, x, and z, respec-
tively, in spherical coordinates (see Figure F-3, Appendix F); therefore Equation
6.51 may be written as

Ay — Bx =z (6.52)

which is the equation of a plane passing through the center of the sphere.
Hence the geodesic on a sphere is the path that the plane forms at the intersec-
tion with the surface of the sphere—a great circle. Note that the great circle is the
maximum as well as the minimum “straight-line” distance between two points
on the surface of a sphere.

6.5 Functions with Several Dependent Variables

The Euler equation derived in the preceding section is the solution of the varia-
tional problem in which it was desired to find the single function y(x) such that
the integral of the functional f was an extremum. The case more commonly en-
countered in mechanics is that in which fis a functional of several dependent
variables:

= A0, 51, y2(2), ya (), -5 5 (6.53)
or simply

=R,y i=120n (6.54)
In analogy with Equation 6.2, we write

yile, x) = (0, x) + ani(x) (6.55)
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The development proceeds analogously (cf. Equation 6.17), resulting in

3 9 d 9
2R e

Because the individual variations—the 7 ,(x)—are all independent, the vanishing
of Equation 6.56 when evaluated at @ = 0 requires the separate vanishing of each
expression in the brackets:

*_*_:O’ 1= 1,2,"'," (6-57)

6.6 Euler’s Equations When Auxiliary Conditions

Are Imposed
Suppose we want to find, for example, the shortest path between two points on a
surface. Then, in addition to the conditions already discussed, there is the con-
dition that the path must satisfy the equation of the surface, say, g{y;; x} = 0.

Such an equation was implicit in the solution of Example 6.4 for the geodesic on
a sphere where the condition was

g=2x-p2=0 (6.58)
that is,

r = p = constant (6.59)

But in the general case, we must make explicit use of the auxiliary equation or
equations. These equations are also called equations of constraint. Consider the
case in which

F= Mooy b = flny, 22 4 (6.60)
The equation corresponding to Equation 6.17 for the case of two variables is
0 *[ (9 d 9f\o d d 9f\o
N (ORI RE TS P
oo o L\9y dxdy')oa 0z  dxdz'joa
But now there also exists an equation of constraint of the form
ghysxt=glpznxt=0 (6.62)

and the variations 8y/8c and 8z/da are no longer independent, so the expres-
sions in parentheses in Equation 6.61 do not separately vanish at a = 0.
Differentiating g from Equation 6.62, we have

dgdy 9g oz
(=22 + 2% )ga = 6.6
% <6y oot ozaa) "0 (6.63)
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where no term in x appears since dx/0a = 0. Now

ye, x) = y(x) + omy (")} (6.64)
z(a, x) = z(x) + amy(x)

Therefore, by determining 8y/0c and 9z/6« from Equation 6.64 and inserting
into the term in parentheses of Equation 6.63, which, in general, must be zero,
we obtain

og og
T (X) = -

P 5, 12 (6.65)

Equation 6.61 becomes

F _(*(¥_a f 4
da J |:<6y dxay')nl(x) * <6z dxaz’)m(x)j| dx

Factoring 7,(x) out of the square brackets and writing Equation 6.65 as

M2(%) _ dg/dy
71 (x) og /0z

0 x| (0 d o 0 d o dg/o
oo o L\0y dxoy 0z dx9z' ) \0g/oz
This latter equation now contains the single arbitrary function 1,(x), which is

not in any way restricted by Equation 6.64, and on requiring the condition of
Equation 6.4, the expression in the brackets must vanish. Thus we have

("_f_ i"_f) ("_g)”l _ ("_f_ i"_f) ("_g)_l (6.67)
dy dxoy' ) \9y 0z dxdz'/ \oz

The lefthand side of this equation involves only derivatives of f and g with re-
spect to yand y’, and the right-hand side involves only derivatives with respect to
zand z’. Because y and z are both functions of x, the two sides of Equation 6.67
may be set equal to a function of x, which we write as —A(x):

we have

d d o i)

—f———f’+)\(x)—g=0

dy dxoy dy (6.68)
I NN S '
0z dxoz x 0z

The complete solution to the problem now depends on finding three functions:
y(x), z(x), and A(x). But there are three relations that may be used: the two equa-
tions (Equation 6.68) and the equation of constraint (Equation 6.62). Thus,
there is a sufficient number of relations to allow a complete solution. Note that
here A(x) is considered to be undetermined* and is obtained as a part of the solu-
tion. The function A(x) is known as a Lagrange undetermined multiplier.

*The function A(x) was introduced in Lagrange’s Mécanique analytique (Paris, 1788).



6.6 EULER’S EQUATIONS WHEN AUXILIARY CONDITIONS ARE IMPOSED 221

For the general case of several dependent variables and several auxiliary
conditions, we have the following set of equations:

d d
y_49 + 2 (x) (6.69)
0y, dx dy; i
gilys xb = (6.70)
If:=1,2,...,m,and j= 1,2, ..., n, Equation 6.69 represents m equations in

m + m unknowns, but there are also the n equations of constraint (Equation
6.70). Thus, there are m + n equations in m + n unknowns, and the system is
soluble.

Equation 6.70 is equivalent to the set of n differential equations

i=1,2,-,
Eﬁdyl—o {l, 2,00, m (6.71)
lay ]:1’2’...’n

In problems in mechanics, the constraint equations are frequently differential
equations rather than algebraic equations. Therefore, equations such as Equation
6.71 are sometimes more useful than the equations represented by Equation 6.70.
(See Section 7.5 for an amplification of this point.)

EXAMPLE 6.5

Consider a disk rolling without slipping on an inclined plane (Figure 6-7).
Determine the equation of constraint in terms of the “coordinates”* yand 6.

Solution. The relation between the coordinates (which are not independent) is

y= RO (6.72)
where Ris the radius of the disk. Hence the equation of constraint is
g(»0) =y— R8=0 (6.73)
,,/ \y

[0

FIGURE 6-7 Example 6.5. A disk rolls down an inclined plane without slipping.

*These are actually the generalized coordinates discussed in Section 7.3; see also Example 7.9.
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and

g g
—=1, —=-R 6.74
> 69 (6.74)
are the quantities associated with A, the single undetermined multiplier for this
case.

The constraint equation can also appear in an integral form. Consider the
isoperimetric problem that is stated as finding the curve y = y(x) for which the
functional

b
Jihl = J Ay, y's x}pdx (6.75)

has an extremum, and the curve y(x) satisfies boundary conditions y(a) = A and
y(&) = Bas well as the second functional

b
K[yl = J gly y's xpdx (6.76)

that has a fixed value for the length of the curve (£). This second functional rep-
resents an integral constraint.

Similarly to what we have done previously,* there will be a constant A such
that y(x) is the extremal solution of the functional

b
J (f+ Agdx. (6.77)
The curve y(x) then will satisfy the differential equation
) d 9 g d 9
—f———f,+)‘<—g—«£,) —0 (6.78)
dy dxoy dy dxdy

subject to the constraints y(a) = A, y(b) = B, and K[y] = £. We will work an ex-
ample for this so-called Dido Problem."

EXAMPLE 6.6

One version of the Dido Problem is to find the curve y(x) of length € bounded
by the x-axis on the bottom that passes through the points (—a, 0) and (4, 0)
and encloses the largest area. The value of the endpoints a is determined by the
problem.

*For a proof, see Ge63, p. 43.
tThe isoperimetric problem was made famous by Virgil’s poem Aeneid, which described Queen Dido
of Carthage, who in 900 B.c. was given by a local king as much land as she could enclose with an ox’s
hide. In order toc maximize her claim, she had the hide cutinto thin strips and tied them end to end.
She apparently knew enough mathematics to know that for a perimeter of a given length, the maxi-
mum area enclosed is a circle.
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dx

¥(x)
/

d¢

—a a

FIGURE 6-8 Example 6.6. We want to find the curve y(x) that maximizes the area
above the y = 0 line consistent with a fixed perimeter length. The curve
must go through x = —a and a. The differential area dA = ydx, and the
differential length along the curve is d¥€.

Solution. We can use the equations just developed to solve this problem. We
show in Figure 6-8 that the differential area dA = y dx. We want to maximize the
area, so we want to find the extremum solution for Equation 6.75, which
becomes

J= J ydx (6.79)
The constraint equations are
¥x):y(—a) =0,9(a) =0 and K= Jd€ =¢. (6.80)

The differential length along the curve d€ = (dx? + dy?)'2 = (1 + y'2)/2 dx
where y' = dy/dx. The constraint functional becomes

K= J [1 + y'2]1/2dx = ¢. (6.81)

We now have y(x) = yand g(x) = V1 + y'2, and we use these functions in
Equation 6.78.

of of og og y
- 1’ —[ - 07 - = O’ ., ——,2
dy dy dy d'  (L+yHl2
Equation 6.78 becomes
d ¥
1—-A—|—"——[=0 6.8
A dx[(l + y,2)1/2:| ( 2)

We manipulate Equation 6.82 to find

d y' 1
Zc[(l + y12)1/2:| - X (6.83)
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We integrate over x to find
Ay
V(L +y?
where (€ is an integration constant. This can be rearranged to be
dy= —F/——————
)\2 - (X - C1)2

This equation is integrated to find

y=FVAZ— (x— C)2+ G (6.84)

where G, is another integration constant. We can rewrite this as the equation of
a circle of radius A.

:x—Cl

(x—C)2+ (y— Cy)2 = A2 (6.85)

The maximum area is a semicircle bounded by the y = 0 line. The semicircle
must go through (x, y) points of {—a, 0) and (g, 0), which means the circle
must be centered at the origin, so that C; = 0 = Cj, and the radius = a = A.
The perimeter of the top half of the semicircle is what we called £, and the
perimeter length of a half circle is ma. Therefore, we have ma = £, and a = €/7.

6.7 The 6 Notation

In analyses that use the calculus of variations, we customarily use a shorthand
notation to represent the variation. Thus, Equation 6.17, which can be written as

d (%2 (0 d of \o
Y o= (—f— ——f)—y dar dx (6.86)
oo Ju \Oy dx0y’)oa
may be expressed as
( %y af d af
8] = == — = |8yd 6.87
J Jx, <6y dx ay’) Y ( )
where
)
a—]da = §J
o
5 (6.88)
D da = 8y
oo

The condition of extremum then becomes

8] = Sszf{y, ¥y xpdx =0 (6.89)



6.7 THE 6 NOTATION 225

Varied path (g, 32)

Actual path

(X], )‘1)

FIGURE 6-9 The varied path is a virtual displacement 8y from the actual path consistent
with all the forces and constraints.

Taking the variation symbol 8 inside the integral (because, by hypothesis, the
limits of integration are not affected by the variation), we have

8] = J Of dx
Xg a
J (f oy + —flﬁy')dx (6.90)
9y dy )
But
dy d
8y =86|— ) =—(8 6.91
b ( dx) dx( Y) (6.91)
SO
=(of of d
8 8y + ——¥8y|d 6.9
= J(yy dy' dx y)x (-9
Integrating the second term by parts as before, we find
=(of d of
8] = — ———]68yd 6.93
J J <6y dxay’) yex ©99

Because the variation 8y is arbitrary, the extremum condition §] = 0 requires the
integrand to vanish, thereby yielding the Euler equation (Equation 6.18).

Although the 8 notation is frequently used, it is important to realize that it is
only a shorthand expression of the more precise differential quantities. The varied
path represented by 8y can be thought of physically as a virtual displacement from
the actual path consistent with all the forces and constraints (see Figure 6-9). This
variation 8y is distinguished from an actual differential displacement dy by the
condition that dt = 0—that is, that time is fixed. The varied path 8y, in fact, need
not even correspond to a possible path of motion. The variation must vanish at the
endpoints.
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PROBLEMS

6-1. Consider the line connecting (x;, y;) = (0, 0) and (xy, y9) = (1, 1). Show explicitly
that the function y(x) = x produces a minimum path length by using the varied
function y(a, x) = x + a sin (1 — x). Use the first few terms in the expansion of
the resulting elliptic integral to show the equivalent of Equation 6.4.

6-2. Show that the shortest distance between two points on a plane is a straight line.

6-3. Show that the shortest distance between two points in (three-dimensional) space is
a straight line.

64. Show that the geodesic on the surface of a right circular cylinder is a segment of a
helix.

6-5. Consider the surface generated by revolving a line connecting two fixed points
(%1, 1) and (xg, ¥9) about an axis coplanar with the two points. Find the equation
of the line connecting the points such that the surface area generated by the revo-
lution (i.e., the area of the surface of revolution) is a minimum. Obtain the solu-
tion by using Equation 6.39.

6-6. Reexamine the problem of the brachistochrone (Example 6.2) and show that the
time required for a particle to move (frictionlessly) to the minimum point of the cy-
cloid is mV a/g, independent of the starting point.

6-7. Consider light passing from one medium with index of refraction n, into another

medium with index of refraction ngy (Figure 6-A). Use Fermat’s principle to mini-
mize time, and derive the law of refraction: n, sin 8; = 7, sin 6,.

L

Ng>mn
n2 (ng > mny)

FIGURE 6-A Problem 6-7.

6-8. Find the dimensions of the parallelepiped of maximum volume circumscribed by
(a) a sphere of radius R; (b) an ellipsoid with semiaxes a, b, c.

6-9. Find an expression involving the function ¢ (x;, xg, x3) that has a minimum average
value of the square of its gradient within a certain volume V of space.
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6-10.

6-11.

6-12.

6-14.

6-15.

6-16.

6-17.

6-18.

Find the ratio of the radius R to the height H of a right-circular cylinder of fixed
volume V that minimizes the surface area A.

A disk of radius R rolls without slipping inside the parabola y = ax2. Find the equa-
tion of constraint. Express the condition that allows the disk to roll so that it con-
tacts the parabola at one and only one point, independent of its position.

Repeat Example 6.4, finding the shortest path between any two points on the sur-
face of a sphere, but use the method of the Euler equations with an auxiliary con-
dition imposed.

. Repeat Example 6.6 but do not use the constraint that the y = 0 line is the bottom

part of the area. Show that the plane curve of a given length, which encloses a max-
Iimum area, is a circle.

Find the shortest path between the (x, y, z) points (0, —1, 0) and (0, 1, 0) on the
conical surface z = 1 — Vx? + y% What is the length of the path? Note: this is the
shortest mountain path around a volcano.

(a) Find the curve y(x) that passes through the endpoints (0, 0) and (1, 1) and min-
imizes the functional I[y] = [}[(dy/dx)? — y*]dx. (b) What is the minimum value
of the integral? (c) Evaluate I[y] for a straight line y = x between the points (0, 0)
and (1, 1).

(a) What curve on the surface z = x%2 joining the points (x, y, z) = (0, 0, 0) and
(1, 1, 1) has the shortest arc length? (b) Use a computer to produce a plot showing
the surface and the shortest curve on a single plot.

The corners of a rectangle lie on the ellipse (x/a)2 + (y/8)% = 1. (a) Where should
the corners be located in order to maximize the area of the rectangle? (b) What
fraction of the area of the ellipse is covered by the rectangle with maximum area?

A particle of mass m is constrained to move under gravity with no friction on the
surface xy = z. What is the trajectory of the particle if it starts from rest at (x, y, 2) =
(1, =1, —1) with the z-axis vertical?



CHAPTER

Hamilton’s Principle—
Lagrangian and
Hamiltonian Dynamics

7.1 Introduction

Experience has shown that a particle’s motion in an inertial reference frame is
correctly described by the Newtonian equation F = p. If the particle is not re-
quired to move in some complicated manner and if rectangular coordinates are
used to describe the motion, then usually the equations of motion are relatively
simple. But if either of these restrictions is removed, the equations can become
quite complex and difficult to manipulate. For example, if a particle is con-
strained to move on the surface of a sphere, the equations of motion result from
the projection of the Newtonian vector equation onto that surface. The repre-
sentation of the acceleration vector in spherical coordinates is a formidable
expression, as the reader who has worked Problem 1-25 can readily testify.

Moreover, if a particle is constrained to move on a given surface, certain
forces must exist (called forces of constraint) that maintain the particle in con-
tact with the specified surface. For a particle moving on a smooth horizontal sur-
face, the force of constraint is simply F, = —mg. But, if the particle is, say, a bead
sliding down a curved wire, the force of constraint can be quite complicated.
Indeed, in particular situations it may be difficult or even impossible to obtain ex-
plicit expressions for the forces of constraint. But in solving a problem by using
the Newtonian procedure, we must know all the forces, because the quantity F
that appears in the fundamental equation is the total force acting on a body.

To circumvent some of the practical difficulties that arise in attempts to
apply Newton’s equations to particular problems, alternate procedures may be

228
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developed. All such approaches are in essence a posteriori, because we know before-
hand that a result equivalent to the Newtonian equations must be obtained. Thus,
to effect a simplification we need not formulate a new theory of mechanics—the
Newtonian theory is quite correct—but only devise an alternate method of deal-
ing with complicated problems in a general manner. Such a method is con-
tained in Hamilton’s Principle, and the equations of motion resulting from the
application of this principle are called Lagrange’s equations.

If Lagrange’s equations are to constitute a proper description of the dynam-
ics of particles, they must be equivalent to Newton’s equations. On the other
hand, Hamilton’s Principle can be applied to a wide range of physical phenom-
ena (particularly those involving fields) not usually associated with Newton’s
equations. To be sure, each of the results that can be obtained from Hamilton’s
Principle was first obtained, as were Newton’s equations, by the correlation of
experimental facts. Hamilton’s Principle has not provided us with any new physical
theories, but it has allowed a satisfying unification of many individual theories by
a single basic postulate. This is not an idle exercise in hindsight, because it is the
goal of physical theory not only to give precise mathematical formulation to ob-
served phenomena but also to describe these effects with an economy of funda-
mental postulates and in the most unified manner possible. Indeed, Hamilton’s
Principle is one of the most elegant and far-reaching principles of physical theory.

In view of its wide range of applicability (even though this is an after-the-fact
discovery), it is not unreasonable to assert that Hamilton’s Principle is more
“fundamental” than Newton’s equations. Therefore, we proceed by first postulat-
ing Hamilton’s Principle; we then obtain Lagrange’s equations and show that
these are equivalent to Newton’s equations.

Because we have already discussed (in Chapters 2, 3, and 4) dissipative phe-
nomena at some length, we henceforth confine our attention to conservative
systems. Consequently, we do not discuss the more general set of Lagrange’s
equations, which take into account the effects of nonconservative forces. The
reader is referred to the literature for these details.*

7.2 Hamilton’s Principle

Minimal principles in physics have a long and interesting history. The search for
such principles is predicated on the notion that nature always minimizes certain
important quantities when a physical process takes place. The first such mini-
mum principles were developed in the field of optics. Hero of Alexandria, in the
second century B.C., found that the law governing the reflection of light could be
obtained by asserting that a light ray, traveling from one point to another by a re-
flection from a plane mirror, always takes the shortest possible path. A simple
geometric construction verifies that this minimum principle does indeed lead to

*See, for example, Goldstein (Go80, Chapter 2) or, for a comprehensive discussion, Whittaker
(Wh37, Chapter 8).
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the equality of the angles of incidence and reflection for a light ray reflected
from a plane mirror. Hero’s principle of the shortest path cannot, however, yield a
correct law for refraction. In 1657, Fermat reformulated the principle by postulat-
ing that a light ray always travels from one point to another in a medium by a
path that requires the least time.* Fermat’s principle of least time leads immedi-
ately, not only to the correct law of reflection, but also to Snell’s law of refraction
(see Problem 6-7).F

Minimum principles continued to be sought, and in the latter part of the sev-
enteenth century the beginnings of the calculus of variations were developed by
Newton, Leibniz, and the Bernoullis when such problems as the brachistochrone
(see Example 6.2) and the shape of a hanging chain (a catenary) were solved.

