

A set of 30 self-learning lectures by Pervez Hoodbhoy Zohra and Z.Z. Ahmed Distinguished Professor of Physics and Mathematics Forman Christian College-University Lahore, Pakistan.

Goal: To enable students to learn this beautiful subject with zero or minimal assistance.

Assumed background: Pre-college algebra and trigonometry

Languages: Urdu and English

Duration: 25-60 minutes

Number of lectures: 60 (30 Urdu, 30 English)

Availability of lectures: All lectures are available for free download from the website of the Eqbal Ahmad Centre for Public Education <u>http://eacpe.org/calculus/</u>.

I find these lectures to be a great resource for students, and have shared the link with my colleagues who are teaching this material. The lecture on vectors is also a very good one for a first linear algebra course.

Viqar Hussain, Chairman and Professor, Department of Mathematics, University of New Brunswick.

I have watched selections from the lectures in question, and find that they are a terrific introduction to calculus. Jhey are sophisticated, but accessible to students in high school as well as college.

Robert L. Jaffe, Morningstar Professor of Physics, Center for Theoretical Physics, Massachusetts Institute of Technology.

Dr. Hoodbhoy's material is truly excellent...His style of delivery is modern, conversational yet precise, and in look and feel not unlike the Khan Academy videos.

Richard Charles Larson, Mitsui Professor of Engineering Systems, and, Director, Center for Engineering Systems Fundamentals, Massachusetts Institute of Technology.

fistening to the Jeach Yourself Calculus lectures prepared by Professor Pervez Hoodbhoy, one realizes that one is in the presence of a master.

John Scales Avery, author of "Calculus and Differential Equations" and "Hyperspherical Harmonics and Generalized Sturmians".

This is a systematic and pedagogically clear attempt to bring about the salient features of Calculus and has a good number of applications encountered in physics and engineering. A truly marvelous effort in making Calculus an easy-to-follow subject.

Prof. Dr. Lubov Vassilevskaya, University of Applied Sciences, Fulda, Germany.

Lecture 1: FUNCTIONS	Lecture 2: GRAPHS OF FUNCTIONS-I
Different kinds of numbers.	The basics: scales and axes
What is a function?	What is a graph?
Sums and products of functions	Common examples
Composite functions (function of a function)	Slope of a straight line
Inverse function	Plotting 1/x and related examples.
Lecture 3: GRAPHS OF FUNCTIONS-II	Lecture 4: LIMITS
Piecewise defined functions.	An intuitive approach to limits
Trigonometric functions.	Examples – limits of various functions
The curious case of $sin(1/x)$	Defining limits properly
Plotting an unplottable function	An important theorem
Lecture 5: CONTINUOUS FUNCTIONS	Lecture 6: DIFFERENTIATION – I
Continuous and discontinuous functions	Gradients and tangents
Left and right limits	Differentiation
Some deep consequences of continuity	Examples from daily life
Solved examples	Differentiable and non-differentiable functions
	Higher derivatives
Lecture 7: DIFFERENTIATION – II	Lecture 8: MAXIMA AND MINIMA
The derivative of a sum of functions	Rates of change
The derivative of a product of functions	When the first derivative becomes zero
The derivative of ratio of functions	Inflection points
The derivative of a composition of functions	Higher derivatives
The chain rule	Solved examples from daily life
Lecture 9: USEFUL CALCULUS THEOREMS	Lecture 10: THE EXPONENTIAL FUNCTION
Rolle's Theorem	Dealing with exponents
Mean Value Theorem	The exponential function
Applications of MVT	Some obvious properties
L'Hopital's Theorem	Applications
Applications of L'Hopital's Theorem	The exponential series

LECTURE CONTENTS

Lecture 11: INVERSE FUNCTIONS & LOGS	Lecture 12: TAYLOR'S THEOREM
Monotonic functions	Approximating functions with polynomials
When does a function have an inverse?	Taylor's Theorem
Differentiating inverse functions	Estimating the remainder
The Logarithm as the inverse of Exponential	Examples of failure
Lecture 13: INTEGRATION – I	Lecture 14: INTEGRATION – II
The integral as the anti-derivative	Integration as area
Some common integrals	Upper and lower sums
Integration and the area under a curve	Functions that can be integrated
Solved examples	Functions that cannot be integrated
Lecture 15: INTEGRATION TECHNIQUES – I	Lecture 16: INTEGRATION TECHNIQUES – II
Integration – it's best to guess the answer!	Partial fractions
Integration by parts	Completing the square
Integration by change of variables	Differentiating under the integral sign
Lecture 17: INTEGRATION TECHNIQUES – III	Lecture 18: CONVERGENCE OF INTEGRALS
Trigonometric functions	Integrals of discontinuous functions
Hyperbolic functions	Integral with singular integrands
Applications	Integrals with infinite limits
Lecture 19: NUMERICAL INTEGRATION	Lecture 20: THE LENGTH OF A CURVE
When do you need numerical integration?	Length of a curve – general formula
I rapezoidal Rule	Worked examples
Simpson's Rule	Implicit functions
Solved examples	Lengths of curves that are defined implicitly
Lecture 21: AREAS AND VOLUMES	Lecture 22: PARAMETRIC CURVES
Surface area of a solid	What is a parameter?
Volume of a solid	Parameterized curves
Examples: cone, sphere, ellipsoid, toroid	Derivative of a parameterized curve
	Length of a parameterized curve
Lecture 23: POLAR COORDINATES	Lecture 24: VECTORS
Definition of polar coordinates	Scalars and vectors
Polar plots	Adding vectors
Slopes and lengths in polar coordinates	Dot product and cross product
Lecture 25: VECTOR-VALUED FUNCTIONS	Lecture 26: 1st ORDER DIFF. EQNS – I
Vector fields	How DE's arise
Differentialing vectors	Solving a DE numerically
Tangents and planes	Easy examples
Integration of vectors	
Lecture 27: ISL ORDER DIFF. EQNS -II	Lecture 28: COMPLEX NUMBERS
Linear DES	Complex conjugation
Perpeulli equation	Argond diagram
	Arganu ulagram
Autonomous DE's	Euler's representation

Lecture 29: SEQUENCES AND SERIES-I	Lecture 30: SEQUENCES AND SERIES-II
Infinite sequences and functions	Convergence of infinite series
Convergence of a sequence	Geometric series
Testing for convergence	Comparison and ratio tests
Sequences of partial sums	Integral test

Recommended Textbook: Feel free to choose your favorite one. Any that is currently used in a good American university will work well. To my mind, *Calculus* by M. Spivak is the very best. Written for the mathematically minded (as opposed to physically minded), it can make you fall in love with the subject. The problems are hard! More traditional approaches can be found in calculus books by G.B. Thomas, and by S. Lang as well as numerous others.

Problems and exercises: Students or their instructors may select them from a number of excellent websites.