Teach Yourself SpeCial Relativity

A set of 8 self-learning lectures by Pervez Hoodbhoy Zohra and Z.Z. Ahmed Distinguished Professor of Physics and Mathematics Forman Christian College-University Lahore, Pakistan. With support from the KOSHISH FOUNDATION

Goal: To enable students to learn this beautiful subject with zero or minimal assistance.

Assumed background: Pre-college algebra and trigonometry

Languages: Urdu and English

Duration: About 50 minutes each

Number of lectures: 16 (8 Urdu, 8 English)

Availability of lectures: All lectures are available for free download from the website of the Eqbal Ahmad Centre for Public Education http://eacpe.org/special-relativity/.

Suggested method of teaching: The lectures are too long and contain too much material to be absorbed in one sitting. The teacher should break at an appropriate point after roughly 8-10 minutes to engage students in a discussion. The lectures should be used in conjunction with any book of your choice that contains special relativity. Problems should be assigned after every lecture from that book.

Recommended Textbook: Feel free to choose your favorite one.

COURSE CONTENTS

Lecture 1: Space and Time	Lecture 2: Einstein's Postulates
 Relative motion Space-time Frames of reference Galilean transformations The search for ether 	 Einstein's two postulates Time dilation – first look Length contraction – first look Lorentz transformation – derivation Time dilation and length contraction
Lecture 3: Simultaneity and Causality	Lecture 4: Adding Velocities
 Synchronizing clocks Why simultaneity is relative Revisit length contraction and time dilation The invariant interval Causality 	 How we usually add velocities Relativistic addition of velocities The usual Doppler shift Relativistic Doppler shift Problems
Lecture 5: Scalars, Vectors, and Tensors	Lecture 6: Momentum and Energy
 4-Dimensional notation Minkowski space Einstein summation convention The general Lorentz transformation Scalars, Vectors, and Tensors 	 Proper time Relativistic velocity Relativistic momentum Relativistic energy Exercise
Lecture 7: Applications of Relativity	Lecture 8: Relativity and Electromagnetism
 Rest energy and kinetic energy Energy released in fission Units of energy in nuclear physics The energy and momentum of photons Application 	 What are electric and magnetic fields? Charges in motion. Currents. Electric current as a 4-vector. Electric and magnetic fields of a long wire. Transforming electric and magnetic fields.