The first application of a general minimum principle in mechanics was made
in 1747 by Maupertuis, who asserted that dynamical motion takes place with min-
imum action.! Maupertuis’s principle of least action was based on theological
grounds (action is minimized through the “wisdom of God”), and his concept of
“action” was rather vague. (Recall that action is a quantity with the dimensions of
length X momentum or energy X time.) Only later was a firm mathematic foundation
of the principle given by Lagrange (1760). Although it is a useful form from which
to make the transition from classical mechanics to optics and to quantum me-
chanics, the principle of least action is less general than Hamilton’s Principle
and, indeed, can be derived from it. We forego a detailed discussion here.®

In 1828, Gauss developed a method of treating mechanics by his principle of
least constraint; a modification was later made by Hertz and embodied in his
principle of least curvature. These principles' are closely related to Hamilton’s
Principle and add nothing to the content of Hamilton’s more general formula-
tion; their mention only emphasizes the continual concern with minimal princi-
ples in physics.

In two papers published in 1834 and 1835, Hamilton! announced the dy-
namical principle on which it is possible to base all of mechanics and, indeed,
most of classical physics. Hamilton’s Principle may be stated as follows™:

Of all the possible paths along which a dynamical system may move from one
point to another within a specified time interval (consistent with any con-
straints), the actual path followed is that which minimizes the time integral of the
difference between the kinetic and potential energies.

*Pierre de Fermat (1601-1665), a French lawyer, linguist, and amateur mathematician.

tIn 1661, Fermat correctly deduced the law of refraction, which had been discovered experimentally
in about 1621 by Willebrord Snell (1591-1626), a Dutch mathematical prodigy.
{Pierre-Louise-Moreau de Maupertuis (1698-1759), French mathematician and astronomer. The
first use to which Maupertuis put the principle of least action was to restate Fermat’s derivation of
the law of refraction (1744).

§See, for example, Goldstein (Go80, pp. 365-371) or Sommerfeld (So50, pp. 204-209).

iiSee, for example, Lindsay and Margenau (Li36, pp. 112-120) or Sommerfeld (So50, pp.
210-214).

9 Sir William Rowan Hamilton (1805~1865), Irish mathematician and astronomer, and later, Irish
Astronomer Royal.

**The general meaning of “the path of a system” is made clear in Section 7.3.
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In terms of the calculus of variations, Hamilton’s Principle becomes

ty
BJ (T-U)dt=0 (7.1)
31
where the symbol & is a shorthand notation to describe the variation discussed in
Sections 6.3 and 6.7. This variational statement of the principle requires only
that the integral of T — U be an extremum, not necessarily a minimum. But in al-
most all important applications in dynamics, the minimum condition occurs.
The kinetic energy of a particle expressed in fixed, rectangular coordinates
is a function only of the %, and if the particle moves in a conservative force field,
the potential energy is a function only of the x;:

T=T(x), U= Ux)
If we define the difference of these quantities to be
L=T- U= L(x; %) (7.2)

then Equation 7.1 becomes

BJ 2L(xi, x)dt =0 (7.3)

h

The function L appearing in this expression may be identified with the function
fof the variational integral (see Section 6.5),

5 J i), 3100; 5} d

if we make the transformations

x—>1
3:(x) = x(0)
yix) = %(1)
Ayi), yix); 2} — Lix,, %)

The Euler-Lagrange equations (Equation 6.57) corresponding to Equation 7.3
are therefore

oL d oL
— 7 ==0, i=1,2,3 i i .
Ix;  dt 9% ¢ 2 Lagrange equations of motion  (7.4)

These are the Lagrange equations of motion for the particle, and the quantity L
is called the Lagrange function or Lagrangian for the particle.
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By way of example, let us obtain the Lagrange equation of motion for the
one-dimensional harmonic oscillator. With the usual expressions for the kinetic
and potential energies, we have

1 1
L=T- U=§m5c2-—§kx2

oL

— = —kx
ox

oL .
.= mx
0x

d (L .
-\ ]=mx
dt\ox

Substituting these results into Equation 7.4 leads to
mi + kx =0

which is identical with the equation of motion obtained using Newtonian
mechanics.

The Lagrangian procedure seems needlessly complicated if it can only du-
plicate the simple results of Newtonian theory. However, let us continue illustrat-
ing the method by considering the plane pendulum (see Section 4.4). Using
Equation 4.23 for T'and U, we have, for the Lagrangian function

1 .
L= 5m1202 — mgl(1 — cos6)

We now treat 8 as if it were a rectangular coordinate and apply the operations speci-
fied in Equation 7.4; we obtain

aL
@ = —mgl sin 6

—. = m120
a0

£(5)- e

0+—ls1n =0

which again is identical with the Newtonian result (Equation 4.21). This is a
remarkable result; it has been obtained by calculating the kinetic and potential
energies in terms of 6 rather than x and then applying a set of operations de-
signed for use with rectangular rather than angular coordinates. We are therefore
led to suspect that the Lagrange equations are more general and useful than the
form of Equation 7.4 would indicate. We pursue this matter in Section 7.4.
Another important characteristic of the method used in the two preceding
simple examples is that nowhere in the calculations did there enter any statement
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regarding force. The equations of motion were obtained only by specifying certain
properties associated with the particle (the kinetic and potential energies), and
without the necessity of explicitly taking into account the fact that there was an
external agency acting on the particle (the force). Therefore, insofar as energy can
be defined independently of Newtonian concepts, Hamilton’s Principle allows us
to calculate the equations of motion of a body completely without recourse to
Newtonian theory. We shall return to this important point in Sections 7.5 and 7.7.

7.3 Generalized Coordinates

We now seek to take advantage of the flexibility in specifying coordinates that
the two examples of the preceding section have suggested is inherent in
Lagrange’s equations.

We consider a general mechanical system consisting of a collection of n dis-
crete point particles, some of which may be connected to form rigid bodies. We
discuss such systems of particles in Chapter 9 and rigid bodies in Chapter 11. To
specify the state of such a system at a given time, it is necessary to use n radius
vectors. Because each radius vector consists of three numbers (e.g., the rectan-
gular coordinates), 3n quantities must be specified to describe the positions of
all the particles. If there exist equations of constraint that relate some of these
coordinates to others (as would be the case, for example, if some of the particles
were connected to form rigid bodies or if the motion were constrained to lie
along some path or on some surface), then not all the 3n coordinates are inde-
pendent. In fact, if there are m equations of constraint, then 3n — m coordinates
are independent, and the system is said to possess 3n — m degrees of freedom.

It is important to note that if s = 3n ~ m coordinates are required in a given
case, we need not choose s rectangular coordinates or even s curvilinear coordi-
nates (e.g., spherical, cylindrical). We can choose any sindependent parameters,
as long as they completely specify the state of the system. These s quantities need
not even have the dimensions of length. Depending on the problem at hand, it
may prove more convenient to choose some of the parameters with dimensions
of energy, some with dimensions of (length)?, some that are dimensionless, and so
forth. In Example 6.5, we described a disk rolling down an inclined plane in
terms of one coordinate that was a length and one that was an angle. We give the
name generalized coordinates to any set of quantities that completely specifies
the state of a system. The generalized coordinates are customarily written as
q1, g2 - - . » or simply as the ¢. A set of independent generalized coordinates
whose number equals the number s of degrees of freedom of the system and not
restricted by the constraints is called a proper set of generalized coordinates. In
certain instances, it may be advantageous to use generalized coordinates whose
number exceeds the number of degrees of freedom and to explicitly take into
account the constraint relations through the use of the Lagrange undetermined
multipliers. Such would be the case, for example, if we desired to calculate the
forces of constraint (see Example 7.9).
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The choice of a set of generalized coordinates to describe a system is not
unique; there are in general many sets of quantities (in fact, an infinite number!)
that completely specify the state of a given system. For example, in the problem
of the disk rolling down the inclined plane, we might choose as coordinates the
height of the center of mass of the disk above some reference level and the dis-
tance through which some point on the rim has traveled since the start of the
motion. The ultimate test of the “suitability” of a particular set of generalized
coordinates is whether the resulting equations of motion are sufficiently simple
to allow a straightforward interpretation. Unfortunately, we can state no general
rules for selecting the “most suitable” set of generalized coordinates for a given
problem. A certain skill must be developed through experience, and we present
many examples in this chapter.

In addition to the generalized coordinates, we may define a set of quantities
consisting of the time derivatives of ¢;: ¢, ¢, . - . , or simply ¢;. In analogy with the
nomenclature for rectangular coordinates, we call §; the generalized velocities.

If we allow for the possibility that the equations connecting x,; and ¢; explic-
itly contain the time, then the set of transformation equations is given by*

a=1,2,...,n
i=1,2,3%

= xa,i(qj’ t), ] = 1’ 2’ ooy S (7'5)

In general, the rectangular components of the velocities depend on the general-
ized coordinates, the generalized velocities, and the time:

Xai = %,i(q1s G-+ 5 G5 1), {

Xayi = Xai(gjs §s £ (7.6)
We may also write the inverse transformations as
4 = (% £ 7.7
4 = §(%ai> Xais 1) (7.8)
Also, there are m = 3n — s equations of constraint of the form
filkeist) =0, E=1,2,...,m (7.9)

EXAMPLE 7.1

Find a suitable set of generalized coordinates for a point particle moving on the
surface of a hemisphere of radius R whose center is at the origin.

Solution. Because the motion always takes place on the surface, we have
2+92+22-R2=0, z=0 (7.10)

Let us choose as our generalized coordinates the cosines of the angles between
the x-, y-, and z-axes and the line connecting the particle with the origin.

*In this chapter, we attempt to simplify the notation by reserving the subscript i to designate rectan-
ular axes; therefore, we always have i = 1, 2, 3.
g Y
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Therefore,
X y z
= — = = = — 11
W= BT BT% (7.11)
But the sum of the squares of the direction cosines of a line equals unity. Hence,
q% + q% + q% =1 (7.12)

This set of ¢; does not constitute a proper set of generalized coordinates, because
we can write ¢, as a function of ¢ and ¢y:

gs=V1-¢gi— ¢ (7.13)

We may, however, choose ¢, = x/R and ¢ = y/R as proper generalized coordi-
nates, and these quantities, together with the equation of constraint (Equation

7.13)
z= VR? — x? — y? (7.14)

are sufficient to uniquely specify the position of the particle. This should be an
obvious result, because only two coordinates (e.g., latitude and longitude) are
necessary to specify a point on the surface of a sphere. But the example illus-
trates the fact that the equations of constraint can always be used to reduce a
trial set of coordinates to a proper set of generalized coordinates.

EXAMPLE 7.2

Use the (x, y) coordinate system of Figure 7-1 to find the kinetic energy 7, po-
tential energy U, and the Lagrangian L for a simple pendulum (length €, mass
bob m) moving in the x, y plane. Determine the transformation equations from
the (x, y) rectangular system to the coordinate 6. Find the equation of motion.

Solution. 'We have already examined this general problem in Sections 4.4 and
7.1. When using the Lagrangian method, it is often useful to begin with

FIGURE 7-1 Example 7.2. A simple pendulum of length € and bob of mass 7.
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rectangular coordinates and transform to the most obvious system with the
simplest generalized coordinates. In this case, the kinetic and potential energies
and the Lagrangian become

1 1
T==§m5c?+§m5)2

1 1
L=T——U=§m5c2+§my2-—mgy

Inspection of Figure 7-1 reveals that the motion can be better described by
using 6 and 6. Let’s transform x and y into the coordinate 8 and then find Lin
terms of 6.

x={siné
y= —{cosb

We now find for % and %

% = €0 cos 6

3= €8 sin @

L= %n(ei’é?cos?() + €2025in? 9) + mgl cos § = %nﬂé? + mg€ cos 6

The only generalized coordinate in the case of the pendulum is the angle 0,
and we have expressed the Lagrangian in terms of 6 by following a simple
procedure of finding L in terms of x and y, finding the transformation equations,
and then inserting them into the expression for L. If we do as we did in the
previous section and treat 8 as if it were a rectangular coordinate, we can find the
equation of motion as follows:

oL

Ey i ~mgf sin 6
oL .

— = mf20

a0

d (oL o
—<—.) = m€20
dt\ o0

We insert these relations into Equation 7.4 to find the same equation of motion
as found previously.

é+§mw=o
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The state of a system consisting of n particles and subject to m constraints
that connect some of the 37 rectangular coordinates is completely specified by
s = 3n — m generalized coordinates. We may therefore represent the state of
such a system by a point in an s-dimensional space called configuration space.
Each dimension of this space corresponds to one of the ¢, coordinates. We may
represent the time history of a system by a curve in configuration space, each
point specifying the configuration of the system at a particular instant. Through
each such point passes an infinity of curves representing possible motions of
the system; each curve corresponds to a particular set of initial conditions. We
may therefore speak of the “path” of a system as it “moves” through configuration
space. But we must be careful not to confuse this terminology with that applied to
the motion of a particle along a path in ordinary three-dimensional space.

We should also note that a dynamical path in a configuration space consis-
ting of proper generalized coordinates is automatically consistent with the con-
straints on the system, because the coordinates are chosen to correspond only to
realizable motions of the system.

7.4 Lagrange’s Equations of Motion
in Generalized Coordinates

In view of the definitions in the preceding sections, we may now restate Hamilton’s
Principle as follows:

Of all the possible paths along which a dynamical system may move from one
point to another in configuration space within a specified time interval, the ac-
tual path followed is that which minimizes the time integral of the Lagrangian
Jfunction for the system.

To set up the variational form of Hamilton’s Principle in generalized coordi-
nates, we may take advantage of an important property of the Lagrangian we
have not so far emphasized. The Lagrangian for a system is defined to be the dif-
ference between the kinetic and potential energies. But energy is a scalar quantity
and so the Lagrangian is a scalar function. Hence the Lagrangian must be invari-
ant with respect to coordinate transformations. However, certain transformations that
change the Lagrangian but leave the equations of motion unchanged are allowed.
For example, equations of motion are unchanged if L is replaced by
L+ d/dt[f(q;, t)] for a function f(g;, #) with continuous second partial deriva-
tives. As long as we define the Lagrangian to be the difference between the ki-
netic and potential energies, we may use different generalized coordinates. (The
Lagrangian is, however, indefinite to an additive constant in the potential energy
U.) It is therefore immaterial whether we express the Lagrangian in terms of x, ;
and %, ; or ¢;and §;

~
i

T(’ea,i) - U(xa,i)
= T(g;, 4 ) — Ulg; ) (7.15)
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that is,
L=LGu g 95 qv G2 -+ 43 1)

Thus, Hamilton’s Principle becomes

Ty
5[ L(g;, g, ydt = 0 | Hamilton’s Principle (7.17)
h

If we refer to the definitions of the quantities in Section 6.5 and make the
identifications

x—1
y:(x) = ¢;(t)
yi(x) = ¢;(8)
Hye i 5t = Lig. 4 0

then the Euler equations (Equation 6.57) corresponding to the variational prob-
lem stated in Equation 7.17 become

=0 J=12,..,s (7.18)

These are the Euler-Lagrange equations of motion for the system (usually called
simply Lagrange’s equations*). There are s of these equations, and together with
the m equations of constraint and the initial conditions that are imposed, they
completely describe the motion of the system.?

It is important to realize that the validity of Lagrange’s equations requires
the following two conditions:

1. The forces acting on the system (apart from any forces of constraint) must
be derivable from a potential (or several potentials).

2. The equations of constraint must be relations that connect the coordinates of
the particles and may be functions of the time—that is, we must have con-
straint relations of the form given by Equation 7.9.

If the constraints can be expressed as in condition 2, they are termed holonomic
constraints. If the equations do not explicitly contain the time, the constraints
are said to be fixed or scleronomic; moving constraints are rheonomic.

*First derived for a mechanical system (although not, of course, by using Hamilton’s Principle) by
Lagrange and presented in his famous treatise Mécanique analytique in 1788. In this monumental
work, which encompasses all phases of mechanics (statics, dynamics, hydrostatics, and hydrodynam-
ics), Lagrange placed the subject on a firm and unified mathematical foundation. The treatise is
mathematical rather than physical; Lagrange was quite proud of the fact that the entire work con-
tains not a single diagram.

tBecause there are s second-order differential equations, 2s initial conditions must be supplied to
determine the motion uniquely.



7.4 LAGRANGE’S EQUATIONS OF MOTION IN GENERALIZED COORDINATES 239

Here we consider only the motion of systems subject to conservative forces.
Such forces can always be derived from potential functions, so that condition 1 is
satisfied. This is not a necessary restriction on either Hamilton’s Principle or
Lagrange’s equations; the theory can readily be extended to include nonconser-
vative forces. Similarly, we can formulate Hamilton’s Principle to include certain
types of nonholonomic constraints, but the treatment here is confined to holo-
nomic systems. We return to nonholonomic constraints in Section 7.5.

‘We now want to work several examples using Lagrange’s equations. Experience
is the best way to determine a set of generalized coordinates, realize the con-
straints, and set up the Lagrangian. Once this is done, the remainder of the
problem is for the most part mathematical.

Consider the case of projectile motion under gravity in two dimensions as was
discussed in Example 2.6. Find the equations of motion in both Cartesian and
polar coordinates.

Solution. 'We use Figure 2-7 to describe the system. In Cartesian coordinates, we
use x (horizontal) and y (vertical). In polar coordinates we use 7 (in radial direc-
tion) and § (elevation angle from horizontal). First, in Cartesian coordinates we
have

1
T= 3 mx? + — my?
(7.19)
U= mgy
where U= 0 aty = 0.
1 1
L:T~U=§mx2+§my2-—mgy (7.20)
We find the equations of motion by using Equation 7.18:
x:
oL _ ddL _
ax  dtox
d
0 - d—tmx =0
=0 (7.21)
y:
oL _daL
dy dtoy

a
—-mg — Zt(mj)) =0
y=—g (7.22)
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By using the initial conditions, Equations 7.21 and 7.22 can be integrated to
determine the appropriate equations of motion.
In polar coordinates, we have

T= %mﬁ + %m(ré)2

U= mgrsin 0
where U= 0 for 6 = 0.
1 1 . .
L=T-U= §mr2 + §mr262 — mgrsin 6 (7.23)
r:
oL _ daL_
ar dtor
mr62 — mg sin 0 ——i(mi) =0
& dt
702 — gsin@ — ¥ =0 (7.24)
6:
oL doL_
30  dtod

~mgr cos 6 — dit(mr?é) =0

~grcosf — 2rif — 126 = 0 (7.25)

The equations of motion expressed by Equations 7.21 and 7.22 are clearly
simpler than those of Equations 7.24 and 7.25. We should choose Cartesian co-
ordinates as the generalized coordinates to solve this problem. The key in
recognizing this was that the potential energy of the system only depended on the
y coordinate. In polar coordinates, the potential energy depended on both r and 6.

A particle of mass m is constrained to move on the inside surface of a smooth
cone of half-angle « (see Figure 7-2). The particle is subject to a gravitational
force. Determine a set of generalized coordinates and determine the con-
straints. Find Lagrange’s equations of motion, Equation 7.18.

Solution. Let the axis of the cone correspond to the z-axis and let the apex of
the cone be located at the origin. Since the problem possesses cylindrical sym-
metry, we choose 7, 8, and z as the generalized coordinates. We have, however,
the equation of constraint

=rcota (7.26)
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FIGURE 7-2 Example 7.4. A smooth cone of half-angle a. We choose 7, 8, and z as the
generalized coordinates.

so there are only two degrees of freedom for the system, and therefore only two
proper generalized coordinates. We may use Equation 7.26 to eliminate either the
coordinate z or 7; we choose to do the former. Then the square of the velocity is

v? =72 + 1202 + 32

=72 + 122 + 2 cot?a
= 2¢cscla + 1202 (7.27)
The potential energy (if we choose U= 0 at z = 0) is

U = mgz = mgr cot a
so the Langrangian is

L= —;-m (72 csc2a + r202) — mgr cot a

(7.28)
We note first that L does not explicitly contain 6. Therefore 0L/3 = 0, and
the Lagrange equation for the coordinate 0 is
d oL
e
Hence

oL

= m120 = constant
00

(7.29)

But mr20 = mrw is just the angular momentum about the z-axis. Therefore,
Equation 7.29 expresses the conservation of angular momentum about the axis
of symmetry of the system.

The Lagrange equation for ris

= 3
or dtor (7.30)
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Calculating the derivatives, we find
7F—r62sin?a + gsina cosa = 0 (7.81)
which is the equation of motion for the coordinate r.

We shall return to this example in Section 8.10 and examine the motion in
more detail.

FXAMPLE 7.5

The point of support of a simple pendulum of length » moves on a massless rim
of radius a rotating with constant angular velocity w. Obtain the expression for
the Cartesian components of the velocity and acceleration of the mass m.
Obtain also the angular acceleration for the angle 8 shown in Figure 7-3.

Solution. We choose the origin of our coordinate system to be at the center of
the rotating rim. The Cartesian components of mass m become

x = g cos wt+ bsin @
. } (7.32)
y= asin wt— bcos @
The velocities are
9.°c = —qw sin wt + {)é.cos (V] (7.33)
¥y = aw cos wt + b0 sin O

FIGURE 7-3 Example 7.5. A simple pendulum is attached to a rotating rim.
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Taking the time derivative once again gives the acceleration:
%= —aw?cos wt + b(b cos § — O2sin )
§j = —aw?sin wt + b6 sin @ + 62cos 6)
It should now be clear that the single generalized coordinate is 6. The kinetic and
potential energies are
T = %m(a’c“’ + 5?)
U= mgy
where U= 0 at y = 0. The Lagrangian is

L=T-U= %”[a%? + 5202 + 2bfaw sin (0 — wi)]
~mg(a sin wt ~ b cos 6) (7.34)

The derivatives for the Lagrange equation of motion for § are

4oL _ b5 + mbaw(d 0 — wt
—— = mba - -
1t m w( ) Cos wt)

aL \
0 mblaw cos(0 — wt) — mghsin 6
which results in the equation of motion (after solving for §)

.. 2
g = Qb—“ cos(8 — wt) — § sin 8 (7.35)

Notice that this result reduces to the well-known equation of motion for a sim-
ple pendulum if @ = 0.

Find the frequency of small oscillations of a simple pendulum placed in a rail-
road car that has a constant acceleration « in the x-direction.

Solution. A schematic diagram is shown in Figure 7-4a for the pendulum of
length €, mass m, and displacement angle 8. We choose a fixed cartesian coordi-
nate system with x = 0 and % = v, at £ = 0. The position and velocity of m become

1
x = yt + Eat2 + €sin 6

y= —{cos 6
x v0+at+€écos0
5= €0sin 0
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(b)

FIGURE 74 Example 7.6. (a) A simple pendulum swings in an accelerating railroad
car. (b) The angle 6, is the equilibrium angle due to the car’s
acceleration g and acceleration of gravity g.

The kinetic and potential energies are

1

T= ém(a'c‘Z + 3% U= —mgfcosb
and the Lagrangian is
1 . 1 .
L=T-U= Em(vo + at + €0 cos 6)2 + ém(eo sin 6)2 + mg€cos 6
The angle 6 is the only generalized coordinate, and after taking the deriva-

tives for Lagrange’s equations and suitable collection of terms, the equation of
motion becomes (Problem 7-2)

6 = —%sin@—gcos() (7.36)
We determine the equilibrium angle 8 = 6, by setting § = 0,

0= gsinf,+ acosé, (7.37)
The equilibrium angle 6,, shown in Figure 7-4b, is obtained by

tan 6, = — g (7.38)

Because the oscillations are small and are about the equilibrium angle, let
6 = 6, + n, where 7 is a small angle.

b=n=- %sin(@e +n) — gcos(()e +7) (7.39)
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We expand the sine and cosine terms and use the small angle approximation
for sin 17 and cos 7, keeping only the first terms in the Taylor series expansions.

n=- %(sin@e cosn + cosf,sinm) — %(cos 8, cosm — sin 6, sin 7)

= - %(sin 6, + m cos 6,) — g(cos 8, — n sin 6,)

1
= - z[(g sinf, + a cos 8,) + n(g cos §, — asin 6,)]
The first term in the brackets is zero because of Equation 7.37, which leaves
1
n=- z(g cos §, — asin 6,)7 (7.40)

We use Equation 7.38 to determine sin 6, and cos 6, and after a little manipula-
tion (Problem 7-2), Equation 7.40 becomes

Virg

n=- —e—n (7.41)

Because this equation now represents simple harmonic motion, the frequency

w is determined to be
\/ 2
,_ Va + g2

wf = (7.42)

This result seems plausible, because w — V g/{ for a = 0 when the railroad car
is at rest.

EXAMPLE 7.7

A bead slides along a smooth wire bent in the shape of a parabola z = ¢r?
(Figure 7-5). The bead rotates in a circle of radius R when the wire is rotating
about its vertical symmetry axis with angular velocity w. Find the value of c.

Solution. Because the problem has cylindrical symmetry, we choose 7, 8, and z as
the generalized coordinates. The kinetic energy of the bead is

T= ’—2”[&2 + 22+ (r62) (7.43)

If we choose U= 0 at z = 0, the potential energy term is
U= mgz (7.44)
But 7, z, and 6 are not independent. The equation of constraint for the parabola is
z= cr? (7.45)
= 2cir (7.46)
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FIGURE 7-5 Example 7.7. A bead slides along a smooth wire that rotates about the z-axis.

We also have an explicit time dependence of the angular rotation
0= wt
6=0w (7.47)

We can now construct the Lagrangian as being dependent only on 7, because
there is no direct 8 dependence.

L=T-U

= %n(r'Q + 4¢%r?72 + r’w?) — mger? (7.48)

The problem stated that the bead moved in a circle of radius R. The reader
might be tempted at this point to let r = R = const. and 7 = 0. It would be a
mistake to do this now in the Lagrangian. First, we should find the equation
of motion for the variable r and then let r = Ras a condition of the particular
motion. This determines the particular value of cneeded for »r = R.

oL m
= 4+ 8 2,2
59 (27 c2r%7)

daL m

L= _ u+1 2.2+ 92 9 e

T 2(27 6c2rr 8c2r?7)
aL
— = m(4c?r? + row? — 2gcr)
ar

Lagrange’s equation of motion becomes
F(1 + 4c?r?) + 72(4c?r) + r(2gc — 0?) =0 (7.49)

which is a complicated result. If, however, the bead rotates with » = R = constant,
then 7 = # = 0, and Equation 7.49 becomes

R2gc— 0?) =0
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and

= — (7.50)

is the result we wanted.

EXAMPLE 7.8

Consider the double pulley system shown in Figure 7-6. Use the coordinates in-
dicated, and determine the equations of motion.

Solution. Consider the pulleys to be massless, and let /; and 4 be the lengths of
rope hanging freely from each of the two pulleys. The distances x and yare
measured from the center of the two pulleys.

my:

v = x (7.51)

a ..
U = zt(ll —x+ty)=—x+3 (7.52)

Pulley 2

mg

mg

FIGURE 7-6 Example 7.8. The double pulley system.
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d ..
v3=zt(ll—x+12—y)=—x—y (7.53)

1 1 1
T= émlv% + -2—m2v§ + —myvi

2
= lmla'CQ + lm2(5) — %)% + l7n3(—5c -2 (7.54)
2 2 2

Let the potential energy U= 0 at x = 0.
U= Ul + U2 + U3
= —mgx — mog(h — x+y) — meg(ly — x+ I — ) (7.55)

Because T and U have been determined, the equations of motion can be ob-
tained using Equation 7.18. The results are

miE+ mo(X— §) + mg(X+ §) = (m; — my — my)g (7.56)
—mo(X — §) + my(X+ §) = (my — mg)g (7.57)
Equations 7.56 and 7.57 can be solved for % and ¥.

Examples 7.2-7.8 indicate the ease and usefulness of using Lagrange’s equa-
tions. It has been said, probably unfairly, that Lagrangian techniques are simply
recipes to follow. The argument is that we lose track of the “physics” by their use.
Lagrangian methods, on the contrary, are extremely powerful and allow us to
solve problems that otherwise would lead to severe complications using Newtonian
methods. Simple problems can perhaps be solved just as easily using Newtonian
methods, but the Lagrangian techniques can be used to attack a wide range of
complex physical situations (including those occurring in quantum mechanics*).

7.5 Lagrange’s Equations with Undetermined
Multipliers

Constraints that can be expressed as algebraic relations among the coordinates
are holonomic constraints. If a system is subject only to such constraints, we can
always find a proper set of generalized coordinates in terms of which the equa-
tions of motion are free from explicit reference to the constraints.

Any constraints that must be expressed in terms of the wvelocities of the parti-
cles in the system are of the form

f(xa,i’ ’.Ca,i’ t) =0 (7.58)

*See Feynman and Hibbs (Fe65).
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and constitute nonholonomic constraints unless the equations can be integrated
to yield relations.among the coordinates.*
Consider a constraint relation of the form

ZAK+B=0, i=123 (7.59)

In general, this equation is nonintegrable, and therefore the constraint is non-
holonomic. But if A; and B have the forms
af of

A=oo B=o, [= S0 (7.60)

then Equation 7.59 may be written as

f dx; 9
f dx;  of

- 5;1 TR 0 (7.61)
But this is just
d
T
which can be integrated to yield
f(x;, ) — constant = 0 (7.62)

so the constraint is actually holonomic.
From the preceding discussion, we conclude that constraints expressible in
differential form as

E£d+ﬁm 0 (7.63)
Jaq

are equivalent to those having the form of Equation 7.9.

If the constraint relations for a problem are given in differential form rather
than as algebraic expressions, we can incorporate them directly into Lagrange’s
equations by using the Lagrange undetermined multipliers (see Section 6.6)
without first performing the integrations; that is, for constraints expressible as in
Equation 6.71,

=12, ...,
Eﬁ ? 12y s (7.64)
/aq] k=1,2,....m
the Lagrange equations (Equation 6.69) are
oL  doL ;
=_- = Ekol= (7.65)

aq; dtaq] k

In fact, because the variation process involved in Hamilton’s Principle holds the
time constant at the endpoints, we could add to Equation 7.64 a term (3f,/8t)d¢

*Such constraints are sometimes called “semiholonomic.”
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without affecting the equations of motion. Thus constraints expressed by Equation
7.63 also lead to the Lagrange equations given in Equation 7.65.

The great advantage of the Lagrangian formulation of mechanics is that the
explicit inclusion of the forces of constraint is not necessary; that is, the empha-
sis is placed on the dynamics of the system rather than the calculation of the
forces acting on each component of the system. In certain instances, however, it
might be desirable to know the forces of constraint. For example, from an engi-
neering standpoint, it would be useful to know the constraint forces for design
purposes. It is therefore worth pointing out that in Lagrange’s equations ex-
pressed as in Equation 7.65, the undetermined multipliers A, (t) are closely re-
lated to the forces of constraint.* The generalized forces of constraint Q; are
given by

Q= E Ay % (7.66)

EXAMPLE 7.9

Let us consider again the case of the disk rolling down an inclined plane (see
Example 6.5 and Figure 6-7). Find the equations of motion, the force of con-
straint, and the angular acceleration.

Solution. The kinetic energy may be separated into translational and rotational
terms’

1 1.
T== M2+~ I§2
9™ Ty

1 1 ,
== M3? + - MR? 62
o My Ty
where M is the mass of the disk and Ris the radius; I = % MR? is the moment of
inertia of the disk about a central axis. The potential energy is
U= Mg(l—y) sina (7.67)

where [ is the length of the inclined surface of the plane and where the disk is
assumed to have zero potential energy at the bottom of the plane. The
Lagrangian is therefore

L=T-U
1 *9 1 12 .
= '2—My + ZMRQO + Mg(y— ) sina (7.68)

*See, for example, Goldstein (Go80, p. 47). Explicit calculations of the forces of constraint in some
specific problems are carried out by Becker (Be54, Chapters 11 and 13) and by Symon (Sy71,
p. 372ff).

tWe anticipate here a well-known result from rigid-body dynamics discussed in Chapter 11.
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The equation of constraint is
J(»6) =y—R6=0 (7.69)

The system has only one degree of freedom if we insist that the rolling takes
place without slipping. We may therefore choose either y or 6 as the proper co-
ordinate and use Equation 7.69 to eliminate the other. Alternatively, we may
continue to consider doth y and 8 as generalized coordinates and use the
method of undetermined multipliers. The Lagrange equations in this case are

oL d oL )
oL _ oL 9

oy dray My 0
'y "y 'y
oL doL g Y (7.70)
%0 diag 90
Performing the differentiations, we obtain, for the equations of motion,
Mgsina — M5 + A =0 (7.71a)
1 .
- 5 MR? — AR=0 (7.71b)
Also, from the constraint equation, we have
y= R6 (7.72)

These equations (Equations 7.71 and 7.72) constitute a soluble system for the
three unknowns y, 6, A. Differentiating the equation of constraint (Equation
7.72), we obtain

6== (7.73)

Combining Equations 7.71b and 7.73, we find

1
A= — §M ¥ (7.74)
and then using this expression in Equation 7.71a there results
2g sin a
j="£ (7.75)
3
with
Mg sin «
A== (7.76)
3
so that Equation 7.71b yields
. 2gsina
= 3R (7.77)

Thus, we have three equations for the quantities ¥, 6, and A that can be imme-
diately integrated.
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We note that if the disk were to slide without friction down the plane, we
would have § = gsin a. Therefore, the rolling constraint reduces the accelera-
tion to % of the value of frictionless sliding. The magnitude of the force of fric-
tion producing the constraint is just A—that is, (Mg/3) sina.

The generalized forces of constraint, Equation 7.66, are

af Mg sina
% 3y 3
af _ MgRsina

Q 0" AR 3
Note that Q, and Q4 are a force and a torque, respectively, and they are the gen-
eralized forces of constraint required to keep the disk rolling down the plane
without slipping. .

Note that we may eliminate  from the Lagrangian by substituting § = §/R
from the equation of constraint:

3
L= ZMy2 + Mg(y — I)sin a (7.78)

The Lagrangian is then expressed in terms of only one proper coordinate, and
the single equation of motion is immediately obtained from Equation 7.18:

3
Mgsina—§M§=0 (7.79)

which is the same as Equation 7.75. Although this procedure is simpler, it can-
not be used to obtain the force of constraint.

EXAMPLE 7.10

A particle of mass m starts at rest on top of a smooth fixed hemisphere of radius
a. Find the force of constraint, and determine the angle at which the particle
leaves the hemisphere.

Solution. See Figure 7-7. Because we are considering the possibility of the parti-
cle leaving the hemisphere, we choose the generalized coordinates to be rand
6. The constraint equation is

f(rn,@) =r—a=20 (7.80)
The Lagrangian is determined from the kinetic and potential energies:
T= ’5”02 + 1%2)
U= mgr cos 8
L=T-U

L= 7§n(r2 + 1202) — mgr cos 6 (7.81)
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FIGURE 7-7 Example 7.10. A particle of mass m moves on the surface of a fixed
smooth hemisphere.

where the potential energy is zero at the bottom of the hemisphere. The
Lagrange equations, Equation 7.65, are
ad
oL_doL of
ar dtor ar

8L doL 9
—————.+A—f=0 (7.83)
0 dtad o

=0 (7.82)

Performing the differentiations on Equation 7.80 gives

f f
==1, = 7.84
ar a0 ( )
Equations 7.82 and 7.83 become
mr2 — mgcosf — m#+ A =0 (7.85)
mgrsin § — mr26 — 2mrif = 0 (7.86)
Next, we apply the constraint r = a to these equations of motion:
r=a, r=0=7%
Equations 7.85 and 7.86 then become
mab? — mgcosf + A =0 (7.87)
mgasin 8 — ma2 = 0 (7.88)
From Equation 7.88, we have
6 = %sin 6 (7.89)
We can integrate Equation 7.89 to determine 62.
. dd9 df dbde .db
=——=—-= = (7.90)

T dtdt dt dédt  do
We integrate Equation 7.89,

Jé db = %Jsin 646 (7.91)
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which results in
62 _
— = ——gcos 0+ & (7.92)
2 a a

where the int.egration constant is g/a, because 6 =0att=0whend =0.
Substituting 82 from Equation 7.92 into Equation 7.87 gives, after solving for A,

A =mg(3 cosf — 2) (7.93)

which is the force of constraint. The particle falls off the hemisphere at angle 6,
when A = 0.

A=0=mg(8cosb, — 2) (7.94)

0, = cos‘1<§) (7.95)

As a quick check, notice that the constraint force is A = mgat § = 0 when the
particle is perched on top of the hemisphere.

The usefulness of the method of undetermined multipliers is twofold:

1. The Lagrange multipliers are closely related to the forces of constraint that
are often needed. .

2. When a proper set of generalized coordinates is not desired or too difficult
to obtain, the method may be used to increase the number of generalized
coordinates by including constraint relations between the coordinates.

7.6 Equivalence of Lagrange’s
and Newton’s Equations

As we have emphasized from the outset, the Lagrangian and Newtonian formu-
lations of mechanics are equivalent: The viewpoint is different, but the content
is the same. We now explicitly demonstrate this equivalence by showing that the
two sets of equations of motion are in fact the same.

In Equation 7.18, let us choose the generalized coordinates to be the rectan-
gular coordinates. Lagrange’s equations (for a single particle) then become

= _ ==y, i=1,23 (7.96)

or

a(T—-U) _daT-U) _
ax; dt d%x;

(2

0
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But in rectangular coordinates and for a conservative system, we have T= T(%)
and U = U(xy), so

oT oU
—=0 and —=0
axi axi

Lagrange’s equations therefore become

aU doT
-——= 7.97
We also have (for a conservative system)
aU
axi
and
49T _ 31 d
_ 2 = v) = X
dtaz; dtax (; g™ J) 4 ") =
so Equation 7.97 yields the Newtonian equations, as required:
F, = p, (7.98)

Thus, the Lagrangian and Newtonian equations are identical if the generalized
coordinates are the rectangular coordinates.

Now let us derive Lagrange’s equations of motion using Newtonian con-
cepts. Consider only a single particle for simplicity. We need to transform from
the x-coordinates to the generalized coordinates ¢;. From Equation 7.5, we have

x; = x(qy ?) (7.99)
ax; ax;
b= 2 — g+ — 1
i gaqj LAFY (7.100)
and
0%; _ 9, (7.101
3g; 9q; -101)

A generalized momentum p; associated with g; is easily determined by

aT
= — 7.10
For example, for a particle moving in plane polar coordinates, T = (#* + 7262) m/2,
we have p, = m# for coordinate 7 and g = mr2 for coordinate 6. Obviously p, is a
linear momentum and p, is an angular momentum, so our generalized momen-
tum definition seems consistent with Newtonian concepts.
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We can determine a generalized force by considering the virtual work §W
done by a varied path &x; as described in Section 6.7.

dx;
SW= 2 Fox, = 2 F 8¢ (7.103)
i if aqj
= ; Q,5g; (7.104)
so that the generalized force Q; associated with g, is
S (7.105)
i aq]

Just as work is always energy, so is the product of Qg. If ¢is length, Qis force; if ¢
is an angle, Q is torque. For a conservative system, Q; is derivable from the po-
tential energy:

Qj = — — (7.106)

Now we are ready to obtain Lagrange’s equations:

1
b= aqj 3(]]<E mx2)

= < m’.ci_.

b= 2mi,— (7.107)

where we use Equation 7.101 for the last step. Taking the time derivative of

Equation 7.107 gives
., 0% . d ox,
mx; — + mx;— (7.108)

Expanding the last term gives
ddx; _ a%x, . 3
dtag  * agog ™ agot

and Equation 7.108 becomes

me—+2mx Gy + i m%; i
g kaq] i dq;0¢
The first term on the right side of Equation 7.109 is just Q«(F; = mX; and

Equation 7.105). The sum of the other two terms is 37/dg;:

(7.109)

oT ax;
=3 mxi_".
aq] i aq]
3 /<o ax,
=3 ma'c,-—( &+ —x) (7.110)
i g\ k Oy at

where we have used 7= 3;1/2 mx? and Equation 7.100.
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Equation 7.109 can now be written as

. aT
=0+ (7.111)
7 J aq]
or, using Equations 7.102 and 7.106,
dfo aT aU
“l=)-==0=-= 7.11
dt(«?éj) o~ YT Ty N

Because U does not depend on the generalized velocities §;, Equation 7.112 can
be written

(T—-U a(T—U
i[ (T - )J It ) o (7.113)
dt a¢; aq;
andusing L=T- [
d{(a a
—<~L) _OL_ 0 (7.114)
at\ag; ag;

which are Lagrange’s equations of motion.

7.7 Essence of Lagrangian Dynamics

In the preceding sections, we made several general and important statements
concerning the Lagrange formulation of mechanics. Before proceeding further,
we should summarize these points to emphasize the differences between the
Lagrange and Newtonian viewpoints.

Historically, the Lagrange equations of motion expressed in generalized co-
ordinates were derived before the statement of Hamilton’s Principle.* We
elected to deduce Lagrange’s equations by postulating Hamilton’s Principle be-
cause this is the most straightforward approach and is also the formal method
for unifying classical dynamics.

First, we must reiterate that Lagrangian dynamics does not constitute a new
theory in any sense of the word. The results of a Lagrangian analysis or a
Newtonian analysis must be the same for any given mechanical system. The only
difference is the method used to obtain these results.

Whereas the Newtonian approach emphasizes an outside agency acting on a
body (the force), the Lagrangian method deals only with quantities associated
with the body (the kinetic and potential energies). In fact, nowhere in the
Lagrangian formulation does the concept of force enter. This is a particularly im-
portant property—and for a variety of reasons. First, because energy is a scalar
quantity, the Lagrangian function for a system is invariant to coordinate transfor-
mations. Indeed, such transformations are not restricted to be between various

*Lagrange’s equations, 1788; Hamilton’s Principle, 1834.
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orthogonal coordinate systems in ordinary space; they may also be transformations
between ordinary coordinates and generalized coordinates. Thus, it is possible to
pass from ordinary space (in which the equations of motion may be quite com-
plicated) to a configuration space that can be chosen to yield maximum simplifi-
cation for a particular problem. We are accustomed to thinking of mechanical
systems in terms of vector quantities such as force, velocity, angular momentum,
and torque. But in the Lagrangian formulation, the equations of motion are ob-
tained entirely in terms of scalar operations in configuration space.

Another important aspect of the force-versus-energy viewpoint is that in cer-
tain situations it may not even be possible to state explicitly all the forces acting
on a body (as is sometimes the case for forces of constraint), whereas it is still
possible to give expressions for the kinetic and potential energies. It is just this
fact that makes Hamilton’s Principle useful for quantum-mechanical systems
where we normally know the energies but not the forces.

The differential statement of mechanics contained in Newton’s equations or
the integral statement embodied in Hamilton’s Principle (and the resulting
Lagrangian equations) have been shown to be entirely equivalent. Hence, no dis-
tinction exists between these viewpoints, which are based on the description of
physical effects. But from a philosophical standpoint, we can make a distinction. In
the Newtonian formulation, a certain force on a body produces a definite
motion—that is, we always associate a definite effect with a certain cause.
According to Hamilton’s Principle, however, the motion of a body results from
the attempt of nature to achieve a certain purpose, namely, to minimize the time
integral of the difference between the kinetic and potential energies. The opera-
tional solving of problems in mechanics does not depend on adopting one or
the other of these views. But historically such considerations have had a pro-
found influence on the development of dynamics (as, for example, in
Maupertuis’s principle, mentioned in Section 7.2). The interested reader is re-
ferred to Margenau’s excellent book for a discussion of these matters.*

7.8 A Theorem Concerning the Kinetic Energy

If the kinetic energy is expressed in fixed, rectangular coordinates, the resultis a
homogeneous quadratic function of %, ;:

1 n 3
T=- 2 2 mga2, (7.115)

We now wish to consider in more detail the dependence of T on the generalized
coordinates and velocities. For many particles, Equations 7.99 and 7.100 become

xa,i = xa,i(qj, t), ] = 1, 2, ooy § (7.116)
N 0K, 0%, ;

= g+ — (7.117)
T =1 8¢ at

*Margenau (Ma77, Chapter 19).
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Evaluating the square of %, ;, we obtain

8%, i 0% ; 0%y, 0%, ; 0%, ;\2
2, =2 — g+ 22 i+ (7.118)
2 % J q]

and the kinetic energy becomes

a dx, ;0 0x,, ;
r=33t, % "’; i+ S S, a7 q+221m(:‘;‘)2 (7.119)

o 1]k2 Ma aq ot 7 a i 2 @

Thus, we have the general result
T= E @i+ 2 big + o (7.120)
i

A particularly important case occurs when the system is scleronomic, so that the
time does not appear explicitly in the equations of transformation (Equation 7.116);
then the partial time derivatives vanish:

0%, ;
=0, b= 0, c=0
ot

Therefore, under these conditions, the kinetic energy is a homogeneous quadratic
Jfunction of the generalized velocities:

T= E a1 (7.121)

Next, we differentiate Equation 7.121 with respect to §;

oT
aq ; apgy, + E a; ,q]

Multiplying this equation by §, and summing over /, we have

aT
; ‘Il 34, ; angeg + E a;qq:

In this case, all the indices are dummies, so both terms on the right-hand side
are identical:

240 =22 aygd = 2T (7.122)

This important result is a special case of Euler’s theorem, which states that if f(y,) is
a homogeneous function of the y, that is of degree n, then

of
Eyk P =nf (7.123)
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7.9 Conservation Theorems Revisited

Conservation of Energy

We saw in our previous arguments* that #me is homogeneous within an inertial
reference frame. Therefore, the Lagrangian that describes a closed system (i.e., a
system not interacting with anything outside the system) cannot depend explic-
itly on time,' that is,

L

= 7.124
at (7.124)
so that the total derivative of the Lagrangian becomes
dL _ oL oL > oL
— 4 7.125
dt 5 aq; 4 i 8¢ 9 (7.125)

where the usual term, 4L /3¢, does not now appear. But Lagrange’s equations are

oL _ daL

7.126
aqj dtaq] (7.126)

Using Equation 7.126 to substitute for dL/3d¢; in Equation 7.125, we have

dL . d aL + aL
dt q] dtaq] 1 4
or
dL E df{.oL
0
dt dt(qfaq])
so that

d aL
- L .
dt( ; qjaq]) 0 (7.127)

The quantity in the parentheses is therefore constant in time; denote this con-
stant by —

oL
L- 2§45 = —H = constant (7.128)

If the potential energy U does not depend explicitly on the velocities %, ; or the
time ¢, then U= U(x, ;). The relations connecting the rectangular coordinates
and the generalized coordinates are of the form x,; = x,:(¢) or ¢ = ¢(x,),

*See Section 2.3.
$The Lagrangian is likewise independent of the time if the system exists in a uniform force field.
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where we exclude the possibility of an explicit time dependence in the transfor-
mation equations. Therefore, U= U( ), and aU/aqj = 0. Thus

oL _a(T—-U) _aT
9; 9; 9g;
Equation 7.128 can then be written as

o _

(T—-U) — ; qjaqj —-H (7.129)
and, using Equation 7.122, we have
(T-U)—2T=—-H
or
T+ U= E= H = constant (7.130)

The total energy Eis a constant of the motion for this case.

The function H, called the Hamiltonian of the system, may be defined as in
Equation 7.128 (but see Section 7.10). It is important to note that the Hamiltonian
His equal to the total energy E only if the following conditions are met:

1. The equations of the transformation connecting the rectangular and gen-
eralized coordinates (Equation 7.116) must be independent of the time,
thus ensuring that the kinetic energy is a homogeneous quadratic function
of the g,

2. The potential energy must be velocity independent, thus allowing the elimi-
nation of the terms dU/d¢; from the equation for H (Equation 7.129).

The questions “Does H = E for the system?” and “Is energy conserved for the sys-
tem?,” then, pertain to two different aspects of the problem, and each question
must be examined separately. We may, for example, have cases in which the
Hamiltonian does not equal the total energy, but nevertheless, the energy is con-
served. Thus, consider a conservative system, and let the description be made in
terms of generalized coordinates in motion with respect to fixed, rectangular
axes. The transformation equations then contain the time, and the kinetic en-
ergy is not a homogeneous quadratic function of the generalized velocities. The
choice of a mathematically convenient set of generalized coordinates cannot
alter the physical fact that energy is conserved. But in the moving coordinate sys-
tem, the Hamiltonian is no longer equal to the total energy.

Conservation of Linear Momentum

Because space is homogeneous in an inertial reference frame, the Lagrangian of
a closed system is unaffected by a translation of the entire system in space. Consider
an infinitesimal translation of every radius vector r, such that r, —r, + 8r; this
amounts to translating the entire system by ér. For simplicity, let us examine a
system consisting of only a single particle (by including a summation over « we
could consider an n-particle system in an entirely equivalent manner), and let us
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write the Lagrangian in terms of rectangular coordinates L = L(x;, %;). The
change in L caused by the infinitesimal displacement ér = X;8x;e; is

oL dL
SL=2"6x+ 2 —8k=0 (7.181)
i axi 1 axi

We consider only a varied displacement, so that the 8x; are not explicit or implicit
functions of the time. Thus,

dx; d
0x,=6— =—06x,= 7.13
x; PPN 0 (7.132)
Therefore, 8L becomes
oL
&=E;m=o (7.133)
i ox;

Because each of the 8x; is an independent displacement, §L vanishes identically
only if each of the partial derivatives of L vanishes:

oL
— =9

7.134
o (7.134)
Then, according to Lagrange’s equations,
d oL
——=0 (7.135)
dtaxl
and
oL
— = constant (7.136)
ax;
or
AT—-U) aT 41 "
ox,  o% aa'ci<2 m;’”)
= m%; = p; = constant (7.137)

Thus, the homogeneity of space implies that the linear momentum p of a closed
system is constant in time.

This result may also be interpreted according to the following statement: If
the Lagrangian of a system (not necessarily closed) is invariant with respect to
translation in a certain direction, then the linear momentum of the system in
that direction is constant in time.

Conservation of Angular Momentum

We stated in Section 2.3 that one characteristic of an inertial reference frame is that
space is isofropic—that is, that the mechanical properties of a closed system are un-
affected by the orientation of the system. In particular, the Lagrangian of a closed
system does not change if the system is rotated through an infinitesimal angle.*

*We limit the rotation to an infinitesimal angle because we wish to be able to represent the rotation
by a vector; see Section 1.15.
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FIGURE 7-8 A system is rotated by an infinitesimal angle 86.

If a system is rotated about a certain axis by an infinitesimal angle 86 (see
Figure 7-8), the radius vector r to a given point changes to r + 8r, where (see
Equation 1.106)

or =60 X r (7.138)

The velocity vectors also change on rotation of the system, and because the
transformation equation for all vectors is the same, we have

8 = 60 X ¢ (7.139)

We consider only a single particle and express the Lagrangian in rectangular
coordinates. The change in L caused by the infinitesimal rotation is

3 3
oL=2L s+ S%si =0 (7.140)
i axi i axi

Equations 7.136 and 7.137 show that the rectangular components of the mo-
mentum vector are given by

_ oL

= % (7.141)
Lagrange’s equations may then be expressed by
G = g.f (7.142)
Hence, Equation 7.140 becomes
8L = E bid, + E p:8%= 0 (7.143)

or

por+p-oi=0 (7.144)
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Using Equations 7.138 and 7.139, this equation may be written as
P-(80 x1) +p-(80 Xi) =0 (7.145)

We may permute in cyclic order the factors of a triple scalar product without al-
tering the value. Thus,

80 (rXp)+ 60-(FXp) =0
or
80-[(rxp)+ ExpI=0 (7.146)

The terms in the brackets are just the factors that result from the differentiation
with respect to time of r X p:

d
60-—(rxp)=0 (7.147)
dt
Because 80 is arbitrary, we must have
d
Zt(r xp)=0 (7.148)
sO
r X p = constant (7.149)

Butr x p = L; the angular momentum of the particle in a closed system is there-
fore constant in time.

An important corollary of this theorem is the following. Consider a system in
an external force field. If the field possesses an axis of symmetry, then the
Lagrangian of the system is invariant with respect to rotations about the symme-
try axis. Hence, the angular momentum of the system about the axis of symmetry
is constant in time. This is exactly the case discussed in Example 7.4; the vertical
direction was an axis of symmetry of the system, and the angular momentum
about that axis was conserved.

The importance of the connection between symmetry properties and the invari
ance of physical quantities can hardly be overemphasized. The association goes be-
yond momentum conservation—indeed beyond classical systems—and finds wide
application in modern theories of field phenomena and elementary particles.

We have derived the conservation theorems for a closed system simply by
considering the properties of an inertial reference frame. The results, summa-
rized in Table 7-1, are generally credited to Emmy Noether. *

There are then seven constants (or integrals) of the motion for a closed sys-
tem: total energy, linear momentum (three components), and angular momen-
tum (three components). These and only these seven integrals have the prop-
erty that they are additive for the particles composing the system; they possess
this property whether or not there is an interaction among the particles.

*Emmy Noether (1882-1935), one of the first female German mathematical physicists, endured
poor treatment by German mathematicians early in her career. She is the originator of Noether’s
Theorem, which proves a relationship between symmetries and conservation principles.
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TABLE 7-1

Characteristic

of inertial frame Property of Lagrangian Conserved quantity
Time homogeneous Not explicit function of time Total energy

Space homogeneous Invariant to translation Linear momentum
Space isotropic Invariant to rotation Angular momentum

7.10 Canonical Equations of Motion—Hamiltonian
Dynamics

In the previous section, we found that if the potential energy of a system is veloc-
ity independent, then the linear momentum components in rectangular coordi-
nates are given by

_ oL
ok

j2 (7.150)

By analogy, we extend this result to the case in which the Lagrangian is expressed
in generalized coordinates and define the generalized momenta™ according to

_aL

b= 3 (7.151)

(Unfortunately, the customary notations for ordinary momentum and general-
ized momentum are the same, even though the two quantities may be quite dif-
ferent.) The Lagrange equations of motion are then expressed by

. _ oL

h= o (7.152)

Using the definition of the generalized momenta, Equation 7.128 for the
Hamiltonian may be written as

H=2pg- L (7.153)
J

The Lagrangian is considered to be a function of the generalized coordinates,
the generalized velocities, and possibly the time. The dependence of L on the
time may arise either if the constraints are time dependent or if the transforma-
tion equations connecting the rectangular and generalized coordinates explicitly
contain the time. (Recall that we do not consider time-dependent potentials.) We
may solve Equation 7.151 for the generalized velocities and express them as

4= 4(q r> ) (7.154)

*The terms generalized coordinates, generalized velocities, and generalized momenta were introduced in
1867 by Sir William Thomson (later, Lord Kelvin) and P. G. Tait in their famous treatise Natural
Philosophy.
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Thus, in Equation 7.153, we may make a change of variables from the (qj, qj, 1)
set to the (qj, pj, t) set* and express the Hamiltonian as

H(gq, pro 1) = ;M; = L(gy> Gr» ) (7.155)

This equation is written in a manner that stresses the fact that the Hamiltonian is
always considered as a function of the (q,, p,, t) set, whereas the Lagrangian is a function
of the (qy, Gy, t) set:

H= H(g . ), L= L(gs > ?) (7.156)
The total differential of His therefore
oH oH oH
dH = E(— dg, + — dpk) + —dt (7.157)
* \9g, e at
According to Equation 7.155, we can also write
oL oL oL
dH = 2\ g dpy + P dg — — dgy — —= dg | — = dt 158
- <4k o + pr Ay o2 dg, PP d%) o (7.158)

Using Equations 7.151 and 7.152 to substitute for 4L/dq, and 3L/3¢,, the second
and fourth terms in the parentheses in Equation 7.158 cancel, and there remains

. dL
dH = Z(gedps — prdg) = dt (7.159)

If we identify the coefficients’ of dq, dpy, and dt between Equations 7.157 and
7.159, we find

=2 7.16
%= ™ s ‘ ‘ (7.160)
. 8H Hamilton’s equations of motion
—p = —
G (7.161)
and
oL oH
- = .16
ot ot (7.162)

Furthermore, using Equations 7.160 and 7.161 in Equation 7.157, the term in
the parentheses vanishes, and it follows that
dH _

il (7.163)

*This change of variables is similar to that frequently encountered in thermodynamics and falls in
the general class of the so-called Legendre transformations (used first by Euler and perhaps even by
Leibniz). A general discussion of Legendre transformations with emphasis on their importance in
mechanics is given by Lanczos (1.a49, Chapter 6).

tThe assumptions implicitly contained in this procedure are examined in the following section.
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Equations 7.160 and 7.161 are Hamilton’s equations of motion.* Because of
their symmetric appearance, they are also known as the canonical equations of mo-
tion. The description of motion by these equations is termed Hamiltonian dynamics.

Equation 7.163 expresses the fact that if H does not explicitly contain the
time, then the Hamiltonian is a conserved quantity. We have seen previously
(Section 7.9) that the Hamiltonian equals the total energy T + U if the potential
energy is velocity independent and the transformation equations between x,, ; and ¢;
do not explicitly contain the time. Under these conditions, and if 8H/dt = 0, then
H = E = constant.

There are 25 canonical equations and they replace the s Lagrange equations.
(Recall that s = 3n — mis the number of degrees of freedom of the system.) But
the canonical equations are first-order differential equations, whereas the Lagrange
equations are of second order.t To use the canonical equations in solving a problem,
we must first construct the Hamiltonian as a function of the generalized coordi-
nates and momenta. It may be possible in some instances to do this directly. In
more complicated cases, it may be necessary first to set up the Lagrangian and
then to calculate the generalized momenta according to Equation 7.151. The
equations of motion are then given by the canonical equations.

Use the Hamiltonian method to find the equations of motion of a particle of
mass m constrained to move on the surface of a cylinder defined by

x? + y2 = R2 The particle is subject to a force directed toward the origin and
proportional to the distance of the particle from the origin: F = —kr.

Solution. The situation is illustrated in Figure 7-9. The potential corresponding
to the force F is

1 1
U= h? = okt + 32 + 22)
1
= MR+ 22) (7.164)

We can write the square of the velocity in cylindrical coordinates (see Equation
1.101) as

v? = R? + R%? + 32 (7.165)

But in this case, Ris a constant, so the kinetic energy is

T= %m(RQéQ + £2) (7.166)

*This set of equations was first obtained by Lagrange in 1809, and Poisson also derived similar equa-
tions in the same year. But neither recognized the equations as a basic set of equations of motion;
this point was first realized by Cauchy in 1831. Hamilton first derived the equations in 1834 from a
fundamental variational principle and made them the basis for a far-reaching theory of dynamics.
Thus the designation “Hamilton’s” equations is fully deserved.

+This is not a special result; any set of s second-order equations can always be replaced by a set of 2s
first-order equations.
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FIGURE 79 Example 7.11. A particle is constrained to move on the surface of a cylinder.

We may now write the Lagrangian as

L=T-U= %mR?é? + 32) — %k(RQ + 22) (7.167)
The generalized coordinates are 6 and z, and the generalized momenta are
ts = % = mR% (7.168)
oL
P, = % = mi (7.169)

Because the system is conservative and because the equations of transformation
between rectangular and cylindrical coordinates do not explicitly involve the
time, the Hamiltonian H is just the total energy expressed in terms of the vari-
ables 6, p,, z, and p,. But § does not occur explicitly, so

H(z, pp p) =T+ U

ps PP 1
= 2mi{2 otk (7.170)

where the constant term  kR? has been suppressed. The equations of motion
are therefore found from the canonical equations:

. oH
Pg = _5‘0‘ = (7.171)
b= 2k (7.172)



7.10 CANONICAL EQUATIONS OF MOTION—HAMILTONIAN DYNAMICS 269

y _ OH _ _Po

6= " (7.173)

g=H_ P (7.174)
ap, m

Equations 7.173 and 1.174 just duplicate Equations 7.168 and 7.169. Equations
7.168 and 7.171 give

ps = mR2) = constant (7.175)

The angular momentum about the z-axis is thus a constant of the motion. This
result is ensured, because the z-axis is the symmetry axis of the problem.
Combining Equations 7.169 and 7.172, we find

i+ wlz=0 (7.176)

where

k/m (7.177)

w}

The motion in the z direction is therefore simple harmonic.

The equations of motion for the preceding problem can also be found by
the Lagrangian method using the function L defined by Equation 7.167. In this
case, the Lagrange equations of motion are easier to obtain than are the canoni-
cal equations. In fact, it is quite often true that the Lagrangian method leads
more readily to the equations of motion that does the Hamiltonian method. But
because we have greater freedom in choosing the variable in the Hamiltonian
formulation of a problem (the ¢, and the p, are independent, whereas the ¢, and
the §, are not), we often gain a certain practical advantage by using the Hamiltonian
method. For example, in celestial mechanics—particularly in the event that the
motions are subject to perturbations caused by the influence of other bodies—it
proves convenient to formulate the problem in terms of Hamiltonian dynamics.
Generally speaking, however, the great power of the Hamiltonian approach to
dynamics does not manifest itself in simplifying the solutions to mechanics prob-
lems; rather, it provides a base we can extend to other fields.

The generalized coordinate ¢, and the generalized momentum p, are canon-
ically conjugate quantities. According to Equations 7.160 and 7.161, if ¢, does
not appear in the Hamiltonian, then f, = 0, and the conjugate momentum g is
a constant of the motion. Coordinates not appearing explicitly in the expres-
sions for Tand U are said to be cyclic. A coordinate cyclic in H is also cyclic in L.
But, even if g, does not appear in L, the generalized velocity g, related to this co-
ordinate is in general still present. Thus

L= L(ql’ ey qk-—l’ qk+1, CRRS ,‘Iu q.l ’qu t)

and we accomplish no reduction in the number of degrees of freedom of the sys-
temn, even though one coordinate is cyclic; there are still s second-order equations
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to be solved. However, in the canonical formulation, if g, is cyclic, p, is constant,
P = o, and

H= H(qh IRREY qk-—l’ qk+1; 7qx’ Pl; ,Pk-—lr ay, Pk+l’ 7Px7 t)

Thus, there are 25 — 2 firstorder equations to be solved, and the problem has, in
fact, been reduced in complexity; there are in effect only s — 1 degrees of freedom
remaining. The coordinate ¢, is completely separated, and it is ignorableas far as the
remainder of the problem is concerned. We calculate the constant «;, by applying
the initial conditions, and the equation of motion for the cyclic coordinate is

. _oH

%= PV Wy, (7.178)

which can be immediately integrated to yield

(0 = kadt (7.179)

The solution for a cyclic coordinate is therefore trivial to reduce to quadrature.
Consequently, the canonical formulation of Hamilton is particularly well suited
for dealing with problems in which one or more of the coordinates are cyclic.
The simplest possible solution to a problem would result if the problem could
be formulated in such a way that all the coordinates were cyclic. Then, each co-
ordinate would be described in a trivial manner as in Equation 7.179. It is, in
fact, possible to find transformations that render all the coordinates cyclic,* and
these procedures lead naturally to a formulation of dynamics particularly useful
in constructing modern theories of matter. The general discussion of these top-
ics, however, is beyond the scope of this book.t

EXAMPLE 7:12

Use the Hamiltonian method to find the equations of motion for a spherical
pendulum of mass m and length & (see Figure 7-10).

Solution. The generalized coordinates are 6 and ¢. The kinetic energy is
1 o1 . .
T= 3 mb26? + 3 mb? sin? g¢p?

The only force acting on the pendulum (other than at the point of support) is
gravity, and we define the potential zero to be at the pendulum’s point of
attachment.

U= —mgbcos 0

*Transformations of this type were derived by Carl Gustav Jacob Jacobi (1804-1851). Jacobi’s investi-
gations greatly extended the usefulness of Hamilton’s methods, and these developments are known
as Hamilton-Jacobi theory.

1See, for example, Goldstein (Go80, Chapter 10).
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e

[}
1
FIGURE 7-10 Example 7.12. A spherical pendulum with generalized coordinates
6 and ¢.

The generalized momenta are then

L .
Py = ‘;—é = mb%0 (7.180)
L .
by = % = mb? sin? O (7.181)
3

We can solve Equations 7.180 and 7.181 for 6 and ¢ in terms of pe and py.
We determine the Hamiltonian from Equation 7.155 or from H =
T + U (because the conditions for Equation 7.130 apply).

H=T+U
2 2 29,9
= lmb‘Z i D mgb cos 0
2 (mb®? 2 (mb?sin? 9)2
R
T omb? " omp?sinzg | M&P oSO
The equations of motion are
g=H_ P
apo mb2
b= __ Ps
dp, mb?sin? 9
. dH  p5 cos 6 )
BT T T wismrg  m8Sn o
s oH
= —_—— = 0
Py o

Because ¢ is cyclic, the momentum p,, about the symmetry axis is constant.
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7.11 Some Comments Regarding Dynamical Variables
and Variational Calculations in Physics

We originally obtained Lagrange’s equations of motion by stating Hamilton’s
Principle as a variational integral and then using the results of the preceding
chapter on the calculus of variations. Because the method and the application
were thereby separated, it is perhaps worthwhile to restate the argument in an
orderly but abbreviated way.

Hamilton’s Principle is expressed by

[
BJ L(g;, g t) dt=0 (7.182)
4

Applying the variational procedure specified in Section 6.7, we have

Jt2<aL8 + aLB') dt=0
5. 0¢; T - 0g; =
& \9¢; J aq; J

1

Next, we assert that the 8¢; and the 8¢; are not independent, so the variation op-
eration and the time differentiation can be interchanged:

84 = a(ﬂ’) = 5q; (7.183)

The varied integral becomes (after the integration by parts in which the §g; are
set equal to zero at the endpoints)

& (oL d oL
J (— - —f) 8gidi=0 (7.184)

The requirement that the 8¢; be independent variations leads immediately to
Lagrange’s equations.

In Hamilton’s Principle, expressed by the variational integral in Equation
7.182, the Lagrangian is a function of the generalized coordinates and the gen-
eralized velocities. But only the g; are considered as independent variables; the
generalized velocities are simply the time derivatives of the ;. When the integral
is reduced to the form given by Equation 7.184, we state that the §g; are inde-
pendent variations; thus the integrand must vanish identically, and Lagrange’s
equations result. We may therefore pose this question: Because the dynamical
motion of the system is completely determined by the initial conditions, what is
the meaning of the variations §¢;? Perhaps a sufficient answer is that the vari-
ables are to be considered geometrically feasible within the limits of the given
constraints—although they are not dynamically possible; that is, when using a
variational procedure to obtain Lagrange’s equations, it is convenient to ignore
temporarily the fact that we are dealing with a physical system whose motion is
completely determined and subject to no variation and to consider instead only
a certain abstract mathematical problem. Indeed, this is the spirit in which any
variational calculation relating to a physical process must be carried out. In
adopting such a viewpoint, we must not be overly concerned with the fact that
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the variational procedure may be contrary to certain known physical properties
of the system. (For example, energy is generally not conserved in passing from
the true path to the varied path.) A variational calculation simply tests various
possible solutions to a problem and prescribes a method for selecting the correct
solution.

The canonical equations of motion can also be obtained directly from a vari-
ational calculation based on the so-called modified Hamilton’s Principle. The
Lagrangian function can be expressed as (see Equation 7.153):

L= ; b — Higy py 9 (7.185)

and the statement of Hamilton’s Principle contained in Equation 7.182 can be
modified to read

8J2<§ i — H) dt=0 (7.186)

Carrying out the variation in the standard manner, we obtain

:

ty H
2<Aa"+'-a-—‘1—aA ——8-)dt=0 7.187
L]. 104G+ 408 = 5, 0% 5y OF) (7.187)

In the Hamiltonian formulation, the ¢; and the p; are considered to be inde-
pendent. The §; are again not independent of the g¢;, so Equation 7.183 can be
used to express the first term in Equation 7.187 as

23 ty d
2 p,8G dt = J 2 p 8q; d
L 7 %% TV
Integrating by parts, the integrated term vanishes, and we have
ty ty
L %‘,pjaqjdm —L %‘,pjaqj dt (7.188)

Equation 7.187 then becomes

. . _oHy o (,  OH -
L §{<qj apj) £ <pj + aqj) aq]} dt=0 (7.189)

If 6¢; and 8p; represent independent vaniations, the terms in the parentheses must
separately vanish and Hamilton’s canonical equations result.

In the preceding section, we obtained the canonical equations by writing
two different expressions for the total differential of the Hamiltonian
(Equations 7.157 and 7.159) and then equating the coefficients of dg; and dp;.
Such a procedure is valid if the ¢; and the p; are independent variables.
Therefore, both in the previous derivation and in the preceding variational cal-
culation, we obtained the canonical equations by exploring the independent na-
ture of the generalized coordinates and the generalized momenta.

The coordinates and momenta are not actually “independent” in the ulti-
mate sense of the word. For if the time dependence of each of the coordinates is
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known, ¢; = ¢;(t), the problem is completely solved. The generalized velocities
can be calculated from

(1) = Zd} %
and the generalized momenta are
b= LG i D
9g;

The essential point is that, whereas the ¢; and the §; are related by a simple time
derivative independent of the manner in which the system behaves, the connection be-
tween the g; and the p; are the equations of motion themselves. Finding the relations
that connect the ¢; and the p; (and thereby eliminating the assumed independ-
ence of these quantities) is therefore tantamount to solving the problem.

7.12 Phase Space and Liouville’s Theorem (Optional)

We pointed out previously that the generalized coordinates g; can be used to de-
fine an s-dimensional configuration space with every point representing a certain
state of the system. Similarly, the generalized momenta p; define an s-dimensional
momentum space with every point representing a certain condition of motion of
the system. A given point in configuration space specifies only the position of
each of the particles in the system; nothing can be inferred regarding the mo-
tion of the particles. The reverse is true for momentum space. In Chapter 3, we
found it profitable to represent geometrically the dynamics of simple oscillatory
systems by phase diagrams. If we use this concept with more complicated dynam-
ical systems, then a 2s-dimensional space consisting of the g; and the p; allows us
to represent both the positions and the momenta of all particles. This general-
ization is called Hamiltonian phase space or, simply, phase space.*

EXAMPLE 7.13

Construct the phase diagram for the particle in Example 7.11.

Solution. The particle has two degrees of freedom (6, z), so the phase space for
this example is actually four dimensional: 6, p,, z, p,. But p, is constant and
therefore may be suppressed. In the z direction, the motion is simple harmonic,
and so the projection onto the z-p, plane of the phase path for any total energy
His just an ellipse. Because 6 = constant, the phase path must represent motion
increasing uniformly with 8. Thus, the phase path on any surface H = constant
is a uniform elliptic spiral (Figure 7-11).

*We previously plotted in the phase diagrams the position versus a quantity proportional to the ve-
locity. In Hamiltonian phase space, this latter quantity becomes the generalized momentum.
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p:

, Surface H = const.
/ /
7/

FIGURE 7-11 Example 7.13. The phase path for the particle in Example 7.11.

If, at a given time, the position and momenta of all the particles in a sys-
tem are known, then with these quantities as initial conditions, the subsequent
motion of the system is completely determined; that is, starting from a point
¢,(0), p(0) in phase space, the representative point describing the system
moves along a unique phase path. In principle, this procedure can always be
followed and a solution obtained. But if the number of degrees of freedom of
the system is large, the set of equations of motion may be too complicated to
solve in a reasonable time. Moreover, for complex systems, such as a quantity
of gas, it is a practical impossibility to determine the initial conditions for each
constituent molecule. Because we cannot identify any particular point in phase
space as representing the actual conditions at any given time, we must devise
some alternative approach to study the dynamics of such systems. We therefore
arrive at the point of departure of statistical mechanics. The Hamiltonian for-
mulation of dynamics is ideal for the statistical study of complex systems. We
demonstrate this in part by now proving a theorem that is fundamental for
such investigations.

For a large collection of particles—say, gas molecules—we are unable to
identify the particular point in phase space correctly representing the system.
But we may fill the phase space with a collection of points, each representing a
possible condition of the system; that is, we imagine a large number of systems
(each consistent with the known constraints), any of which could conceivably
be the actual system. Because we are unable to discuss the details of the parti-
cles’ motion in the actual system, we substitute a discussion of an ensemble of
equivalent systems. Each representative point in phase space corresponds to a
single system of the ensemble, and the motion of a particular point represents
the independent motion of that system. Thus, no two of the phase paths may
ever intersect.

We may consider the representative points to be sufficiently numerous that
we can define a density in phase space p. The volume elements of the phase space
defining the density must be sufficiently large to contain a large number of rep-
resentative points, but they must also be sufficiently small so that the density
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FIGURE 7-12 An element of area dA = dg,dp, in the g—p, plane in phase space.

varies continuously. The number N of systems whose representative points lie
within a volume dv of phase space is

N=pdv (7.190)
where
dv = dq dg, *++ dq, dp, dpy -+ dp, (7.191)

As before, sis the number of degrees of freedom of each system in the ensemble.

Consider an element of area in the g—p, plane in phase space (Figure 7-12),
The number of representative points moving across the left-hand edge into the
area per unit time is

l ap, = pg, g,
P P = POy
and the number moving across the lower edge into the area per unit time is
A .
Py, 0 = PDrdg,
so that the total number of representative points moving into the area dg, dp, per
unit time is
p(gudpy + prdgy) (7.192)

By a Taylor series expansion, the number of representative points moving out of
the area per unit time is (approximately)

i) . d .
|:qu + —(pgw d‘]ki|de + |:PPk + —(ppw dei|d‘Ik (7.193)
aqk apk

Thus, the total increase in density in dg, dp, per unit time is the difference be-
tween Equations 7.192 and 7.193:

I = ey + 2o
Y dg dpy, = [aqk(qu) + apk(ppk)}]lqk dpy (7.194)
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After dividing by dg, dp, and summing this expression over all possible values of
k, we find

S

9, 9, g, 9 o
L Y AP L L (7.195)
a  k=1\dq, dq, by ap,

From Hamilton’s equations (Equations 7.160 and 7.161), we have (if the second

partial derivatives of H are continuous)
0g, 9t
% By (7.196)
G x

so Equation 7.195 becomes

B 3 ap d
—‘3+2<—’1@‘+—’3ﬁ =0 (7.197)
ot T \og, dt " op, di

But this is just the total time derivative of p, so we conclude that

dp _
Z-0 (7.198)

This important result, known as Liouville’s theorem,* states that the density of
representative points in phase space corresponding to the motion of a system of
particles remains constant during the motion. It must be emphasized that we
have been able to establish the invariance of the density p only because the prob-
lem was formulated in phase space; an equivalent theorem for configuration
space does not exist. Thus, we must use Hamiltonian dynamics (rather than
Lagrangian dynamics) to discuss ensembles in statistical mechanics.

Liouville’s theorem is important not only for aggregates of microscopic par-
ticles, as in the statistical mechanics of gaseous systems and the focusing proper-
ties of charged-particle accelerators, but also in certain macroscopic systems. For
example, in stellar dynamics, the problem is inverted and by studying the distri-
bution function p of stars in the galaxy, the potential U of the galactic gravita-
tional field may be inferred.

7.13 Virial Theorem (Optional)

Another important result of a statistical nature is worthy of mention. Consider a
collection of particles whose position vectors r, and momenta p, are both
bounded (i.e., remain finite for all values of the time). Define a quantity

S=2p. 1, (7.199)

*Published in 1838 by Joseph Liouville (1809-1882).
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The time derivative of Sis

as_

o 2 (Pa o + P Ta) (7.200)

If we calculate the average value of dS/ dt over a time interval 7, we find

<dS> 1 J’det: S(7) ; 5(0)

2V = = 201
dt o dt (7.201)

T
If the system’s motion is periodic—and if 7 is some integer multiple of the
period—then S(#) = $(0), and (S) vanishes. But even if the system does not ex-
hibit any periodicity, then—because § is by hypothesis a bounded function—we
can make ($) as small as desired by allowing the time 7 to become sufficiently
long. Therefore, the time average of the right-hand side of Equation 7.201 can al-
ways be made to vanish (or at least to approach zero). Thus, in this limit, we have

(Zpain)=—(Zpor) (7.202)

On the lefthand side of this equation, p, - I, is twice the kinetic energy. On the
right-hand side, p, is just the force F, on the ath particle. Hence,

<2§ Ta> = - <§a‘, F, -i‘a> (7.203)

The sum over T, is the total kinetic energy T of the system, so we have the gen-
eral result

(T) = _%@: Fa-ra> (7.204)

The right-hand side of this equation was called by Clausius* the virial of the sys-
tem, and the virial theorem states that the average kinetic energy of a system of particles
is equal to its virial.

EXAMPLE 7.14

Consider an ideal gas containing N atoms in a container of volume V, pressure
P, and absolute temperature 7; (not to be confused with the kinetic energy 7).
Use the virial theorem to derive the equation of state for a perfect gas.

Solution. According to the equipartition theorem, the average kinetic energy
of each atom in the ideal gas is 3/2 kTy, where kis the Boltzmann constant. The
total average kinetic energy becomes

(Ty = %Nle (7.205)

* Rudolph Julius Emmanuel Clausius (1822-1888), a German physicist and one of the founders of
thermodynamics.
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The right-hand side of the virial theorem (Equation 7.204) contains the
forces F,,. For an ideal perfect gas, no force of interaction occurs between
atoms. The only force is represented by the force of constraint of the walls.
The atoms bounce elastically off the walls, which are exerting a pressure on the
atoms.

Because the pressure is force per unit area, we find the instantaneous dif-
ferential force over a differential area to be

dF, = —nPdA (7.206)

where n is a unit vector normal to the surface dA and pointing outward. The
right-hand side of the virial theorem becomes

1 P
——2-<§Fa-ra>——2-Jn-rdA (7.207)
We use the divergence theorem to relate the surface integral to a volume integral.
Jn-rdA= JV-rdV= SJdV= 3v (7.208)
The virial theorem result is
3 3PV
=NkT = ——
2 2 .
NET = PV (7.209)

which is the ideal gas law.

If the forces F, can be derived from potentials U,, Equation 7.204 may be
rewritten as

(T = %<2 r,- VUa> (7.210)

Of particular interest is the case of two particles that interact according to a cen-
tral power-law force: F o< r". Then, the potential is of the form

U= k1 (7.211)
Therefore
dUu
r-VU=—d—= k(n+ D"l = (n+ 1)U (7.212)
/2
and the virial theorem becomes
+1
T =" (7.213)

2
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If the particles have a gravitational interaction, then » = —2, and
1
(T) =~ 5@, n=-2

This relation is useful in calculating, for example, the energetics in planetary
motion.

PROBLEMS

7-1. A disk rolls without slipping across a horizontal plane. The plane of the disk re-
mains vertical, but it is free to rotate about a vertical axis. What generalized coordi-
nates may be used to describe the motion? Write a differential equation describing
the rolling constraint. Is this equation integrable? Justify your answer by a physical
argument. Is the constraint holonomic?

7-2. Work out Example 7.6 showing all the steps, in particular those leading to
Equations 7.36 and 7.41. Explain why the sign of the acceleration a cannot affect
the frequency w. Give an argument why the signs of a? and g? in the solution of w?
in Equation 7.42 are the same.

7-3. A sphere of radius p is constrained to roll without slipping on the lower half of the
inner surface of a hollow cylinder of inside radius R. Determine the Lagrangian
function, the equation of constraint, and Lagrange’s equations of motion. Find the
frequency of small oscillations.

74. A particle moves in a plane under the influence of a force f= —Ar*~! directed to-
ward the origin; A and a (> 0) are constants. Choose appropriate generalized co-
ordinates, and let the potential energy be zero at the origin. Find the Lagrangian
equations of motion. Is the angular momentum about the origin conserved? Is the
total energy conserved?

7-5. Consider a vertical plane in a constant gravitational field. Let the origin of a coor-
dinate system be located at some point in this plane. A particle of mass m moves in
the vertical plane under the influence of gravity and under the influence of an ad-
ditional force f= —Ar®~! directed toward the origin (r is the distance from the
origin; A and « [# 0 or 1] are constants). Choose appropriate generalized coordi-
nates, and find the Lagrangian equations of motion. Is the angular momentum
about the origin conserved? Explain.

7-6. A hoop of mass m and radius R rolls without slipping down an inclined plane of
mass M, which makes an angle « with the horizontal. Find the Lagrange equations
and the integrals of the motion if the plane can slide without friction along a hori-
zontal surface.

7-7. A double pendulum consists of two simple pendula, with one pendulum suspended
from the bob of the other. If the two pendula have equal lengths and have bobs of
equal mass and if both pendula are confined to move in the same plane, find
Lagrange’s equations of motion for the system. Do not assume small angles.
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7-8.

7-9.

7-10.

7-11.

7-12.

7-13.

7-14.

7-15.

7-16.

7-17.

Consider a region of space divided by a plane. The potential energy of a particle in
region 1 is Uj and in region 2 it is Uj. If a particle of mass m and with speed v; in re-
gion 1 passes from region 1 to region 2 such that its path in region 1 makes an
angle 6, with the normal to the plane of separation and an angle 6, with the normal
when in region 2, show that

sin 6, U — Uy\\2
— =1+ —
sin O, T

where T} = %mv% What is the optical analog of this problem?

A disk of mass M and radius R rolls without slipping down a plane inclined from
the horizontal by an angle a. The disk has a short weightless axle of negligible ra-
dius. From this axis is suspended a simple pendulum of length /< Rand whose bob
has a mass m. Consider that the motion of the pendulum takes place in the plane of
the disk, and find Lagrange’s equations for the system.

Two blocks, each of mass M, are connected by an extensionless, uniform string of
length /. One block is placed on a smooth horizontal surface, and the other block
hangs over the side, the string passing over a frictionless pulley. Describe the mo-
tion of the system (a) when the mass of the string is negligible and (b) when the
string has a mass m.

A particle of mass m is constrained to move on a circle of radius R The circle rotates
in space about one point on the circle, which is fixed. The rotation takes place in
the plane of the circle and with constant angular speed . In the absence of a gravi-
tational force, show that the particle’s motion about one end of a diameter passing
through the pivot point and the center of the circle is the same as that of a plane
pendulum in a uniform gravitational field. Explain why this is a reasonable result.

A particle of mass m rests on a smooth plane. The plane is raised to an inclination
angle 6 at a constant rate « (6 = 0 at £ = 0), causing the particle to move down the
plane. Determine the motion of the particle.

A simple pendulum of length 5 and bob with mass m is attached to a massless sup-
port moving horizontally with constant acceleration a. Determine (a) the equations
of motion and (b) the period for small oscillations.

A simple pendulum of length # and bob with mass m is attached to a massless sup-
port moving vertically upward with constant acceleration a. Determine (a) the
equations of motion and (b) the period for small oscillations.

A pendulum consists of a mass m suspended by a massless spring with unextended
length & and spring constant k. Find Lagrange’s equations of motion.

The point of support of a simple pendulum of mass m and length & is driven hori-
zontally by x = a sin wt. Find the pendulum’s equation of motion.

A particle of mass m can slide freely along a wire AB whose perpendicular distance
to the origin Ois A (see Figure 7-A, page 282). The line OC rotates about the origin
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FIGURE 7-A Problem 7-17.

at a constant angular velocity § = w. The position of the particle can be described
in terms of the angle 6 and the distance ¢ to the point C. If the particle is subject to
a gravitational force, and if the initial conditions are

6(0) =0, ¢(0) =0, 40) =0
show that the time dependence of the coordinate gis

g
q(t) = ﬁ (coshwt — cos wi)

Sketch this result. Compute the Hamiltonian for the system, and compare with the
total energy. Is the total energy conserved? :

7-18. A pendulum is constructed by attaching a mass m to an extensionless string of

length L The upper end of the string is connected to the uppermost point on a ver-
tical disk of radius R (R < I/m) as in Figure 7-B. Obtain the pendulum’s equation
of motion, and find the frequency of small oscillations. Find the line about which
the angular motion extends equally in either direction (i.e., 6; = 8,).

FIGURE 7-B Problem 7-18.
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7-19.

7-20.

7-21.

7-22.

7-23.

7-24.

7-25.

7-26.

7-27.

Two masses my and my (m; # my) are connected by a rigid rod of length d and of
negligible mass. An extensionless string of length / is attached to m and con-
nected to a fixed point of support P. Similarly, a string of length &, (4 # &) con-
nects my and P. Obtain the equation describing the motion in the plane of m;, m,,
and P, and find the frequency of small oscillations around the equilibrium position.

A circular hoop is suspended in a horizontal plane by three strings, each of length
[, which are attached symmetrically to the hoop and are connected to fixed points
lying in a plane above the hoop. At equilibrium, each string is vertical. Show that
the frequency of small rotational oscillations about the vertical through the center
of the hoop is the same as that for a simple pendulum of length .

A particle is constrained to move (without friction) on a circular wire rotating with
constant angular speed @ about a vertical diameter. Find the equilibrium position
of the particle, and calculate the frequency of small oscillations around this posi-
tion. Find and interpret physically a critical angular velocity w = w, that divides the
particle’s motion into two distinct types. Construct phase diagrams for the two cases
w<wandw > w,.

A particle of mass m moves in one dimension under the influence of a force

k
= — W
F(x, t) 2 wn
where k and T are positive constants. Compute the Lagrangian and Hamiltonian
functions. Compare the Hamiltonian and the total energy, and discuss the conser-
vation of energy for the system.

Consider a particle of mass m moving freely in a conservative force field whose po-
tential function is U. Find the Hamiltonian function, and show that the canonical
equations of motion reduce to Newton’s equations. (Use rectangular coordinates.)

Consider a simple plane pendulum consisting of a mass m attached to a string of
length [. After the pendulum is set into motion, the length of the string is short-
ened at a constant rate

dl

= —a = constant
dt

The suspension point remains fixed. Compute the Lagrangian and Hamiltonian
functions. Compare the Hamiltonian and the total energy, and discuss the conser-
vation of energy for the system.

A particle of mass m moves under the influence of gravity along the helix z = k6, r=
constant, where k is a constant and zis vertical. Obtain the Hamiltonian equations
of motion.

Determine the Hamiltonian and Hamilton’s equations of motion for (a) a simple
pendulum and (b) a simple Atwood machine (single pulley).

A massless spring of length 4 and spring constant k connects two particles of masses
my and my. The system rests on a smooth table and may oscillate and rotate.
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7-28,

7-29.

7-30.

7-31.

7-32.
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(a) Determine Lagrange’s equations of motion.
(b) What are the generalized momenta associated with any cyclic coordinates?
(c) Determine Hamilton’s equations of motion.

A particle of mass m is attracted to a force center with the force of magnitude k/r2.
Use plane polar coordinates and find Hamilton’s equations of motion.

Consider the pendulum described in Problem 7-15. The pendulum’s point of sup-
port rises vertically with constant acceleration a.

(a) Use the Lagrangian method to find the equations of motion.

(b) Determine the Hamiltonian and Hamilton’s equations of motion.

(c) What is the period of small oscillations?

Consider any two continuous functions of the generalized coordinates and mo-
menta g(q;, p) and k(g ). The Poisson brackets are defined by

0g oh  0g ok
lgh =2 (== — ==
k\Ogi 0py  Opy 0,

Verify the following properties of the Poisson brackets:

dg og . j
(a)E:=[g,H] + o ®) §; = [g;, H], p; = [p), H]

© [p.p] =0,[q.q] =0 ) (g, p1 = 8y

where H is the Hamiltonian. If the Poisson bracket of two quantities vanishes, the
quantities are said to commute. If the Poisson bracket of two quantities equals unity,
the quantities are said to be canonically conjugate. (e) Show that any quantity that
does not depend explicitly on the time and that commutes with the Hamiltonian is
a constant of the motion of the system. Poisson-bracket formalism is of consider-
able importance in quantum mechanics.

A spherical pendulum consists of a bob of mass m attached to a weightless, exten-
sionless rod of length I The end of the rod opposite the bob pivots freely (in all di-
rections) about some fixed point. Set up the Hamiltonian function in spherical co-
ordinates. (If p, = 0, the result is the same as that for the plane pendulum.)
Combine the term that depends on p, with the ordinary potential energy term to
define as ¢ffective potential V(0, p,). Sketch V as a function of 8 for several values of
ps, including p, = 0. Discuss the features of the motion, pointing out the differ-
ences between p, = 0 and p, # 0. Discuss the limiting case of the conical pendu-
lum (6 = constant) with reference to the V-6 diagram.

A particle moves in a spherically symmetric force field with potential energy given
by U(r) = —k/r. Calculate the Hamiltonian function in spherical coordinates, and
obtain the canonical equations of motion. Sketch the path that a representative
point for the system would follow on a surface H = constant in phase space. Begin
by showing that the motion must lie in a plane so that the phase space is four di-
mensional (7, 8, p,, py, but only the first three are nontrivial). Calculate the projec-
tion of the phase path on the r-p, plane, then take into account the variation with 6.
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7-33.

7-34.

7-35.

7-36.

7-37.

7-38.

7-39.

Determine the Hamiltonian and Hamilton’s equations of motion for the double
Atwood machine of Example 7.8.

A particle of mass m slides down a smooth circular wedge of mass M as shown in
Figure 7-C. The wedge rests on a smooth horizontal table. Find (a) the equation of
motion of m and M and (b) the reaction of the wedge on m.

FIGURE 7-C  Problem 7-34.

Four particles are directed upward in a uniform gravitational field with the follow-
ing initial conditions:

1) z(0) = zy £0) = po
(2) 2(0) =z + Az;  p(0) = o
3) z(0) = z; p:(0) = po + Apy

@) 20) =20+ Az p(0) = po + Apy

Show by direct calculation that the representative points corresponding to these
particles always define an area in phase space equal to Az Apy. Sketch the phase
paths, and show for several times ¢> 0 the shape of the region whose area remains
constant.

Discuss the implications of Liouville’s theorem on the focusing of beams of
charged particles by considering the following simple case. An electron beam of
circular cross section (radius R,) is directed along the z-axis. The density of elec-
trons across the beam is constant, but the momentum components transverse to
the beam (p, and p)) are distributed uniformly over a circle of radius p, in momen-
tum space. If some focusing system reduces the beam radius from R, to Ry, find the
resulting distribution of the transverse momentum components, What is the physi-
cal meaning of this result? (Consider the angular divergence of the beam.)

Use the method of Lagrange undetermined multipliers to find the tensions in both
strings of the double Atwood machine of Example 7.8.

The potential for an anharmonic oscillator is U = kx%/2 + bx%/4 where k and & are
constants. Find Hamilton’s equations of motion.

An extremely limber rope of uniform mass density, mass m and total length 5 lies on
a table with a length z hanging over the edge of the table. Only gravity acts on the
rope. Find Lagrange’s equation of motion.
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7-40. A double pendulum is attached to a cart of mass 2m that moves without friction on
a horizontal surface. See Figure 7-D. Each pendulum has length 4 and mass bob m.
Find the equations of motion.

5 S - Uy

FIGURE 7-D Problem 7-40.

741. A pendulum of length # and mass bob m is oscillating at small angles when the
length of the pendulum string is shortened at a velocity of & (db/dt = —a). Find
« Lagrange’s equations of motion.



CHAPTER

Central-Force Motion

8.1 Introduction

The motion of a system consisting of two bodies affected by a force directed
along the line connecting the centers of the two bodies (i.e., a central force) is an
extremely important physical problem—one we can solve completely. The im-
portance of such a problem lies in large measure in two quite different realms of
physics: the motion of celestial bodies—planets, moons, comets, double stars,
and the like—and certain two-body nuclear interactions, such as the scattering
of a particles by nuclei. In the prequantum-mechanics days, physicists also de-
scribed the hydrogen atom in terms of a classical two-body central force.
Although such a description is still useful in a qualitative sense, the quantum-
theoretical approach must be used for a detailed description. In addition to
some general considerations regarding motion in central-force fields, we discuss
in this and the following chapter several of the problems of two bodies encoun-
tered in celestial mechanics and in nuclear and particle physics.

8.2 Reduced Mass

Describing a system consisting of two particles requires the specification of six
quantities; for example, the three components of each of the two vectors r; and
r, for the particles.* Alternatively, we may choose the three components of the
center-of-mass vector R and the three components of r = r; — r, (see Figure 81a).
Here, we restrict our attention to systems without frictional losses and for which

*The orientation of the particles is assumed to be unimportant; that is, they are spherically symmet-
ric (or are point particles).

287
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my

(a) (b)
FIGURE 81 Two methods to describe the position of two particles. (a) From an
arbitrary coordinate system origin, and (b) from the center of mass.

The position vectors are r; and ry, the center-of-mass vector is R, and
the relative vectorr = r; — r,.

the potential energy is a function only of r = |r, — r,|. The Lagrangian for such
a system may be written as

1 1
L:§ml|i‘1|2+§m2|i‘2|2“ U(r) 8.1)

Because translational motion of the system as a whole is uninteresting from
the standpoint of the particle orbits with respect to one another, we may choose
the origin for the coordinate system to be the particles’ center of mass—that is,
R = 0 (see Figure 8-1b). Then (see Section 9.2)

mry + Moky = 0 (8.2)

This equation, combined with r = r; — ry, yields

My
rn = —+—
my mo
8.3
iy 8.3)
rp = ———"—"7T
my + mo

Substituting Equation 8.3 into the expression for the Lagrangian gives

1
L= §I-L|f|2 = U (8.4)
where u is the reduced mass,
mymg
H=— (8.5)
my + mg

We have therefore formally reduced the problem of the motion of two bod-
ies to an equivalent one-body problem in which we must determine only the motion
of a “particle” of mass u in the central field described by the potential function
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U(r). Once we obtain the solution for r(t) by applying the Lagrange equations to
Equation 8.4, we can find the individual motions of the particles, r, (f) and ry(),
by using Equation 8.3. This latter step is not necessary if only the orbits relative
to one another are required.

8.3 Conservation Theorems—
First Integrals of the Motion

The system we wish to discuss consists of a particle of mass s moving in a central-
force field described by the potential function U(r). Because the potential en-
ergy depends only on the distance of the particle from the force center and not
on the orientation, the system possesses spherical symmetry; that is, the system’s
rotation about any fixed axis through the center of force cannot affect the equa-
tions of motion. We have already shown (see Section 7.9) that under such condi-
tions the angular momentum of the system is conserved:

L =r X p = constant : (8.6)

From this relation, it should be clear that both the radius vector and the linear
momentum vector of the particle lie always in a plane normal to the angular mo-
mentum vector L, which is fixed in space (see Figure 8-2). Therefore, we have
only a two-dimensional problem, and the Lagrangian may then be convenieritly
expressed in plane polar coordinates:

L= %M(F + 7262) — U(r) 8.7)

Because the Lagrangian is cyclic in 6, the angular momentum conjugate to
the coordinate 6 is conserved:

. oL d oL
=—=0=— — 8.8
Y. dt 39 8.8
L
r P

FIGURE 82 The motion of a particle of mass s moving in a central-force field is
described by the position vector r, linear momentum p, and constant
angular momentum L.
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() ] \
r(t)

FIGURE 83 The path of a particle is described by r(). The radius vector sweeps out
an area dA = %ﬂd@ in a time interval dt.

or
aL .
P =7 = ur?@ = constant (8.9)
a0
The system’s symmetry has therefore permitted us to integrate immediately

one of the equations of motion. The quantity f, is a first integral of the motion,
and we denote its-constant value by the symbol I:

I= ur? = constant (8.10)

Note that [ can be negative as well as positive. That [ is constant has a simple
geometric interpretation. Referring to Figure 8 3, we see that in describing the
path r(¢), the radius vector sweeps out an area 5 72d0 in a time interval dt:

1
dA = 9 r2d6 (8.11)

On dividing by the time interval, the areal velocity is shown to be

dA _1,d0_1

~,20
dt 2 dt 27
l
= — = constant (8.12)
2u

Thus, the areal velocity is constant in time. This result was obtained empirically
by Kepler for planetary motion, and it is known as Kepler’s Second Law.* It is
important to note that the conservation of the areal velocity is not limited to an
inverse-square-law force (the case for planetary motion) but is a general result
for central-force motion.

Because we have eliminated from consideration the uninteresting uniform
motion of the system’s center of mass, the conservation of linear momentum
adds nothing new to the description of the motion. The conservation of energy
is thus the only remaining first integral of the problem. The conservation of the

*Published by Johannes Kepler (1571-1630) in 1609 after an exhaustive study of the compilations
made by Tycho Brahe (1546-1601) of the positions of the planet Mars. Kepler’s First Law deals with
the shape of planetary orbits (see Section 8.7).
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total energy E is automatically ensured because we have limited the discussion to
nondissipative systems. Thus,

T+ U= E = constant (8.13)
and
1 .
E= §/.L(';’2 + 7202 + U(n
or
=1 '2+112+U() (8.14
=—ui?+ - — r .
of" T 9 )

8.4 Equations of Motion

When U(7) is specified, Equation 8.14 completely describes the system, and the
integration of this equation gives the general solution of the problem in terms of
the parameters Eand /. Solving Equation 8.14 for #, we have

dr 2 12
=T o J2E-U) - 8.1
Y \/IJ«( uir? ( '5)

This equation can be solved for df and integrated to yield the solution ¢ = #(7).
An inversion of this result then gives the equation of motion in the standard
form r = r(f). At present, however, we are interested in the equation of the path
in terms of rand 8. We can write

40 = — —dr=—dr (8.16)

Into this relation, we can substitute 6= Uur? (Equation 8.10) and the expres-
sion for 7 from Equation 8.15. Integrating, we have

*(U/r?)dr

ME - 5

Furthermore, because [ is constant in time, 6 cannot change sign and there-
fore 6(f) must increase or decrease monotonically with time.

Although we have reduced the problem to the formal evaluation of an inte-
gral, the actual solution can be obtained only for certain specific forms of the
force law. If the force is proportional to some power of the radial distance,
F(r) o< v, then the solution can be expressed in terms of elliptic integrals for
certain integer and fractional values of n. Only for n = 1, —2, and —3 are the so-
lutions expressible in terms of circular functions (sines and cosines).* The case

0(n) = 8.17)

*See, for example, Goldstein (Go80, pp. 88-90).
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n = 1 is just that of the harmonic oscillator (see Chapter 3), and the case n = —2
is the important inverse-square-law force treated in Sections 8.6 and 8.7. These
two cases, n = 1, —2, are of prime importance in physical situations. Details of
some other cases of interest will be found in the problems at the end of this
chapter.

We have therefore solved the problem in a formal way by combining the
equations that express the conservation of energy and angular momentum into
a single result, which gives the equation of the orbit § = 6(7). We can also attack
the problem using Lagrange’s equation for the coordinate r:

Using Equation 8.7 for L, we find
. oU
w(7— 19%) = —— = F(r) (8.18)
ar
Equation 8.18 can be cast in a form more suitable for certain types of calcu-

lations by making a simple change of variable:

1

r

I

u

First, we compute

du ldr__ 1 dr dt 1 7

49 R dd 2 dtdf Ky
But from Equation 8.10, 6= I/ur?, so

du n,
— = 7

a0~ 1

d2u d( w) did| w, ..
S = \—-=r)l=———"\—=7r) =7
de? db l do dt l 10

and with the same substitution for é, we have

Next, we write

d’u K,
w - et

Therefore, solving for # and 762 in terms of u, we find

ez, d?u

/.Lzugﬂ_2

, (8.19)

. {
162 = —Eu?’
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Substituting Equation 8.19 into Equation 8.18, we obtain the transformed
equation of motion:

d?u [T

e TeT e, F(1/u) (8.20)
which we may also write as

@1\, 1_ _pt 61

ily) +5 =~ (8:21)

This form of the equation of motion is particularly useful if we wish to find the
force law that gives a particular known orbit r = r(8).

EXAMPLE 8.1

Find the force law for a central-force field that allows a particle to move ina
logarithmic spiral orbit given by r = ke®®, where kand a are constants.

Solution. We use Equation 8.21 to determine the force law F(7). First, we

determine
a1\ _d (e} —ac™
de \r e \ k k

& (1) _ate_a
a2 \r) k r

From Equation 8.21, we now determine F(r).

-12{a? 1
F<’>—M—rz(7+;>

)
F(n = —l—s(az +1) (8.22)
wr

Thus, the force law is an attractive inverse cube.

EXAMPLE 8.2

Determine 7(¢) and 6(t) for the problem in Example 8.1.

Solution. From Equation 8.10, we find
{ {
0 = — =
ur? kel
Rearranging Equation 8.23 gives

(8.23)

l
22040 = ——di
uk?
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and integrating gives

where C’ is an integration constant. Multiplying by 2« and letting C = 2aC’
gives

o = 20U Lo (8.24)
uk?

We solve for 4(¢) by taking the natural logarithm of Equation 8.24:

1 2aelt
0(r) = é;ln (I-‘«—k2 + C> (8.25)

We can similarly solve for r(f) by examining Equations 8.23 and 8.24:

r2 2aclt
= 200 . " +
g ¢ T ar T C
1/2
"(t) = [%—jil t+ k2C] (8.26)

The integration constant Cand angular momentum ! needed for Equations
8.25 and 8.26 are determined from the initial conditions.

EXAMPLE 8.3

What is the total energy of the orbit of the previous two examples?

Solution. The energy is found from Equation 8.14. In particular, we need
and U(7).

2
Ulr) = —der= -L—l(az + l)jr_?’dr

B+ 1)1
Ulr) = — Pe+D 5 (8.27)
21 7
where we have let U(®) = (.
We rewrite Equation 8.10 to determine 7:
. d8 d8dr 1
f="="""= "
dt dr dt ur?
dr 1 { l
P= = ket = (8.28)

Tdopr e
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Substituting Equations 8.27 and 8.28 into Equation 8.14 gives

gl (al), 2 P+
~oM\ur 2ur? 2ur?

E=0 (8.29)

The total energy of the orbit is zero if U(r = «) = 0.

8.5 Orbits in a Central Field

The radial velocity of a particle moving in a central field is given by Equation
8.15. This equation indicates that #vanishes at the roots of the radical, that is, at
points for which
2
E-Urn—-—==0 (8.30)
2ur?

The vanishing of #implies that a furning point in the motion has been reached
(see Section 2.6). In general, Equation 8.30 possesses two Toots: %,,, and 7.
The motion of the particle is therefore confined to the annular region specified
by % = 7 = 1y;,. Certain combinations of the potential function U(r) and, the
parameters Eand [ produce only a single root for Equation 8.30. In such a case,
7 = ( for all values of the time; hence, r = constant, and the orbit is circular.

If the motion of a particle in the potential U(r) is periodic, then the orbit is
closed; that is, after a finite number of excursions between the radial limits 7,
and 7%,,,, the motion exactly repeats itself. But if the orbit does not close on itself
after a finite number of oscillations, the orbit is said to be open (Figure 8-4).
From Equation 8.17, we can compute the change in the angle 6 that results from
one complete transit of r from 7, to r,,, and back to 7,;,. Because the motion is

FIGURE 84 An orbit that does not close on itself after a finite number of oscillations
is said to be open.
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symmetric in time, this angular change is twice that which would result from the
passage from 7, to r,,,; thus

Tmax 2
A6 = 2[ (/) dr (8.31)

Tmin \/ 12 )
E-U—- —
2p ( v 2ur?

The path is closed only if A8 is a rational fraction of 2r—that is, if A = 27 -
(a/b), where a and b are integers. Under these conditions, after & periods the
radius vector of the particle will have made a complete revolutions and will have
returned to its original position. We can show (see Problem 8-35) that if the po-
tential varies with some integer power of the radial distance, U(r) « r**!, then a
closed noncircular path can result only* if n = —2 or +1. The case n = —2 cor-
responds to an inverse-square-law force—for example, the gravitational or elec-
trostatic force. The n = +1 case corresponds to the harmonic oscillator poten-
tial. For the two-dimensional case discussed in Section 3.4, we found that a
closed path for the motion resulted if the ratio of the angular frequencies for
the xand y motions were rational.

8.6 Centrifugal Energy and the Effective Potential

In the preceding expressions for 7, A@, and so forth, a common term is the radical

2

E—-—U-
2ur?

The last term in the radical has the dimensions of energy and, according to
Equation 8.10, can also be written as

2 1 .
= T2
ourt 2"
If we interpret this quantity as a “potential energy,”

2
U=——: 8.32
"= o (8.32)

then the “force” that must be associated with U, is

F=-—=—=urf? (8.33)

*Certain fractional values of # also lead to closed orbits, but in general these cases are uninteresting
from a physical standpoint.
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This quantity is traditionally called the centrifugal force,* although it is not a
force in the ordinary sense of the word.” We shall, however, continue to use this
unfortunate terminology, because it is customary and convenient.

We see that the term 2/2ur? can be interpreted as the centrifugal potential en-
ergy of the particle and, as such, can be included with U(7) in an effective potential
energy defined by

2

_ .
V(n) = U(n) + our® (8.34)

V() is therefore a fictitious potential that combines the real potential function
U(7) with the energy term associated with the angular motion about the center
of force. For the case of inverse-square-law central-force motion, the force is
given by

k
Fin=-- (8.35)
r
from which
k
Ui = —j Frndr=-— p (8.36)
The effective potential function for gravitational attraction is therefore
V() u + £ (8.37)
= —- .
r 2ur?

This effective potential and its components are shown in Figure 8-5. The value of
the potential is arbitrarily taken to be zero at r = . (This is implicit in Equation
8.36, where we omitted the constant of integration.)

We may now draw conclusions similar to those in Section 2.6 on the motion
of a particle in an arbitrary potential well. If we plot the total energy E of the par-
ticle on a diagram similar to Figure 8-5, we may identify three regions of interest
(see Figure 8-6). If the total energy is positive or zero (e.g., £, = 0), then the mo-
tion is unbounded; the particle moves toward the force center (located at r = 0)
from infinitely far away until it “strikes” the potential barrier at the turning point
r = 1, and is reflected back toward infinitely large 7. Note that the height of the
constant total energy line above V(7) at any 7, such as 7 in Figure 8-6, is equal to
%,u,r'?. Thus the radial velocity + vanishes and changes sign at the turning point
(or points).

*The expression is more readily recognized in the form F, = mrw? The first real appreciation of cen-
trifugal force was by Huygens, who made a detailed examination in his study of the conical pendu-
lum in 1659.

1See Section 10.3 for a more critical discussion of centrifugal force.
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Energy

FIGURE 8-5 The effective potential for gravitational attraction V(r) is composed of
the real potential —k /rterm and the centrifugal potential energy

2/2ur2.

Energy

.................................................

We can tell much about motion by looking at the total energy £on a
potential energy plot. For example, for energy £ the particle’s motion
is unbounded. For energy E, the particle is bounded with n, = r =< 7,
For energy E, the motion has r = 73 and is circular.

FIGURE 8-6
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FIGURE 8-7 The total potential (coulomb, nuclear, and centrifugal) for scattering 2Si
nuclei from !*C for various angular momentum [values as a function of
distance between nuclei. For [ = 207 a shallow pocket exists where the
two nuclei may be bound together for a short time. For { = 25% the
nuclei are not bound together.

If the total energy is negative* and lies between zero and the minimum
value of V(r), as does E,, then the motion is bounded, with %» = r =< 7,. The val-
ues 7, and 7, are the turning points, or the apsidal distances, of the orbit. If £
equals the minimum value of the effective potential energy (see E; in Figure 8-6),
then the radius of the particle’s path is limited to the single value 73, and then
7 = ( for all values of the time; hence the motion is circular.

Values of E less than V;, = —(uk%/21?) do not result in physically real mo-
tion; for such cases #2 < 0 and the velocity is imaginary.

The methods discussed in this section are often used in present-day research
in general fields, especially atomic, molecular, and nuclear physics. For example,
Figure 8-7 shows effective total nucleus-nucleus potentials for the scattering of
8Si and '2C. The total potential includes the coulomb, nuclear, and the centrifu-
gal contributions. The potential for { = 0% indicates the potential with no cen-
trifugal term. For a relative angular momentum value of [ = 20#, a “pocket” ex-
ists where the two scattering nuclei may be bound together (even if only for a
short time). For [ = 25#, the centrifugal “barrier” dominates, and the nuclei can-
not form a bound state at all.

*Note that negative values of the total energy arise only because of the arbitrary choice of V(r) = 0 at
r=co.
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8.7 Planetary Motion—Kepler’s Problem

The equation for the path of a particle moving under the influence of a central
force whose magnitude is inversely proportional to the square of the distance be-
tween the particle and the force center can be obtained (see Equation 8.17) from

(I/r?dr

l
\/2’*(“?'2;72)

The integral can be evaluated if the variable is changed to u = I/r (see Problem
8-2). If we define the origin of 6 so that the minimum value of ris at § = 0, we
find

+ constant (8.38)

L
ko
R (8.39)
1 2Kl
Wk
Let us now define the following constants:
2
a= '—k
H* T (8.40)
e=,\/1+—
uk?
Equation 8.39 can thus be written as
a
- = 1+ ecosé (8.41)

This is the equation of a conic section with one focus at the origin.* The quan-
tity € is called the eccentricity, and 2« is termed the latus rectum of the orbit.
Conic sections are formed by the intersection of a plane and a cone. A conic sec-
tion is formed by the loci of points (formed in a plane), where the ratio of the
distance from a fixed point (the focus) to a fixed line (called the directrix) is a
constant. The directrix for the parabola is shown in Figure 8-8 by the vertical
dashed line, drawn so that /7' = 1.

The minimum value for r in Equation 8.41 occurs when 6 = 0, or when cos 6
is a maximum. Thus the choice of the integration constant in Equation 8.38 cor-
responds to measuring 8 from 7,;,, which position is called the pericenter; r,_,,
corresponds to the apocenter. The general term for turning points is apsides.
The corresponding terms for motion about the Sun are perihelion and aphelion,
and for motion about Earth, perigee and apogee.

*Johann Bernoulli (1667-1748) appears to have been the first to prove that all possible orbits of a
body moving in a potential proportional to 1/ are conic sections (1710).



8.7 PLANETARY MOTION—KEPLER’S PROBLEM 301

Hyperbola, € > 1

Parabola,
e=1 Directrix

for parabola

Ellipse, 0< £ <1

e et b o

FIGURE 88 The orbits of the various conic sections are shown together with their
eccentricities &.

Various values of the eccentricity (and hence of the energy E) classify the or-
bits according to different conic sections (see Figure 8-8):

g >1, E>0 Hyperbola
=1, E=0 Parabola
0<e<l1l V,;, <E<O0O Ellipse

e =0, E=V

nin Circle
For planetary motion, the orbits are ellipses with major and minor axes
(equal to 2a¢ and 24, respectively) given by

@ k

= 1-‘—82 = m (8.42)

a

. a _ )
V1-¢ VoulE|

Thus, the major axis depends only on the energy of the particle, whereas the
minor axis is a function of both first integrals of the motion, £and . The geometry
of elliptic orbits in terms of the parameters a, &, g, and b is shown in Figure 89; P

b (8.43)
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FIGURE 89 The geometry of elliptic orbits is shown in terms of parameters a, &, a,
and b. Pand P’ are the foci.

and P’ are the foci. From this diagram, we see that the apsidal distances (7, and
Tmax @8 measured from the foci to the orbit) are given by

=gl —g) =

=a(l +¢) =

r

e 1—¢

To find the period for elliptic motion, we rewrite Equation 8.12 for the areal
velocity as

a=24
l

Because the entire area A of the ellipse is swept out in one complete period 7,

T 2 A
fdt=—“fdA
o I Jo

T="[A (8.45)

The area of an ellipse is given by A = mab, and using ¢ and & from Equations
8.42 and 8.43, we find

21 k l

T=—M-7rab=—-7r

! 1" 2l El \2ul ]

= wk\/%- | E|7¥2 (8.46)

We also note from Equations 8.42 and 8.43 that the semiminor axis* can be
written as

b= Vaa (8.47)

*The quantities 2 and & are called semimajor and semiminor axes, respectively.
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Therefore, because a = I?/uk, the period 7 can also be expressed as

a® (8.48)

This result, that the square of the period is proportional to the cube of the
semimajor axis of the elliptic orbit, is known as Kepler’s Third Law.* Note that
this result is concerned with the equivalent one-body problem, so account must
be taken of the fact that it is the reduced mass p that occurs in Equation 8.48.
Kepler actually concluded that the squares of the periods of the planets were
proportional to the cubes of the major axes of their orbits—with the same pro-
portionality constant for all planets. In this sense, the statement is only approxi-
mately correct, because the reduced mass is different for each planet. In particu-
lar, because the gravitational force is given by
Gmymo k

B ==—% =

we identify k = Gm;ms. The expression for the square of the period therefore

becomes

0 4m2g 4248
2= = ,
- G(my + my) Gm,

my <K my (8.49)

and Kepler’s statement is correct only if the mass m; of a planet can be neglected
with respect to the mass m, of the Sun. (But note, for example, that the mass of
Jupiter is about 1/1000 of the mass of the Sun, so the departure from the ap-
proximate law is not difficult to observe in this case.)

Kepler’s laws can now be summarized:

L. Planets move in elliptical orbits about the Sun with the Sun at one focus.

II. The area per unit time swept out by a radius vector from the Sun to a planet is
constant.

IIL. The square of a planet’s period is proportional to the cube of the major axis of the
planet’s orbit.

See Table 8-1 for some properties of the principal objects in the solar system.

*Published by Kepler in 1619. Kepler’s Second Law is stated in Section 8.3. The First Law (1609) dic-
tates that the planets move in elliptical orbits with the Sun at one focus. Kepler’s work preceded by
almost 80 years Newton’s enunciation of his general laws of motion. Indeed, Newton’s conclusions
were based to a great extent on Kepler’s pioneering studies (and on those of Galileo and Huygens).
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TABLE 8-1 Some Properties of the Principal Objects in the Solar System

Semimajor axis of orbit Mass (in units of
Name (in astronomical units?)  Period (yr) Eccentricity Earth’s mass®)
Sun —_— —_— — 332,830
Mercury 0.3871 0.2408 0.2056 0.0552
Venus 0.7233 0.6152 0.0068 0.814
Earth 1.0000 1.0000 0.0167 1.000
Eros (asteroid) 1.4583 1.7610 0.2229 2 X107 (?)
Mars 1.5287 1.8809 0.0934 0.1074
Ceres (asteroid) ¢ 4.6035 0.0789 1/8000 (?)
Jupiter 5.2028 ¢ 0.0483 317.89
Saturn 9.5388 29.456 0.0560 ¢
Uranus 19.191 84.07 0.0461 14.56
Neptune 30.061 164.81 0.0100 17.15
Pluto 39.529 248.53 0.2484 0.002
Halley (comet) 18 76 0.967 ~10710

“ One astronomical unit (A.U.) is the length of the semimajor axis of Earth’s orbit. One AU, = 1.495 X 10" m =
93 X 10° miles.

® Earth’s mass is approximately 5.976 X 10% kg.

‘See Problem 8-19.

EXAMPLE 8.4

Halley’s comet, which passed around the sun early in 1986, moves in a highly el-
liptical orbit with an eccentricity of 0.967 and a period of 76 years. Calculate its
minimum and maximum distances from the Sun.

Solution. Equation 8.49 relates the period of motion with the semimajor axes.
Because m (Halley’s comet) <K mg,,,

GWlSunT2 173
a = R —
47?

173
(6.67 X 1071

Nm

2
1.99 X 103 k
ig? >( 99 g) (76Yr

42

365 day 94 hr 36005 \?2
day hr

a= 268 x 102 m

Using Equation 8.44, we can determine 7,

and 7.
Tomin = 2.68 X 1012 m(1 — 0.967) = 8.8 X 10! m
Tmax = 2.68 X 1012 m(1 + 0.967) = 5.27 X 102 m
This orbit takes the comet inside the path of Venus, almost to Mercury’s orbit,

and out past even the orbit of Neptune and sometimes even to the moderately
eccentric orbit of Pluto. Edmond Halley is generally given the credit for bringing
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Newton’s work on gravitational and central forces to the attention of the world.
After observing the comet personally in 1682, Halley became interested. Partly
as a result of a bet between Christopher Wren and Robert Hooke, Halley asked
Newton in 1684 what paths the planets must follow if the Sun pulled them with
a force inversely proportional to the square of their distances. To the astonish-
ment of Halley, Newton replied, “Why, in ellipses, of course.” Newton had
worked it out 20 years previously but had not published the result. With
painstaking effort, Halley was able in 1705 to predict the next occurrence of the
comet, now bearing his name, to be in 1758.

8.8 Orbital Dynamics

The use of central-force motion is nowhere more useful, important, and inter-
esting than in space dynamics. Although space dynamics is actually quite com-
plex because of the gravitational attraction of a spacecraft to various bodies and
the orbital motion involved, we examine two rather simple aspects: a proposed
trip to Mars and flybys past comets and planets.

Orbits are changed by single or multiple thrusts of the rocket engines. The
simplest maneuver is a single thrust applied in the orbital plane that does not
change the direction of the angular momentum but does change the eccentric-
ity and energy simultaneously. The most economical method of interplanetary
transfer consists of moving from one circular heliocentric (Sun-oriented mo-
tion) orbit to another in the same plane. Earth and Mars represent such a system
reasonably well, and a Hohmann transfer (Figure 8-10) represents the path of
minimum total energy expenditure.* Two engine burns are required: (1) the
first burn injects the spacecraft from the circular Earth orbit to an elliptical
transfer orbit that intersects Mars’ orbit; (2) the second burn transfers the space-
craft from the elliptical orbit into Mars’ orbit.

We can calculate the velocity changes needed for a Hohmann transfer by
calculating the velocity of a spacecraft moving in the orbit of Earth around the
Sun (7 in Figure 810) and the velocity needed to “kick” it into an elliptical
transfer orbit that can reach Mars’ orbit. We are considering only the gravita-
tional attraction of the Sun and not that of Earth and Mars.

For circles and ellipses we have, from Equation 8.42,

- _k
2a
For a circular path around the Sun, this becomes
k 1 k
=—— =—mv] — — 8.50
on 2 n (8:50)

*See Kaplan (Ka76, Chapter 3) for the proof. Walter Hohmann, a German pioneer in space travel
research, proposed in 1925 the most energy-efficient method of transferring between elliptical
(planetary) orbits in the same plane using only two velocity changes.
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Mars at arrival

&) Earth at

.
-

-
b
-

(J Mars at
departure

Earth at departure

FIGURE 8-10 The Hohmann transfer for a round trip between Earth and Mars. It
represents the minimum energy expenditure.

where we have E= T + U. We solve Equation 8.50 for v;:
k
(8.51)

v:
1 mn

We denote the semimajor axis of the transfer ellipse by a,:
20, =1 + n

If we calculate the energy at the perihelion for the transfer ellipse, we have

—k 1 k
E, = =—mu? — — 8.5
t n r 2 4n| n (8.52)

where v, is the perihelion transfer speed. The direction of v, is along v, in
Figure 8-10. Solving Equation 8.52 for v, gives

Vi = + /ﬁ(L) (8.53)
m'rl 'rl + 7'2

The speed transfer Av; needed is just
(8.54)

Avy = vy — v
Similarly, for the transfer from the ellipse to the circular orbit of radius 7%,

we have
Ai& = Vo — Um (8-55)
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| k
Vg = m—'rz (8.56)

Uiz = \lg (E, + ﬁ)
m [£)

s = /ﬁ(_>
mr\n + n

The direction of vy, is along v, in Figure 8-10. The total speed increment can be
determined by adding the speed changes, Av = Ay + Au,

The total time required to make the transfer 7, is a half-period of the trans-
fer orbit. From Equation 8.48, we have

where

and

(8.57)

Ty

T[_2

m
T, = W\/% ay? (8.58)
EXAMPLE 8.5

Calculate the time needed for a spacecraft to make a Hohmann transfer from
Earth to Mars and the heliocentric transfer speed required assuming both
planets are in coplanar orbits.

Solution. We need to insert the appropriate constants in Equation 8.58.

m_ m _ 1
k GmMs,, GMs,
B 1
" (6.67 x 10711 m3/s? - kg) (1.99 x 10% kg)
= 7.5% % 1072's%/m? (8.59)

Because k/m occurs so often in solar system calculations, we write it as well.
k 20 3 /2
p = 1.33 X 10?° m’/s

a = 5(7Earth—8un + TMars - Sun)
1
= 5(1.50 X 101 m + 2.28 X 10 m)
=1.89 X 10 m
7(7.563 x 10721s?/m?)1/2(1.89 x 10! m)3/2

2.94 X 107s
= 259 days (8.60)

T
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The heliocentric speed needed for the transfer is given in Equation 8.53.

_ [2(1.33 x 102m342) (2.28 x 101'm) |2
YT (150 % 101 m) (3.78 x 10" m)

= 3927 X 10* m/s = 32.7 km/s
We can compare v;; with the orbital speed of Earth (Equation 8.51).
[1.33 X 102 m3/s
v =

2 [1/2
=208k
1.50 X 101 m 29.8 km/s

For transfers to the outer planets, the spacecraft should be launched in the
direction of Earth’s orbit in order to gain Earth’s orbital velocity. To transfer to
the inner planets (e.g., to Venus), the spacecraft should be launched opposite
Earth’s motion. In each case, it is the relative velocity Av, that is important to the
spacecraft (i.e., relative to Earth).

Although the Hohmann transfer path represents the least energy expendi-
ture, it does not represent the shortest time. For a round trip from Earth to
Mars, the spacecraft would have to remain on Mars for 460 days until Earth and
Mars were positioned correctly for the return trip (see Figure 8-11a). The total
trip (259 + 460 + 259 = 978 days = 2.7 yr) would probably be too long. Other
schemes either use more fuel to gain speed (Figure 8-11b) or use the slingshot
effect of flybys. Such a flyby mission past Venus (see Figure 8-11c) could be done
in less than 2 years with only a few weeks near (or on) Mars.

Several spacecraft in recent years have escaped Farth’s gravitational attrac-
tion to explore our solar system. Such interplanetary transfer can be divided
into three segments: (1) the escape from Earth, (2) a heliocentric transfer to the
area of interest, and (3) an encounter with another body—so far, either a planet
or a comet. The spacecraft fuel required for such missions can be enormous, but
a clever trick has been designed to “steal” energy from other solar system bodies.
Because the mass of a spacecraft is so much smaller than the planets (or their
moons), the energy loss of the heavenly body is negligible.

We examine a simple version of this flyby or slingshot effect that utilizes
gravity assist. A spacecraft coming from infinity approaches a body (labeled B),
interacts with B, and recedes. The path is a hyperbola (Figure 8-12). The initial
and final velocities, with respect to B, are denoted by v; and vf’, respectively. The
net effect on the spacecraft is a deflection angle of & with respect to B.

If we examine the system in some inertial frame in which the motion of B oc-
curs, the velocities of the spacecraft can be quite different because of the motion of
B. The initial velocity v; is shown in Figure 8-13a, and both v; and v, are shown in
Figure 8-13b. Notice that the spacecraft has increased its speed as well as
changed its direction. An increase in velocity occurs when the spacecraft passes
behind B’s direction of motion. Similarly, a decrease in velocity occurs when the
spacecraft passes in front of B’s motion.

During the 1970s, scientists at the Jet Propulsion Laboratory of the National
Aeronautics and Space Administration (NASA) realized that the four largest
planets of our solar system would be in a fortuitous position to allow a spacecraft
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1. Earth departure
2. Mars arrival

3. Mars departure
4. Earth arrival

()

1. Earth departure
2. Mars arrival

3. Mars departure
4. Venus passage
5. Earth arrival

(©

FIGURE 8-11 Round trips from Earth to Mars. (a) The minimum energy mission
(Hohmann transfer) requires a long stopover on Mars before returning
to Earth. (b) A shorter mission to Mars requires more fuel and a closer
orbit to the Sun. (c) The fuel required for the shorter mission of (b) can
be further improved if Venus is positioned for a gravity assist during flyby.

to fly past them and many of their 32 known moons in a single, relatively short
“Grand Tour” mission using the gravity-assist method just discussed. This oppor-
tunity of the planets’ alignment would not occur again for 175 years. Because of
budget constraints, there was not time to develop the new technology needed,
and a mission to last only 4 years to visit just Jupiter and Saturn was approved
and planned. No special equipment was put on board the twin Veyager space-
crafts for an encounter with Uranus and Neptune. Voyagers 1 and 2 were
launched in 1977 for visits to Jupiter in 1979 and Saturn in 1980 (Voyager 1) and
1981 (Voyager 2). Because of the success of these visits to Jupiter and Saturn,
funding was later approved to extend Voyager 2’s mission to include Uranus and
Neptune. The Voyagers are now on their way out of our solar system.

The path of Voyager 2is shown in Figure 8-14. The slingshot effect of gravity al-
lowed the path of Veyager 2 to be redirected, for example, toward Uranus as it
passed Saturn by the method shown in Figure 8-12. The gravitational attraction
from Saturn was used to pull the spacecraft off its straight path and redirect it at a
different angle. The effect of the orbital motion of Saturn allows an increase in the
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.

Direction of
inertial motion
of B

FIGURE 812 A spacecraft flies by a large body B (like a planet) and gains speed when
it flies behind B’s direction of motion. Similarly, the spacecraft loses
speed when it passes in front of B’s direction of motion. The direction
of the spacecraft also changes.

(b)

FIGURE 813 The vectors v; and vy are the initial and final velocities of the spacecraft
with respect to B. The vectors v; and v, are the velocities in an inertial
frame. (a) v; = vg + vi. (b) v, = vg + v

spacecraft’s speed. It was only by using this gravity-assist technique that the spectac-
ular mission of Voyager 2 was made possible in only a brief 12-year period. Voyager 2
passed Uranus in 1986 and Neptune in 1989 before proceeding into interstellar
space in one of the most successful space missions ever undertaken. Most planetary
missions now take advantage of gravitational assists; for example, the Galileo satel-
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Neptune
1986 1989 Voyager 2

FIGURE 8-14 Voyager 2 was launched in 1977 and passed by Jupiter, Saturn, Uranus,
and Neptune. Gravitational assists were used in the mission.

Spacecraft

ICE Spacecraft
previous orbit

~ -

Spacecraft To Sun

FIGURE 815 The NASA spacecraft initially called ISEE-3 was reprogrammed to be the
International Cometary Explorer and was sent on a spectacular three-year
journey utilizing gravity assists on its way by the Comet Giacobini-Zinner.

lite, which photographed the spectacular collisions of the Shoemaker-Levy comet
with Jupiter in 1994 and reached Jupiter in 1995, was launched in 1989 but went by
Earth twice (1990 and 1992) as well as Venus (1990) to gain speed and redirection.

A spectacular display of flybys occurred in the years 1982-1985 by a space-
craft initially called the International Sun-Earth Explorer 3 (ISEE-3). Launched
in 1978, its mission was to monitor the solar wind between the Sun and Earth.
For 4 years, the spacecraft circled in the ecliptical plane about 2 million miles
from Earth. In 1982—because the United States had decided not to participate
in a joint European, Japanese, and Soviet spacecraft investigation of Halley’s
comet in 1986—NASA decided to reprogram the ISEE-3, renamed it the
International Cometary Explorer (ICE), and sent it through the Giacobini-Zinner
comet in September 1985, some 6 months before the flybys of other spacecraft
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with Halley’s comet. The subsequent three-year journey of ICE was spectacular
(Figure 8-15). The path of ICE included two close trips to Earth and five flybys of
the moon along its billion-mile trip to the comet. During one flyby, the satellite
came within 75 miles of the lunar surface. The entire path could be planned
precisely because the force law is very well known. The eventual interaction with
the comet, some 44 million miles from Earth, included a 20-minute trip through
the comet—about 5,000 miles behind the comet’s nucleus.

8.9 Apsidal Angles and Precession (Optional)

If a particle executes bounded, noncircular motion in a centralforce field, then the
radial distance from the force center to the particle must always be in the range
Tmax = T = Ty thatis, r must be bounded by the apsidal distances. Figure 8-6 indi-
cates that only fwo apsidal distances exist for bounded, noncircular motion. But
in executing one complete revolution in 6, the particle may not return to its orig-
inal position (see Figure 8-4). The angular separation between two successive val-
ues of r = 7., depends on the exact nature of the force. The angle between any
two consecutive apsides is called the apsidal angle, and because a closed orbit
must be symmetric about any apsis, it follows that all apsidal angles for such motion
must be equal. The apsidal angle for elliptical motion, for example, is just 7.
If the orbit is not closed, the particle reaches the apsidal distances at different
points in each revolution; the apsidal angle is not then a rational fraction of 2,
as is required for a closed orbit. If the orbit is almost closed, the apsides precess, or
rotate slowly in the plane of the motion. This effect is exactly analogous to the slow
rotation of the elliptical motion of a two-dimensional harmonic oscillator whose
natural frequencies for the xand y motions are almost equal (see Section 3.3).

Because an inverse-square-law force requires that all elliptical orbits be ex-
actly closed, the apsides must stay fixed in space for all time. If the apsides move
with time, however slowly, this indicates that the force law under which the body
moves does not vary exactly as the inverse square of the distance. This important
fact was realized by Newton, who pointed out that any advance or regression of a
planet’s perihelion would require the radial dependence of the force law to be
slightly different from 1/r%. Thus, Newton argued, the observation of the time
dependence of the perihelia of the planets would be a sensitive test of the valid-
ity of the form of the universal gravitation law.

In point of fact, for planetary motion within the solar system, one expects
that, because of the perturbations introduced by the existence of all the other
planets, the force experienced by any planet does not vary exactly as 1/72, if ris
measured from the Sun. This effect is small, however, and only slight variations
of planetary perihelia have been observed. The perihelion of Mercury, for example,
which shows the largest effect, advances only about 574" of arc per century.*
Detailed calculations of the influence of the other planets on the motion of

*This precession is in addition to the general precession of the equinox with respect to the “fixed”
stars, which amounts to 5025.645” = 0.050" per century.
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Mercury predict that the rate of advance of the perihelion should be approximately
531" per century. The uncertainties in this calculation are considerably less than
the difference of 43" between observation and calculation,* and for a considerable
time, this discrepancy was the outstanding unresolved difficulty in the Newtonian
theory. We now know that the modification introduced into the equation of motion
of a planet by the general theory of relativity almost exactly accounts for the differ-
ence of 43", This result is one of the major triumphs of relativity theory.

We next indicate the way the advance of the perihelion can be calculated
from the modified equation of motion. To perform this calculation, it is conven-
ient to use the equation of motion in the form of Equation 8.20. If we use the
universal gravitational law for F(7), we can write

d2u m 1
et T Tt
Gm*M
=% (8.61)

where we consider the motion of a body of mass m in the gravitational field of a
body of mass M. The quantity u is therefore the reciprocal of the distance be-
tween m and M.

The modification of the gravitational force law required by the general the-
ory of relativity introduces into the force a small component that varies as
1/7*(= u*). Thus, we have

d*u Gm*M  3GM

— tu=—0+

d? A 2
where cis the velocity of propagation of the gravitational interaction and is iden-
tified with the velocity of light.” To simplify the notation, we define

ul - (8.62)

1_ GmEM
a 2
3GM (8.63)
&= >
c

*In 1845, the French astronomer Urbain Jean Joseph Le Verrier (1811-1877) first called attention to
the irregularity in the motion of Mercury. Similar studies by Le Verrier and by the English astronomer
John Couch Adams of irregularities in the motion of Uranus led to the discovery of the planet Neptune
in 1846. An interesting account of this episode is given by Turner (Tu04, Chapter 2). We must note, in
this regard, that perturbations may be either periodic or secular (i.e., ever increasing with time). Laplace
showed in 1773 (published, 1776) that any perturbation of a planet’s mean motion that is caused by
the attraction of another planet must be periodic, although the period may be extremely long. This is
the case for Mercury; the precession of 531" per century is periodic, but the period is so long that the
change from century to century is small compared with the residual effect of 43",

1tOne half of the relativistic term results from effects understandable in terms of special relativity,
viz., time dilation (1/3) and the relativistic momentum effect (1/6); the velocity is greatest at peri-
helion and least at aphelion (see Chapter 14). The other half of the term arises from general rela-
tivistic effects and is associated with the finite propagation time of gravitational interactions. Thus,
the agreement between theory and experiment confirms the prediction that the gravitational propa-
gation velocity is the same as that for light.
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and we can write Equation 8.62 as

Pu =L se (8.64)
— tu=- u .
d6? o

This is a nonlinear equation, and we use a successive approximation procedure
to obtain a solution. We choose the first solution to be the solution of Equation

8.64 in the case that the term 82 is neglected*:

1
W= (1 + ecos ) (8.65)

This is the familiar result for the pure inverse-square-law force (see Equation 8.41).
Note that « is here the same as that defined in Equation 8.40 except that x has
been replaced by m. If we substitute this expression into the right-hand side of
Equation 8.64, we find

d?u

1 &
e -4 9 9 2
d02+u a+a2[1+2£cos()+s cos? 0]

1 & &
==+ —|1+2cosf + (1 + cos20) (8.66)
o « 2

where cos? 6 has been expanded in terms of cos 20. The first trial function u,,
when substituted into the left-hand side of Equation 8.64, reproduces only the
first term on the right-hand side: 1/a. We can therefore construct a second trial
function by adding to u; a term that reproduces the remainder of the right-hand
side (in Equation 8.66). We can verify that such a particular integral is

2

2
8 (1 + 52—> + 0 sin  — %cos 20] (8.67)

U, = —
P 2

The second trial function is therefore
U =u t u,
If we stop the approximation procedure at this point, we have

U= Uy =y T ou,

1 6
—(1 + ecosfh) + —820 sin 0}
o o

é e? 82
—l1+=)-= :
o (1 2> 6o cos 20} (8.68)

where we have regrouped the terms in ; and u,,

+

*We eliminate the necessity of introducing an arbitrary phase into the argument of the cosine term
by choosing to measure 6 from the position of perihelion; i.e., 4, is a maximum (and hence 7, is a
minimum) at 8§ = 0.
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Consider the terms in the second set of brackets in Equation 8.68: the first
of these is just a constant, and the second is only a small and periodic distur-
bance of the normal Keplerian motion. Therefore, on a long time scale neither
of these terms contributes, on the average, to any change in the positions of the
apsides. But in the first set of brackets, the term proportional to 8 produces sec-
ular and therefore observable effects. Let us consider the first set of brackets:

1 oe .
Ugecular = —| 1 + £cos @ + —80sin 0 (8.69)
a a
Next, we can expand the quantity

1+ scos(() - -8-0> =1+ s(cos()cos §0 + sin 6 sin §0>
a a a

&

=1 +£cos()+;£0 sin 0 (8.70)
where we have used the fact that § is small to approximate

é é é

cos— 0 =1, sin—-@=-—20

a o a

Hence, we can write % g, a8
1 é )
U gecnlar = > 1+ ecos (0 - 0>} (8.71)

We have chosen to measure 6 from the position of perihelion at £ = 0.
Successive appearances at perihelion result when the argument of the cosine
term in #gq,,, increases to 27, 4, ..., and so forth. But an increase of the argu-
ment by 27 requires that

0~§0=27r
a

or

__m 8
"‘1_(5/a)—2”(1+a>

Therefore, the effect of the relativistic term in the force law is to displace the
perihelion in each revolution by an amount

_2m
T

(8.72a)

that is, the apsides rotate slowly in space. If we refer to the definitions of @ and &

(Equations 8.63), we find
M2
A=6n (G’Z > (8.72b)
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TABLE 8-2 Precessional Rates for the Perihelia of Some Planets

Precessional rate (seconds of arc/century)

Planet Calculated Observed
Mercury 43.03 = 0.03 43.11 = 0.45
Venus 8.63 8.4 % 48
Earth 3.84 5.0 * 1.2
Mars 1.35 —
Jupiter 0.06 —

From Equations 8.40 and 8.42, we can write 2 = uka(l — €%): then, because k =
GmM and u = m, we have

6mGM
A= m (8.72¢)

We see therefore that the effect is enhanced if the semimajor axis a is small and
if the eccentricity is large. Mercury, which is the planet nearest the sun and
which has the most eccentric orbit of any planet (except Pluto), provides the
most sensitive test of the theory.* The calculated value of the precessional rate
for Mercury is 43.03" * 0.03” of arc per century. The observed value (corrected
for the influence of the other planets) is 43.11” * 0.45",' so the prediction of
relativity theory is confirmed in striking fashion. The precessional rates for some
of the planets are given in Table 8-2.

8.10 Stability of Circular Orbits (Optional)

In Section 8.6, we pointed out that the orbit is circular if the total energy equals
the minimum value of the effective potential energy, E = V,;,. More generally,
however, a circular orbit is allowed for any attractive potential, because the attrac-
tive force can always be made to just balance the centrifugal force by the proper
choice of radial velocity. Although circular orbits are therefore always possible in
a central, attractive force field, such orbits are not necessarily stable. A circular
orbit at r = p exists if 7|, » = O for all #; this is possible if (3V/dr) | = » = 0. Butonly
if the effective potential has a frue minimum does stability result. All other equilib-
rium circular orbits are unstable.
Let us consider an attractive central force with the form

Fy = — & (8.73)

Tﬂ

*Alternatively, we can say that the relativistic advance of the perihelion is a maximum for Mercury
because the orbital